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ABSTRACT. We construct analytic torsion forms for line bundles on holomorphic
fibrations by tori, which are not necessarily Kahler fibrations. This is done by double
transgressing the top Chern class. The forms are given in terms of Epstein zeta
functions. Also, we establish a corresponding double transgression formula and an
anomaly formula. The forms are investigated more closely for the universal bundle
over the moduli space of polarized abelian varieties and for the bundle of Jacobians
over the Teichmiiller space.

0. Introduction.

Let Z be the polarized elliptic curve given by the quotient of C by the lattice
A := Z+7Z with 7 in the upper half plane. Z has a canonical projective embedding
given by the equation y? = 423 — gox — ¢3. Let ¢ denote the zeta function defined
as the holomorphic continuation of

¢(s) = (Ilul*)™ (Re s > 1)

peEN*
n#0

with [|u]|? := |u|?/Im 7 (hence ¢ is SL(2, Z)-invariant). The Kronecker limit formula
(1853) states that

1
(0.0) ¢'(0) +logIm 7 = —Elog|g§’—27g§\2 :

Here ¢’(0) is just the analytic torsion of Z, as {||u||> | © € A*} is the spectrum
of the Laplace operator on Z. The expression g5 — 2793 on the other side is the
discriminant of the elliptic curve. Assume that go and g3 are rational. Then Z has
an arithmetic model over Spec Z and the discriminant describes the places in Spec
Z where the fibres of the elliptic curve are singular.

In this case, formula (0.0) may be regarded as a special case of the arithmetic
Riemann-Roch theorem [Bo]. One aim of this paper is to construct the analog
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of the left hand side of this formula for abelian varieties of higher dimension and
for curves of higher genus. More general, the main purpose of this paper is to
construct analytic torsion forms for torus fibrations which do not need to be Kéhler
fibrations. Torsion forms are the main ingredient of a direct image construction for
an Hermitian K-theory, which has been developed by Gillet and Soulé [GS1] in
the context of Arakelov geometry. Elements of this K-theory are represented by
holomorphic Hermitian vector bundles and real differential forms on B which are
sums of forms of type (p, p), defined modulo 0- and d-coboundaries [S, 4.8].

Let m : M — B be a holomorphic submersion with complex manifolds M and B,
compact fibres Z and a Kihler metric g7Z on the fibres. Let & be a holomorphic
vector bundle on M, equipped with a Hermitian metric h¢. Then one can try to
define a direct image (£, h) which will be an element in the Hermitian K-theory
of B. If the cohomology groups H%(Z,& z) form vector bundles then this direct
image should consist of the virtual vector bundle

(0.1) > (—1)U(Rim,E, i)

q

(where R, is a L?-metric constructed by representing H?(Z,§ ;) by harmonic
forms) and a certain class Ty, ;2 (€, h¢) of forms, which is called the analytic torsion
form. These torsion forms have to satisfy a particular double transgression formula
and when the metrics ¢74 and h® change, they have to change in a special way to
make the forms “natural” in Arakelov geometry. They must not depend on metrics
on B, and their component in degree zero should be the logarithm of the ordinary
Ray-Singer torsion [RS].

Such forms were first constructed by Bismut, Gillet and Soulé [BGS2, Th.2.20]
for locally Kéhler fibrations under the condition that H*(Z,,&|z,) = 0forall x € B.
Gillet and Soulé [GS2] and, implicitly, Faltings [F] suggested definitions for more
general cases. Then Bismut and the author gave in [BK] an explicit construction
of torsion forms 7" for Ké&hler fibrations with dim H*®(Z;,£|z,) constant on B. Let
) , denote the integral along the fibres. For a Chern-Weil polynomial ¢ and a

Hermitian holomorphic vector bundle (&, hf,gg), we shall denote by ¢(&, hg,gé) or
(&, h%) the Chern-Weil form associated to the canonical Hermitian holomorphic

connection on F'. By ¢(¢, 56) or ¢(&) we shall denote the corresponding cohomology
class. The form T satisfies the double transgression formula

(0.2) 99 0. 77 (&, 1) = ch (H*(Z,€|7), hT"(Z812)) - / Td(TZ,g"#)ch (¢, h)
2wy Z

and for two pairs of metrics , an , , 1" satisfies the anomaly formula
d f pairs of metrics (g3 7, h5) and (g7 %, hY), T satisfies th ly formul
(0.3) T”:Q;Z (&, hﬁ) — TW,QE)FZ (€, hg) _ E\H(H.(Z,ﬂz), h(]){-(Z,ﬂz), h}fr'(Z,ﬂz))

- / (TA(TZ, 7%, gT7) ch (€, h§) + TA(TZ, T %) ch (&, h§, 1)
A

modulo 0- and d-coboundaries. Here Td and ch are the Chern-Weil forms corre-
sponding to the Todd class and the Chern class and Td and ch denote Bott-Chern
forms as constructed in [BGS1, §1f].



In this paper, we shall show that the construction of the analytic torsion forms T’
extends to the following situation: consider a n-dimensional holomorphic Hermitian
vector bundle 7 : (E*° ¢g¥) — B on a compact complex manifold. Let A be a
lattice, spanning the underlying real bundle E of E''9 so that local sections of
A are holomorphic sections of E19. Then the fibration = : EM?/ALY — B is a
holomorphic torus fibration which is not necessarily flat as a complex fibration.

In this situation, R*m.On = (/\ 'E*O’l,gE), where Q) is the trivial line bundle

and 5E is a holomorphic structure canonically induced by the flat and the holo-
morphic structure on E*°. This vector bundle may be equipped with a Hermitian
metric induced by Hodge theory, which is the original metric if the volume of the
fibres Z is equal to 1. Classically, the formula

(0.4) chi (/\ *B*0T) = SR (B0

holds on the cohomological level (see e.g. [H, Th.10.11]) with ¢,, the top Chern
class. Thus, (0.1) suggests that T should satisfy

00 C max

0.5 YT, 5(0) = B gB 3" .
( ) 27_rz TF,gE( ) Td ( 7g Y )
For two Hermitian structures g’ and gF on E, one should find the following

anomaly formula
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modulo 0- and O-coboundaries. In this paper, T shall be constructed by explicitly
double transgressing the top Chern class of E%!, which was proven to be 0 in
cohomology by Sullivan [Su|. Also we shall derive the corresponding formulas for
an equivariant case and the direct images of certain line bundles over M. It is well
known that the analytic torsion equals 1 for complex tori of dimension greater than
1; we find that in fact the part of degree less than n — 1 of T vanishes.

Our method closely follows an article of Bismut and Cheeger [BC], in which
they investigate eta invariants on real SL(2n,Z) vector bundles. In this article,
they consider a quotient of a Riemannian vector bundle by a lattice bundle. Then
they find a Fourier decomposition of the infinite-dimensional bundle of sections
on the fibres Z, which allows them to transgress the Euler class explicitly via an

Fisenstein series v, i.e.
QE
dy = Pt (_) |
2

where Pf denotes the Pfaffian and QF the curvature.
The case considered here is a bit more sophisticated because neither the metric
nor the complex structure necessarily have any direct relation with the flat struc-

=E
ture. Also, it turns out that the direct image holomorphic structure & on E%! is



not the structure induced by the metric and the original holomorphic structure as
in the Kéhler case considered in [BK]. In contrast to [BC, Th. 1.13] we avoid the
use of some special formulas on Berezinians. We want to emphasize that as in [BC|
the use of certain formulas in the Mathai-Quillen calculus [MQ)] is crucial in this
paper. The formulas which we are using were established by Bismut, Gillet and
Soulé in [BGS5].

In the last sections we investigate more closely the case when 7 is a Kahler
fibration. In this situation, the formulas by which we construct the torsion forms
are far simpler than in the general case. We investigate them in particular for
the universal bundle of polarized abelian varieties over their moduli space and for
the bundle of Jacobians over the Teichmiiller space (where they take a remarkebly
simple form). Also we explain their relation with arithmetic characteristic classes
given by the arithmetic Riemann-Roch theorem, which gives for n = 1 the formula
(0.0). In particular, we deduce a formula for the action of Hecke operators on some
arithmetic classes.

The first four sections of this article are contained in the author’s thesis [K].
Recently, Bismut and Lott investigated their real torsion forms in a similar situation
[BL]. In [Be], Berthomieu investigates Torsion forms for the Poincare bundle over
the product of a torus and its dual.

I. Holomorphic Hermitian torus bundles.

Let 7 : EYY — B be a n-dimensional complex vector bundle on a compact
complex manifold B, with underlying real bundle E. We call J both the complex
structure acting on F and on T'B, with J o J = —1. Assume we have a lattice
bundle A C F spanning E. Let the real manifold M be the total space of the
fibration E/A, where the fibre Z, over a point x € B is given by the torus E,/A,.

Let E* be the dual bundle to E, equipped with the complex structure

(Ju)(A) == p(JX) Yue E*, Ne E .
In the same way, one defines 7" B and T* M. We get
EY ={Ne E®C|JA=i)\},

E% ={\Ne E®C|J)\ = —i\},

and similar equations for E* 1.0, E*0.1 TLOA TOLIN[  etc.
For A € E, we define

A= TN —iJX) and A% =LA +iJN)

and in the same manner maps E* — E*1.0 TB — TR etc. Let A* € E* be the
dual lattice bundle

AN = {p € E*|u(N) € 2nZVA € A} .

We set A0 := {ALO|\ € A}, similar for A% A*19 and A*%1. The lattices A and
A* induce flat connections V on E and E* by VA := 0 for all local sections A of A
(resp. Vi := 0 for u € T''°°(A)). These connections are dual to each other. We
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shall always use the same symbol for a connection on E'°, its conjugate on E®!,
its realisation on E and the dual induced connections on E*1.0 E*01 and E*.

Generally, the connection V is not compatible with the complex structure J (i.e.
VJ #0), so it does not extend to E*Y. Instead we associate in a canonical way a
complex connection V! to ¥V and J, namely

1
vhol .= v — §JVJ.
The connection V induces a splitting
(1.0) TM =n*EaTHM

of the tangent space of M. The horizontal lift of Y € TB to TH M will be denoted
by YH. By V')A, V"X we shall denote the restrictions of VA: TB® C — E® C

to T1°B and T%!B (we will use the same convention for all connections and for
End (E ® C)-valued one forms on B).

Lemma 1.0. The following statements are equivalent:

la) There is a holomorphic structure 3" on EYO such that 8 A0 = 0 for all
Mg Tloc(A).

1b) There is a holomorphic structure 5E on E*%1 such that EE,U,O’l =0 for all
xs T loc (A*)

2a) The complex structure extends to M and w: M — B is a holomorphic map.

2b) The complex structure extends to E*/A* and © : E*%1/A*%1 — B s a

holomorphic map.

3a) EYY is a holomorphic vector bundle and T* EY° is a complex subbundle of
TEYO,

3b) E*% is a holomorphic vector bundle and TH E*%1 is a compler subbundle
of TE* 01,

4a) VyyJ =JVyJ on E forY € TB.

4b) VyyJ =—JVyJ on E* forY € TB.

Proof. 2) is just a reformulation of 1).
la)=-3a): At a point (z,Ya;\;) € M,z € B, a; € R, \; € A, T" M is equal to
the image of the homomorphism

The latter commutes with J by the holomorphy condition on A. Thus, T M is
invariant by J.
3a)=4a): For Y € TB,\ € T'!°¢(A)

T (Vy10 A1) = (1Y) o (7 AL0) = [V 77 7A€ 7107,
thus Vy z1.0A50 € EY0. This implies

= —’iV(l_iJ)yJ)\ + JV(l_iJ)yJ)\
= (—=iVyJ =iJV, vJ = Vv J + JVyJ)A

5



4a)=-1b): Set
l//

EE = Vho
then one verifies that for Y € TB, u € T'1°¢ (A*), X\ € T'1o¢ (A*)

* 0,1,
on EK*7°;

(VhOIHILLO’l)(A) — 8(M0,1()\0,1)) . Mo’l(VhOl///\O’l)
M

(V//)\O,l) . MO,l(Vhol”)\)

' 1
u(%v’ﬁu) + U STV TN

%HLO(VNJ)\)
= SHMO((VIN) =0

The proofs 1b)=-3b)=-4b)=-1a) proceed analogously. O

Note that the connection V! induces both the holomorphic structures on E1-°
and E*%1, Hence its curvature is a (1, 1)-form. We shall assume for the rest of the
article that the conditions in Lemma 1.0 are satisfied.

_E
Lemma 1.1. 0 is the holomorphic structure on E**' induced by the first direct
. . ZE
image sheaf R'w,O of the trivial sheaf on the total space of (E1°,0").

Proof. Consider the 1-form 7*p € T*E on E, i € T''°° (A*). Then d"*7*u = 0, as
1,0
w1 is flat. Hence g~ 7 udt = 0. W

We fix a Hermitian metric ¢¥ = (, ) on E, i.e. a Riemannian metric with the

property
(JA Jdn) = (Am) YAn€EE .

This induces a Hermitian metric canonically on E*. We define ||\||% := (\, ) for
A € E® C. Thus A0 = 1||A||? for A € E. We need to assume that the volume
of the fibres Z of M is constant; for simplicity we take it to be equal to 1, as the
value of this constant shall not have much effect on our results. The metric induces
an isomorphism of real vector bundles i: E — E*, so that ioJ = —J oi.

Definition 1.0. Let VZ be the Hermitian holomorphic connection on E* %! associ-
ated to the canonical holomorphic structure in Lemma 1.0.1b). Let ‘6* : TB® C —
End (E* ® C) denote the one-form given by

(1.1) AT v v
and let ¥ be the one-form on B with coefficients in End (E*)

Yy =i 'VyiVY e TB .

V¥ should not be confused with the Hermitian holomorphic connection on E* 01
induced by the metric and the holomorphic structure in Lemma 1.0.1a), which we
shall not use in this article.



With respect to the natural pairing £ ® E* — R, the transpose of 6* will be
denoted by 6*, thus

O ) (\) = p@*\) Vu e E*, A€ E..

The adjoints of 18* and 6* will be denoted by ‘@ and 6. This notation is chosen to

be compatible with the notation in [BC]. By definition, '6* satisfies
te*// . E@C SN EI,O ,

(12) tpx/! 0,1

0" EC — E° .

Notice that the connection V419 on E* is just the pullback of V by the isomorphism

i~L

Lemma 1.2. The Hermitian connection VE on E*%! is given by
(1.3) VE = (V4 9) 40 =V 4o
Its curvature on E*%1 is given by
aF =370
and it 1s characterized by the equation

(1.4) <(QE+ oM y> = 100 (1, Jv) Yp,v € T1°° (A%) |

Proof. The first part is classical, but we shall give a short proof to illustrate our
notations. For all u € T'1°¢ (A*), v € T(E*)

3 (1, v10) = B0 ) = ((V +0) V1O )

but also B N B
8<u0’1,yl’0> _ <,uO’1,VE”V1’0> _ (i_l,u)(VE”Vl’O) ’

hence (V + ¢) = VE" on E*01. To see the second part, one calculates for u,v €
T loc (A*)

99 <M0’17V1’0> _ <VE//LO’1,VEHV1’O> 1 <,u0’1,VF'VE”V1’O>
<VE/M’ VE//V> + <,u0,17 QEV1,0>

=—("0""0" p,v) — <QE/¢O’1, 1/1’0> :

but also B
99 <,u1,07yo,1> _ <t9/t9*//lu’ 1/> n <QEMO,1,V1,O> '

Substracting and using (1.2), one finds
100 (1, Jv) = 99 (110, 001) — 80 (101, 10)
= <QEI$7 y> + <(t9/t9*// + tellte*/), 1, 1/>

_ <(Qf+t9t9*)ﬂ,y> .



II. A transgression of the top Chern class.
In this section, a form v on B will be constructed which transgresses the top

Chern class cn(%) of E%1. ~, divided by the Todd class, will be shown to equal
the torsion form in section IV. We shall use the Mathai-Quillen calculus [MQ] and
its version described and used by [BGS5]. Mathai and Quillen observed that for
A € End (E) skew and invertible and Pf(A) its Pfaffian, the forms Pf(A)(A~1)"*
are polynomial functions in A, so they can be extended to arbitrary skew elements of

End (E). An endomorphism A € End (E%!),i.e. A € End(E) with JoA = Ao J,
may be turned into a skew endomorphism of £ ® C by replacing

(2.0) A LA— A"+ Lig(A+ A% .

That is, A is replaced by the operator which acts on E'? as —A* and on E%! as

A. This is the convention of [BGS5, p. 288| adapted to the fact that we are dealing

with E%! and not with EMY. The same conventions will be applied to End (T'M).
With I'go: € End (E®%?!) the identity map, we consider at Y € F and b € R

—mQF 2 P g
(2.1) a; = detﬂ*EM( 7; —b1E0,1> e~ (g (P ~2mb) )
s

by antisymmetrization as a form on the total space of FE.

Definition 2.0. Let 3, € A T*B be the form

(2.2) 8= (7'w)a

pHEA*

and define ﬁt,B} e NT*B as

By -

_ ~ 0
B = 5t|b:0 ) B = %’b:o

The meaning of 3, will become clear in the proof of Lemma 4.0, where it is
shown to be related to the supertrace which defines the torsion forms. In the
following two Lemmas, ¢, and ¢,_1 shall denote the Chern polynomials evaluated
on End(E%1)-valued 2-forms on B.

Lemma 2.0. Et 1S given by

~ 0 —QOF _£<r1 (1+9*(Qf—27er)*10)r1u>
(2.3) By = —‘ detgo,1 (— — bIE0,1> E e ? Ho
oblv=0 27 e

and

271

~ 0 —OF — 09"
(24) ﬁt = (27Tt) %‘b:OdCtEo,l (7 — bIE0,1>

Z = 2%</\»(1+9* (QF +00* 727er)_19)/\>

AEA



Fort / oo it has the asymptotics

- —QOF
(25) ﬁt = —Cp_1 <E’0,17 2—7”) + O(e_ot)
and for t \ 0
~ _OFE _ pp*
(2.6) By = —(21t) "cp_y (EOJ, 9272_99> +O(e 7).
s

Proof. We recall that 0* = VE — V¥V on E, hence for p € Tloc (A%)
VI ) = iy
and one obtains
(ifl,u)*(w*QE —2mbJ)" =1 <i*1/¢, 9*(QE — 27TbJ)*10'1*1,u> .
This proves (2.3). To show (2.4), we adopt the notations of [MQ)]. Let A[¢] be

a 2n-dimensional exterior algebra with fixed generators 1, ...,1a,; let (e;) be a
local orthonormal basis of E' and set

=) e @Y
(To avoid choosing bases one might simply take /\ E* instead of /\[¢] and e} instead

of 1;. But taking an abstract exterior algebra helps to avoid confusion in the
following calculation). The Berezin integral

/mﬂAmﬁc

is defined as the linear map which equals one for 11 A --- A 19, and vanishes on
forms of lower degree. By applying [MQ, Prop. 1.8], we get

_ _OF /i 0T g 1gyit
B, =detgo. (2— —bIE0,1> e 2<1 w,(146* (2% —27bJ) ~10)i u>
T e

- (_—1)nPf (0F —2707) 3 o3[l =50t (@F —2mb) 1011 )

2 e
S(2) 7 5 et amnevilo )l
2T e
m e D A S
7t
HEA*



(by rescaling the 1;’s with v/%)

—1\" [P¥ t {4 (QF+00" —2mb ) ) — &
(2.7) - (Tm) / S ot (v @+ yo)—4

HEA*

e

Now we apply the Poisson summation formula to obtain

(2.8)
A= (5) [ el sl syt (viaTron
_ — 2| =i w )+ £ (P 100" —2mb )y
() | X
AEA
1 2n o
- (—) " Pf (QE + 00" — 27er>
2mit
3 o 2 A = 2 (—iox (9P 1007 —2mb0) T (—i6n))
A€A
1\" —QOF — g~ — L {N,(1+0" (QF 400" —27b) " 1O)A
= (%) detEO,l (T —bIEO,1> Z@ 2t< ( + ( + ) ) > .
AeA |
Il
The above proof shows also
Lemma 2.1. j3; is given by
25 et [P 3 et 0
( . ) ﬁt = ade€ertgo,1 o Mg*e

and

—OF — 9o 1 e B a1
(2'10) By = (ZWt)_ndetEo,1 <7> Z e 21t<’\7(1+9 (QF+06%) 9)>\> .

271
AEA

Fort /' oo it has the asymptotics

_OF
(2.11) By = en (E %) +0(e™)
and for t \, 0
_OF _ pp
(2.12) By = (2mt) e, (Eo’l, %) +O(e 7).

We define the Epstein zeta function for Re s > n

271

00 _ _OF
(2.13) ¢(s) ::_r(ls)/o 51 (ﬂt+cn_1(EO’1, s )) dt

10



i.e.

1 _ —S8
> <r1u, S+ 0" (QF — 2ﬂbJ)‘19)1_1u> :

pnEA*
n#0

Note that ((s) may be written as

(2.14)

C(s) = % /0 e (’ﬁl + (%t)‘"%-d%)) dt
+ ﬁ /O1 g1 ((2wt)”cnl(#f) _ cnl(;f)> it
- ﬁ /1"0 p1 <gt v %—1(323) dt
— F(ls) /01 o1 <B} + (2ﬂt)_"cn_1(#)> dt

1 [~ (= —QF
“to ) 1@“”‘1(27”' )>dt

(2mt) " —OF — 9o 1 —OF
F(s)(s—n)cn_l( i) T(s + 1)0”‘1( i)

and this expression is holomorphic for s # n by Lemma 2.1. Hence we may define

Definition 2.1. Let v be the form on B

(2.15) v :=¢'(0) .

More explicitly, v is given by

(2.16)
o —QF \dt [t~ . —QF —00*\ \ dt
72—/1 <ﬁt+cn 1(27m ))7—/0 (ﬂt+(27ﬂf) Cn—1 <T>>7
) —QF 1 —OF — 99"
T Wena(55) - n(2m)n " (2—m) ’

which results in sums over exponential integrals. The value of ( at zero is given by

_OF

211

(2.17) 6(0) =~

).

11



Remark. The added constant cn_l(_QE) in (2.13) is needed to make the integral

271
converge in a certain domain. It does not effect the value of ((s), because

Y 1
— T dt = ——— for —1 <Re s <0
T(s) / T(s+1) ' i

and
1

1
—1
—— | ¥ ldt=——  forRes>0,
F(s)/o T(s+1) or e s

thus the sum of the holomorphic continuations of these integrals vanishes.

Theorem 2.2. ~ satisfies the double-transgression formula

90 —OF
2.1 _— _= n Eo’l JE— .
(2.18) 27m'/y ¢ ( T2 )
Proof. By [BGS5, Th. 2.10], one knows that
0 00 0
2.19 —t— = —— .
(2.19) 8tat‘b:0 273 Ob lb=o ¢

The minus sign occuring here in contrast to [BGS5] is caused by the different sign
of J = —ilgo,1 in our formulas.

We define 8° by 8, = t™"3° + O(e=“/*) for t \, 0 as in Lemma 6. Then one
obtains for Re s > n

220 22¢(s) = L/wf%dt
0

271 [(s) ot
_ 1 ! s a —n 70 n ! s—1—n 70 1 > s 8

1t o0 1 n o, 1 [0

and hence for the holomorphic continuation of ¢ to 0

20 . —OF
(221) ot (0= Jim B = en ( o ) -

III. Calculation of the holomorphic superconnection.
The analytic torsion forms of a fibration are defined using a certain supercon-

nection, acting on the infinite-dimensional bundle of forms on the fibres. In this
M
section, this superconnection will be investigated for the torus fibration «|.
B
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Let F = T'(Z, ANT*%'Z) be the infinite-dimensional bundle on B with the
smooth antiholomorphic forms on Z as fibres. By using the holomorphic Hermitian
connection VZ on E*0:1 , one can define a connection VonF setting

Vyh:=(m.VE)yuh VY € (TB), h e I'(B,F) .

The metric (, ) on E induces a metric on Z. Then F has a natural 77 @ C
Clifford module structure, given by the actions of

e(ZY0) = V2i(ZY°) A and ¢(Z°1) := =21 01 V2 ETZ .
Lzo,1 denotes here interior multiplication. Hence
cA(2)e(Z') 4+ e(Z)e(Z) = =2(Z,Z'YNZ,Z' e TZ 2 C .
Let 52 be the Dolbeault operator, let 5Z* denote its dual on Z and let
D=3 +3"

denote the Dirac operator action on F. In fact, for an orthonormal basis (e;) of
TZ ® C and the Hermitian connection VZ on Z

1 z
D = 7 Zc(ei)vei :

A form p = pb0 + p%t € A* can be identified with a R/27Z-valued function on
Z. In particular, the C-valued function e is well-defined on Z. Then one finds
the analogue of Theorem 2.7 in [BC].

Lemma 3.0. For x € B, F, can be orthogonally decomposed into Hilbert spaces
(3.0) F,= @ NE ™ @{c"}.
HEA]

Forpe AX, a e NE:%Y, D acts on \ EX%! @ {e**} as

oy Gc(i) '
(3.1) Da®e?)= ———a®e*
V2
and
(3.2) D*a@e™)=Lufage® .

Proof. The first part of the Lemma is standard Fourier analysis, using that vol(A) =
1. The second part is obtained by calculating

a0’y =0, 3 (a@et”) =ip®t Aa e

=% Z

(3-3) | 7. | |
0 (a® el“o’l) =0, 5 (a® e”‘l’o) = —ili-1100® ein'”

]

Now one can determine the action of V with respect to this splitting. Define a
connection on the infinite-dimensional bundle C'*°(Z, C) by setting

Vef=Y"fVYY eTB, feC™(ZC).

13



Lemma 3.1. The connection V acts on F = \ E*%' @ C=(Z,C) as
V=vVEf@l+l1aV>®,

hence it acts on local sections of \ E*%1 @ {e**} for uy € T1°¢(A*) as VE®@ 1. In
particular,

V2=0F®1.
Proof. This follows because p is a flat local section. O

F
Definition 3.0. The superconnection A; on |, depending on t € R, ¢t > 0, given
B
by
At = V "’ \/ZD
is called the Levi-Civita superconnection.

In fact, this definition is the analogue to the Definition 2.1 in [BGS2]; the torsion
term appearing there vanishes in the case mentioned here. By Lemma 3.0 and
Lemma 3.1, it is clear that AZ acts on \ E*%! @ {e*}, u € T1°¢(A*), as

(3.4) A? = (VP 4 z'\/gc(i—lu))Q ®1.

IV. The analytic torsion form.

Let Ny be the number operator on B acting on A’ T*B ® F by multiplication
with p. Tr ;e will denote the supertrace Tr(—1)#e. Let ¢ be the map acting on
A** T*B by multiplication with (27i)~7. Let P denote the vector space of sums of
(p, p)-forms and define P’ by

P’ :={w € P|3 forms o, 8 : w = da + OB}.

Let Td~! and (Td~!)’ denote the ad-invariant polynomials which are such that

n

) 1—e %
Td~ ! (diag(z1, ..., zn)) = H —

| 7

and

o BN & B
(Td™ ") (diag(x1, ..., zp)) = ab’b:()l;[

for a diagonal matrix diag(z1, ..., ).

Lemma 4.0. In P, the following equality holds

_OF\ - _QF
(4.0) @ TroNye ™% = Td™! (EOJ, )@ —(Td™YY (Eo’l, . )ﬂt .

271 271

14



In particular

_QOF
(4.1) © T7°sNHe_Af = Td! <E0’1, 2—> By in P/P".

g
Proof. Define a form a; on the total space of E with value

(4.2) a; := pTr 4Ny exp (—(VF + i\/gc()\))g)

at A € E. Then one observes

(4.3) pTr Npe ™ = 3 (i7lu)*ay .
pneA*

Also by [BGS5,Proof of Th. 3.17] one knows that
N _ —7*OF
(4.4) a; = %‘bond 1 (EOJ, R bIEo,l) ar .

This proves (4.0). Using (3.19), it is clear that

= o [ _OF _OF
g, =2 (ﬁt+cn—1(Eo’1, & ))&CH(EO&&.),

- 27 2mi t 27i

thus §; € P’. This proves (4.1). O

Lemmas 2.1, 4.0 and Theorem 2.2 show the existence of a form w,, on B with
the property
2
©Tr Nye ¢ = woo + O(e_Ct) for t /" oc.

Definition 4.1. As in [BK], we define the analytic torsion form 7, ;= to be the
derivative at 0 of the zeta function which is given by

1 /OO -1 _A2
- t? (ngrsNHe t —woo> dt Re s > n),
TG) Jo ( )

Note that the zeta function in [BK] needed to be defined in a more complicated
way, as the above integral would generally never converge.
Theorem 4.1. The analytic torsion form T, .= is given by

- —QF\
(4.5) Ty ge = Td™} (Eo’l, 2—m> v in P/P".

Proof. This is a consequence of Lemma 8. Using the asymptotic expansion (2.12)
of (B; and the fact that 3; is exact, one shows the exactness of the corresponding
term in T, ;= by an explicit calculation similar to (2.20). O

15



In particular, we deduce from Theorem 2.2

00 Cn, —QOF
0 i o = (7a) ( o )

Now we shall investigate the dependence of T" on the metric gE . For two Hermitian
metrics g&, gF on E and a Chern-Weil polynomial ¢, let ¢(E%!, g&, ¢F) € P/P’
denote the axiomatically defined Bott-Chern class of [BGS1, Sect. 1f)]. It has the

following property

90 ~
Q—MCD(EO’l,ng,g{E) = ¢(E™, ) — o(E™, gf) .

Corollary 4.2. Let g¥,gF be two Hermitian metrics on E. Then the associated
analytic torsion forms change by

(4.7)

T e — T

™91

g = Td"YE" g5, g7 )en(E™, g57) + Td Y (E™ g7 )en (B g5, 1)

modulo O— and O— coboundaries.

Proof. This follows by the uniqueness of the Bott-Chern classes. Using Theorem
2.2, Theorem 4.1 and the characterization of Bott-Chern classes in [BGS1, Th.
1.29], it is clear that

—~—

Cn
Tﬂ-aglE o T7r7g()E = (T—d)(EO’].’g(-)E’glE) :

The result follows. (]

In this proof we make essential use of the fact that we do not assume a Kéahler
condition.

V. The equivariant case with coefficients in a line bundle.
Let po be a flat section of E* (e.g. the zero section). pg induces a complex line
bundle L,, on M as
L,, :=ExC/A

via the action of A€ A on F x C
A (777 Z) = ()‘ + 1, eiﬂO(A)Z> .

Thus, a section of L,, may be represented as a function s € C*°(E,C) which
verifies the condition

(5.0) s(A+n) = e MNg(n) (AeA,neE).

The first Chern class of the restriction of L,, to Z vanishes. The holomorphic
and Hermitian structures on the trivial line bundle over F induce a holomorphic

16



L " . .
structure 0 and an Hermitian structure on L,,. As in section II, one has the
Hilbert space decomposition

(5.1) NZ,N\T""Z0 L) = @ N\EO @ {ttm)}
HEA]

and the Dirac operator D = 9" + 3" acts on N\ E:0l @ {eilrotm)} ag

. ~_1
(5.2) D(a eftwrin) 0 (5% 1) ) g giturt

D*(a® ety =1 g + pf* e @ e ot

In particular, the cohomology H*(Z, L, |z) = ker D? vanishes for pg ¢ A*. The
action of the curvature of the superconnection 4,,, ; associated to L,, on A E:%' @
{e!rotm)] is given by

(5.3) A2 = (VP 4+ i\/gc(il(,uo +u)) 1.

Now consider a flat section \g of E (e.g. A\g = 0). Ag acts fibrewise as a translation
on M. The line bundle L,, is invariant under this action, and we let A\g act on
/\_E’.;‘< 071 ® {ei(HO'hu')} as

(5.4) A (a ® ei(uo-HL)) — oot (Xo) 2 cilnotn)
This action is chosen in such a way that it is A*-invariant. Thus, ;o may in fact

be a section of E*/A* and Aj acts trivially on the cohomology. Alternatively one
could consider the action

(5.5) Ayl ® ei(uo+u)) _ i) o g gilhotn) |

which in A-invariant and allowes Ao to be a section of E/A.
The equivariant analytic torsion form with coefficients in L, shall be defined
via the heat kernel

(5.6) goTrsNH)\SefAZOvt :
Using the Hilbert space decomposition , one finds that

¢ Tr sNH)\Se_AiO’t = Z (i7" (o +M))*at6i(ﬂo+u)(>\o) _
HEA*

<57) BNO»AOat = Z (i_l(:U'O +M))*O‘t€i(uo+u)(>\0) .
nEN*

17



As pyg is flat, one has the equation

VEG o) = =01 o

hence

™

_ _OF
(5.8) ﬁuo,/\o,t:detEO’l 97 —blgon

3 o (7 o), (1407 (@ —2mb0) 71 0)i (o) ) Fio+i1) (No)

HEA*

and

_ . —OF — 9o~
(59) /BHO)\O,t = (27Tt) detEO,l (T — bIEO,l)

Z o < A—Xo,(1+0* (QF +00* —2wa)*19)(A—AO)> +ipo(N)

AEA

In particular, one finds for ¢t /" oo the asymptotics

_ L (=2F _ ) «
(5.10) Brorot = O(e= ) + det go, < 5. — blgo. ) for po E.A
0 otherwise
and for ¢t \, 0
(5.11) )
3 oy 2t) et (Z5500 — bTpon ) e #0090 for Ay € A
6#07>\o,t = O(e ¢ ) + ( T ) Clpo 271 E° € or Ag :
0 otherwise.

Using (2.19) and the flatness of Ao, one obtains again

0 — 00 0 —
(5]‘2) _taﬁMO:Amt b=0 = 2—7”% b=0 MO’AO’t ’

One may consider again the Epstein zeta function

__ L [Tea(2] 3 _9) 3
(513)  Cuonols) = F(s)/o ! <6b‘b:05“0’>‘0’t ab’bzoﬁ“(”)“)’m)dt

and we define

Yiaodo = Giug 20 (0) -

We define the equivariant torsion form 7). ;=(L,,, Ao) as the derivative at 0 of the
Mellin transform of the heat kernel (5.5) similar to Definition 4.1. As in section IV,
one finds the following Theorem:

18



Theorem 5.0. The analytic torsion form is given by

(5.14) Tre g2 (Lpgs o) = Td ™ <E0’1, ;—f) Yyi0 20 in P/P'.
If no € A* then

(5.15) %Tﬁ’gE(LMO,AO) = (%) (;f)

and for two metrics g&°, gF on E

(5.16) T g2 (Lysos A0) — T g2 (Lg, Ao) = @(Eo’lygéﬂagf) :
If po & A* then

(5.17) %TF’QE (L, Mo) =0

and Ty 45 (L, , Ao) s independent of gF.

For elliptic curves the function T} ;=(L,,,0) has been calculated by Ray and
Singer [RS] in terms of theta series; see also Epstein [E,§7] for T}, ;= (L, Ao). For

the action (5.5), the formulas for 3, 5, ¢, Yuo.ro a0d Tx g5 (Ly,, Ao) still hold when
multiplied by a factor e—"0(}o),

VI. The Kihler case.

The analytic torsion forms were only constructed in [BK] for the case where the
fibration is Ké&hler. That means, there had to exist a closed (1, 1)-form on the total
space M, so that the decomposition (1.0) is an orthogonal decomposition and the
form has to be positive in the vertical direction. Hence it is interesting to see when
this happens for the case investigated here.

M
Lemma 6.0. The fibration | is Kdhler iff there exists a flat symplectic form w®

B
on E, which is a positive (1,1)-form with respect to J, i.e.

(1) Vo =0,
(2) WP(IN Tn) = wg (A n) VAnEE,
(3) wP(NJN) >0 VAEE.

Furthermore, a (1,1)-form on M respecting the decomposition (1.0) can induce a
Kdahler metric on M iff w is a Kdhler fibration and B is a Kahler manifold.

The local Kéhler condition as posed in [BGS1],[BGS2] holds if such a positive
flat symplectic structure exists locally on B.
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Proof. Let w be a (1,1)-form on TM such that w(TH M, TZ) = 0. By wf and w?
we denote the horizontal and the vertical part of w. Using the decomposition (1.0),
the condition dw = 0 splits into four parts :

i) For Y1,Y5,Y3 € TB :
0= dw(Y", Y5, Y3H) = do™ (Y], vy, YsH) ,
ii) for Y5,Yo € TB, Z € TZ :
0=dw(Y{",Yy",2) = Z " (Y, V37),
iii) for Y € TB, 721,25 €TZ :
0=dw(Y" Z1,25) = (Lynw?)(Z1, Z2),
iv) for 21,7573 € TZ :
0 = dw(Zy, Zy, Z3) = dw?(Z1, Z2, Z3) .

The conditions i) and ii) just mean that w’ is the horizonal lift of a closed (1, 1)-
form on B (e.g. of 0). Of course, w!! is positive iff it corresponds to a Kihler metric
on B.

If there is a form w? satisfying condition iii), then its restriction to the zero sec-
tion of F induces a Kihler form w” on E, so that the left 7*w® satisfies conditions
iii) and iv). Only the following necessary condition remains

iii’) There exists a Hermitian metric g on E, so that for the corresponding
Kihler form w? and all A\, € T''°¢(A)

wP(\, 1) = const.
On the other hand, M is clearly Kahler if this condition is satisfied. This proves
the Lemma. O
The Kéhler condition simplifies the geometry considerably:

Lemma 6.1. Assume that w is Kdhler. Let g¥ := w®(-, J-) be induced by a positive
flat symplectic structure w®. Then

(1) 9 = EE, ie. D is the holomorphic stucture induced by 9" and by the

metric.
(2) 10 =0 =—-1JVJ on E* and 0* =0 =—1JV.J on E.
(3) QF = —9"2 = —1(VJ)2
(4) BD|ALO)2/2 = —iwE (BN, 0X) = iwB(QEX, ) = (ALO, QEN01),

Proof. For \,n € T''°¢(A(A),
1 1
(VI m) + (A, V) = =S TV ) = S (A, TV )

= —wB(VJIN D) +wP (N, VJIn)
= V(0P (JXn) —wP (X, Jn)) = V(A n) .
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Thus the connection V2! is Hermitian and hence it equals VE. This implies (2).

Now V'l induces both & and 5E, hence & =0 . (3) follows by (2) and equation
(1.4). Also

BN 01y =(\1O, QEno,1> I <VE/)\1’O,VEH770’1>
(A0, 0Fn) + (VEAL, V)
(AL0,=0"2n) 4+ ((OX) 1, 0m)

= — 2iw® (0N, 0n) .

Together with the skew-symmetry of 62 this proves (4). O

By (1), T coincides with the torsion form in [BK] in this case. Furthermore,
the asymptotic terms in (2.6), (2.12) vanish by (2). For the rest of this section, we
shall assume that g is induced by a flat symplectic form. We shall not distinguish

anymore between 5E and 5E or between V¥ and VE. By Lemma 6.1, the last
expression in equation (2.8) equals

— ]. " _ 1 * (0 T —1
By = (2—m> detpo (—blgos) Y e 2eMOFE (=20 T0N)

AEA
—b " 2 1
_ (b LA = 2 (OA,TON)
(6.0) —( ) > e
27t vrs
n— . l
_Ze 1I\/\1°||2Z (=b)"" fagH)\l,o”z " .
Gty 2
Hence
. An
6.1 BN o B N S - TR
( : ) ﬁt (27rt)2”n' Ze 92 || ||
" AEA
and
. A(n—1)
3 LA [ 2 575111102
(6.2) By = COEET 'Ze (Qaayu H) :

AEA

One may use these expressions to give a simpler proof of the identity

0 00 ~
taﬁt = %6t .

The expression for B} shows the following
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Theorem 6.2. The zeta function equals for Re s < 0

) =7 | 1Bt

I'(s)
— A(n—1)
—99 ||\ 1,
_F(Zn—s—l) Z <47r’i ”)\10 2)
o 2n—1-—s
I'(s)(n—1)! (o) (IA0]2)

ALO —QF 201

I'2n—-s-1) Z < » 2 >A(”_1) .

- . 2n—1—s
(s)(n —1)! AeA\{0} (H)‘LOHQ)

VI1I. Hecke operators and the relation with Arakelov geometry.

In this section we shall investigate the action of Hecke operators on the torsion
forms. For this purpose we assume that w? is a principal polarization, i.e. 27w?
maps A to A*.

Let (E,A,w®) — B be a bundle of principally polarized abelian varieties and let
a(E,A,wF) € \"T*B be a differential form associated to (E, A,w®) in a functorial
way: If f : B’ — B is a holomorphic map and (f*FE, f*A, f*w?) the induced bundle
over B, then a(f*E, f*A, f*w¥?) = f*a(E,A,w?); in other words, « shall be a
modular form. Choose an open cover (U;) of B such that the bundle trivializes
over U;. To define the Hecke operator T'(p), p prime, associated to the group
Sp(n,Z), consider on U; the set L(p) of all maximal sublattices A" C Ay, such that
w? takes values in pZ on A’. The sums

E
w

(70) T(p)Oé(E,A,wE)“]i = § : Oé(E,A/,—)
NEL() P

patch together to a globally defined differential form on B. Note that the set L(p)
may be identified with the set of all maximal isotropic subspaces (Lagrangians)
A’/pA of the symplectic vector space (A/pA,w?) over F,,.

Lemma 7.0. The zeta function is for each s an eigenfunctions for T (p) with eigen-

values

(7.1) T(p)¢(s) = ﬁ(pi + 1) (p" 7+ 1) C(s) -

In particular

(7.2) T(p)y = f[l(pi +1)v+ Tif[j(pi +1) - (1= p")logp-¢(0) .

Proof. Set vp(n) = #L(p) and v{(n) = #{A € L(p) | v € A'/pA} for v €
A/pA\{0}. Consider the space V, := {w € A/pA | w¥(w,v) = 0}/{v). This

2n — 2-dimensional space carries a canonically induced symplectic structure and
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the Lagrangians L in V), are in one-to-one correspondence with the Lagrangians
L+ (v) C A/pA containing v. Thus v{(n) = v,(n—1); in particular, v1(n) := v{(n)
is independant of v. Now each of the p?>” — 1 non-zero vectors in A/pA occurs in
v1(n) Lagrangians, and each Lagrangian subspace contains p™ — 1 non-zero vectors.
Hence

(7.3) (0" = Dvp(n) = (p*" — i (n)

or vp(n) = (p" + 1)r1(n). Set for A € A

_QF A(n—1)
'(2n—s—1) </\1’0’ 2 )‘0’1>

I'(s)(n —1)! (”)\1,0”2)2”—1—8

ax(s) :=

Neither V nor J change when we replace A by a sublattive A’. Hence 6 does not
change and we find

T(p)C(s) = vi(n)p"~* Z ax(s) + vp(n)p™~? Z ax(s)

AEA\PA AEPA

A#£0 A0

=uv1(n)p"~° Z ax(s) +vi(n)p® Z ax(s)
AEA AEA
A£0 A£0

=v1(n)(p" " +p%)C(s) -

U

Note that the additional factor Td(E%1)~! of the torsion form commutes with
the Hecke operators, since the curvature is invariant under passing to a sublattice

and scaling the metric. Also the Hecke operators commute with 9 and 0. Thus the

E

Lemma implies that T, ,= € P/P’ is an eigenfunction iff cn_l(%) vanishes in

cohomology. As shall be explained at the end of this section, there are good reasons
why T ;= is not an eigenfunction in general.

More general Hecke operators T'(D) are associated to a tuple D = (dq,...,d,,e1,..

of integers with d;e; = p = const. for all 1 < ¢ < n. One takes the sum over
all maximal sublattices A’ C A with the property that there is a symplectic basis

. ,€n)l

(M, ooy Ay, - oy ) Of A such that A’ is generated by (di A1, ..., dpAn,e1m1, .-, entn). B

We denote this set of sublattices by L£(D).
Lemma 7.1. ((s) is an eigenfunctions for T(D).

Proof. Consider v*(n) := #{A’ € L(D) | A € A’}. v*(n) is invariant under the
action of Sp(n,Z) on A\. The orbits of Sp(n,Z) are the set of primitive lattice

elements and its multiples. Hence for d|u the multiplicity v¢(n) := v*(n) is constant
for A € dA\U{d'A | d'|p, d|d’,d # d'}. Define recursively

va(n) == vi(n) — Z var(n) .

d’|d
d’ #d
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With the same argument as above one obtains

(7.4) T(D){( D va(n)d L ((s)

dlp
Il

The main application of torsion forms is the construction of a direct image in
Arakelov geometry, which is used in the arithmetic Riemann-Roch theorem by
Gillet and Soulé [GS3]. We shall explain this relation briefly without going into the
details of arithmetic geometry. We use the concepts and the notation of [GS1],[GS2]
and [S]. Assume that there is a projective flat map f : M — B between arithmetic
varieties, i.e. regular quasi-projective flat schemes over Spec Z, such that M =
M(C), B =B(C) and f induces the map 7 : M — B. Let a : P/P' — CH(B) be
the canonical map to Arakelov Chow groups and let gﬁ, Td denote the arithmetic
Chern character and the Todd class. Let Td“4(T'M /B) denote the Gillet-Soulé Todd
class (involving the R-genus) of the relative tangent sheaf of f. The arithmetic
Grothendieck-Riemann-Roch theorem conjectured by Gillet-Soulé [GS2] states for
the direct image of the sheaf O

n

(7.5) ch (D (~1)IRUf,0pm,9") + a(Ty 4x) = £.TAA(TM/B) .

q=0

As the metric of the fibres is flat, the pushforward of the R-genus vanishes and the
above formula gets

(7.6) Eﬁ(i(—l)qqu*OMgE) +a(Td™! <E0’1, —2_2?> ~) = £.TA(TM/B) .
q=0

Assume that RIf,Ox = AR f,O; then one obtains

—

_OF _—
1) (55) (R1.000)",97) +a(Td! <E°71, 2—7”) 7) = L. TATM/B) .
in particular

(78) & (R .0m)",g7) +a(y) = (£.TA(TM/B)™ .

Assume that the action of the Hecke operators is still well-defined. One cannot
expect that the two arithmetic classes in (7.8) are Sp(n,Z)-invariant, as this does
not even hold for n = 1. But formula (7.8) implies that their difference is Sp(n, Z)-
invariant, and using Lemma 7.0. one obtains

(7.9) ( Hp+1)(f*ﬁ(TM/B))(")—cTL((le*Om)*,gE))

_ o
Hp+1 —p")logp-cn1(——) -
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VIII. The moduli spaces of abelian varieties and curves.

We shall have a closer look at the torsion form for the universal bundle of
abelian varieties. We shall use the description and notation of [LB|. Let D :=
diag(ds,...,d,) with dy,...,d, € N being a polarization type and consider the
Siegel upper half space

n={Z =X +iV € End(C)|'Z = Z,Y > 0} ,

which is the universal covering of the moduli space for polarized abelian varieties
of type D. Due to an unavoidable clash of notations, we are forced here to use the
letters Z and Y again. Choose the trivial C™-bundle over $),, as the holomorphic
vector bundle E*° and define the lattice A% over a point Z € $,, as

Ay = (Z,D)Z*"

where (Z, D) denotes a C™*?"-matrix. The polarization defines a Kihler form on
FE; the associated metric is given by

||Z7‘—|—DSH|2Z =!YZr + Ds)Y Y (Zr + Ds) for r,s € Z".

(one might scale the metric by a constant factor (det D)~'/"/2 to satisfy the con-
dition vol(Z) = 1. The torsion form is invariant under this scaling). The fibration
EY0 /A1 is the universal family of polarized abelian varieties over the moduli space.

Lemma 8.0. The End(E)-valued forms 0 and QF are given by
1 — 1,0
0=—dzZY on £,
21
1
0=——dzZY ! on E%1
217

and )
QF = —Zdzy—ldiy—l.
Proof. For \,n € A,
5<)\1,0’770,1> — <)\1’0,VE770’1> — <)\1,079nl,0> ]
Choose n''Y = Ds, s € Z"; then
AN O = ALY T Ds = A0y T1OY - Y1) Ds
1 —
= Al’OY”(?dZ Y YDs ,
i
thus On'0 = %d?Yﬁlnl’O and 0n%! = Gnl.0 = —%dZ Y ~1in%l, O

Now we investigate the torsion forms associated to the bundle of Jacobian vari-
eties over the Teichmiiller space ¥,, of curves C of genus n [GH, Ch. 2.7], [N, Ch.
4.1]. Let 0 : € — T, denote the universal bundle of curves. By the Kodaira-Spencer
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isomorphism the tangent space of T,, may be identified with the first derived image
R'o,K* with K, = T*19C,, s € T,,. The homology group H;(C;Z) forms a lattice

in (R%,K)* via the pairing
M) = / ¥
A

for o € H°(C, K) and a smooth representative A € H{(C;Z). Then the Jacobian
variety associated to the curve C' is defined as

H(C,K)*/H:(C;Z) .
The intersection product in H;(C';Z) induces a canonical principal polarization on

this torus, which induces on E*!'0 := R%s, K the metric

. i .
9" (p,¢") :=§/ eAY .
C

Lemma 8.1. The form 0 : T'9%,, @ E*1'0 — E*01 45 given by the composition of
the cup product with the Hodge diamond isomorphism
(8.0) 0: H' (C,K*)® H*(C,K) — H*(C,0) = H(C,K) .

In particular, for \ € H1(C;Z) and X € H(C, K*),

(8.1) Ox A0 = /X € H(C,K)*
A

and

(8.2) O A0 = / X e H(C,K) .
A

Proof. We shall apply Lemma 8.0 to a map Il : T,, — §,, such that the pullback
of the universal bundle is the bundle of Jacobians. Let (A1,...,An,m1,...,7,) be a
symplectic basis of Hy(C; Z). Then there is a unique basis (1, . .., ¢,) of H*(C, K)
such that [, ¢; = d;;. The map

II:%, — 9,

is a holomorphic period map for the bundle of Jacobians. One can show that

Imnz(f/cpm@)
2 /o y

(83 on(x) = ([ (o W)(X))U (X e T07,)

and
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[N, Ch. 4.1]. By Lemma 8.0 we find for A0 € HO(C, K) , X € T+0%,

—1

SD’L'(GX)‘OJ) = t((@l(X)ﬂOJ»J(“OJa@))]k ()‘071(@))]g

8.4
( ) = )\O’l(g@Z(X» .

]
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