Übungen zu Globaler Analysis II (SoSe 2025) 9. Übungsblatt (3.6.2025)

Abgabe der Lösungen nächsten Dienstag, 10.6.2025, bis 10:30 in der Vorlesung.

Übung 9.1. Sei M eine kompakte orientierte riemannsche Mannigfaltigkeit. Folgern Sie, dass für die Operatoren auf $\mathfrak{A}^1(M)$ gilt

$$(d+d^*)^2 = \Delta^{T^*M} + \operatorname{Ric}^{\#}$$

mit # angewendet auf eine der beiden Variablen in der Bilinearform Ric. Deduzieren Sie, dass die Existenz einer Metrik mit positiver Ricci-Krümmung das Verschwinden von $\ker(d+d^*)^2_{|T^*M}$ impliziert. (35 Punkte)

Übung 9.2. Für einen gerade-dimensionalen Vektorraum $V, a \in c(\Lambda^2 V)$ und die Spin-Darstellung $\hat{\mathbf{S}}$ von $\mathrm{Cl}(V)$ erfüllt die (ungraduierte) Spur auf $\mathrm{End}\,\hat{\mathbf{S}}$ die Formel

 $\operatorname{Tr}(e_{\text{Cl}}^a)_{|\hat{\mathbf{S}}} = 2^{n/2} \det^{1/2} \cosh \frac{\tau(a)}{2}$.

(Tipp: Verfahren Sie analog zu einem ähnlichen Satz aus der Vorlesung).
(35 Punkte)

Übung 9.3. Die (nicht-assoziative) Algebra der Cayley-Zahlen Ca sei der R-Vektorraum \mathbf{H}^2 mit der Multiplikation $(a,b)\cdot(c,d):=(ac-\bar{d}b,da+b\bar{c})$. Dann gilt für das innere Produkt $\langle x,y\rangle:=\operatorname{Re} x\bar{y}$ (mit Re als Projektion auf den eingebetteten \mathbf{R} und $\bar{y}=-y+2\operatorname{Re} y$), dass $|xy|=|x|\cdot|y|$. Sei $V:=\operatorname{Im} \mathbf{Ca}\cong \mathbf{R}^7$. Zeigen Sie, dass \mathbf{Ca} ein $\operatorname{Cl}(V,\langle\cdot,\cdot\rangle)$ -Modul ist mit der Operation $c(v)x:=v\cdot x$. Ist dieser irreduzibel? Man kann zeigen, dass die induzierte Operation von $\operatorname{Spin}(7)$ auf S^7 transitiv operiert. Bestimmen Sie die Dimension der Isotropiegruppe \mathbf{G}_2 eines Punktes $p\in S^7$. (15+10+5 Punkte)

Sie finden die Aufgabenblätter auch unter

http://reh.math.uni-duesseldorf.de/~koehler/Lehre/2025/Vorlesung.html