Übungen zu Homogenen Räumen (Sommer 2024) 9. Übungsblatt (4.6.2024)

Abgabe der Lösungen Dienstag, 11.6.2024, bis 10:30 in der Vorlesung.

Übung 9.1. Eine Teilmenge $\mathfrak{h} \subseteq \mathfrak{g}$ einer Liealgebra \mathfrak{g} heißt Ideal in \mathfrak{g} , falls $[\mathfrak{h}, \mathfrak{g}] \subseteq \mathfrak{h}$. Zeigen Sie, dass \mathfrak{sl}_n ein Ideal in \mathfrak{gl}_n ist. (15 Punkte)

Übung 9.2. Sei g eine Lie-Algebra mit negativ definiter Killing-Form

$$B: \mathfrak{g} \times \mathfrak{g} \to \mathbf{R}$$
$$(X,Y) \mapsto \operatorname{Tr} (\operatorname{ad}_X \circ \operatorname{ad}_Y) .$$

- a) Zeigen Sie mit Hilfe der Jacobi-Identität, dass ad bzgl. B schief ist.
- b) Sei $\mathfrak{h} \subset \mathfrak{g}$ ein Ideal. Beweisen Sie, dass dann auch \mathfrak{h}^{\perp} ein Ideal ist (\perp bezüglich der Killing-Form).
- c) Zeigen Sie mit (b), dass sich \mathfrak{g} als Summe $\mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_k$ zerlegen lässt, wobei die \mathfrak{g}_j einfach sind, d.h. sie sind nicht abelsch und haben keine nichttrivialen Ideale. (10+5+10 Punkte)

Übung 9.3. Eine Liegruppe G operiere C^{∞} von rechts auf einer Mannigfaltigkeit M mit $\rho: \gamma \mapsto (p \mapsto p\gamma)$. Jedes $X \in \mathfrak{g}$ induziert also einen Diffeomorphismus $\rho(e^X)$ von M, und $X' := \frac{d}{dt}_{|t=0}\rho(e^{tX})$ ist ein Vektorfeld auf M.

- a) Zeigen Sie [X', Y'] = [X, Y]'.
- b) Wie lautet die entsprechende Gleichung für die Felder $X'' := \frac{d}{dt}_{|t=0} \rho(e^{-tX})$ (bzw. bei einer Operation von links)? (15+10 Punkte)

Übung 9.4. Sei G eine Lie-Gruppe und G_0 die Zusammenhangskomponente von e_G .

- a) Zeigen Sie, dass G_0 ein Normalteiler von G ist.
- b) Folgern Sie, dass G/G_0 eine diskrete Lie-Gruppe ist und dass alle Zusammenhangskomponenten diffeomorph sind. (20+15 Punkte)

Sie finden die Aufgabenblätter unter

http://reh.math.uni-duesseldorf.de/~koehler/Lehre/2024/Vorlesung.html