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Introduction

The analytic torsion was constructed by Ray and Singer [RS] as an
analytic analogue to the Reidemeister torsion. Bismut, Gillet and Soul
[BGS] proved as an extension of a result of Quillen important properties

of the torsion in connection with vector bundles on fibrations:

Let w : M — B be a proper holomorphic map of compact complex
manifolds and let ¢ be a hermitian holomorphic vector bundle on M . Let
Rm.& be the right-derived direct image of £. Then the analytic torsion
of the fibres of 7 induces a metric on the Knudsen-Mumford determinant
MM — (det Rm.£)~! which is a holomorphic line bundle on B. The
curvature of this Quillen metric as well as its behaviour under changes of
the metrics on M and £ was expressed in [BGS] explicitly by means of
secondary Bott-Chern classes. In particular this gives a refinement of the

Riemann-Roch theorem for families.

On the other hand let 7 : ¥ < X be an embedding of compact
complex manifolds. Let 1 be a hermitian holomorphic vector bundle on
Y and let £ be a resolution of n by a complex of vector bundles on
X . Bismut and Lebeau [BL] calculated the relation between the Quillen
metrics of 1 and . With the help of this result, Gillet and Soul [GS2]
were able to prove a Riemann-Roch theorem in Arakelov geometry for the
first Chern class of the direct image (see [S] for the theorem and some
background information). This theorem was later proved by Faltings [F]
for higher degrees.

The proof of the Riemann-Roch theorem uses a calculation of Gillet,
Soul and Zagier [GS1] of the torsion for the trivial line bundle on the
complex projective spaces P*"C. This led Gillet and Soul to conjecture
this theorem, which was the initial motivation for [BL]. In particular this
rather difficult calculation gives in particular the Gillet-Soul R-genus,
which appears explicitly in the theorem. This is the additive genus asso-

ciated to the series
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where ( is the Riemann zeta function. To obtain this series, one has to

caculate the torsion of P"C for every n.

Let us consider now a holomorphic isometry g of a hermitian vector
bundle F over a compact Khler manifold M. One can define in a na-
tural way an equivariant version of the torsion. This equivariant torsion
appeared already in Ray’s [R] calculation of the real analytic torsion for

lens spaces.

In this paper we present the calculation of the equivariant analytic
torsion for all holomorphic bundles on P'C and for the trivial line bundle
on P"C, where the projective spaces are equipped with the Fubini-Study
metric. We consider only rotations with isolated fixpoints. For a rotation
by angles € 7+ Q, we obtain a closed expression involving the gamma
function. For arbitrary angles a function R™', which is similar to the
Gillet-Soul R-function, appears as an infinite series. This is relatively
easy to calculate because the defining (-function Z has no singularities

in contrast to the situation in [GS1].

The similarity of R™' and R might help to find an equivariant
Riemann-Roch formula in Arakelov geometry, where the two functions
correspond to the extremal cases: isolated fixed points or identity map. In
fact, Bismut [B3] found further evidence for such a formula: He construc-
ted analytic torsion forms associated to a short exact sequence of hermitian
holomorphic vector bundles equipped with a holomorphic unitary endo-

morphism ¢. In his result, a series R(p,x) appears with the properties
R(0,2) = R(z),  R(p,0) = R™(¢).

As the appearance of the R-genus in [B2] gave evidence for the exis-
tence of the Riemann-Roch theorem, he now conjectures an equivariant
Riemann-Roch formula.

The function R™' can be obtained as follows: Let for 0 < ¢ < 27
and s >0, (™"(y, s) be the Dirichlet series
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‘o sin k
¢ pys) =D o

k>1
Then (™' can be seen as the imaginary part of a Lerch zeta function.

We set R™!(p) := £(™(,0). The following is obtained by classical

results:
Proposition 1. R™t s equal to
C+ 10g C+ logp 42 o*
rot
R™ () = > (= o
>1
¢ odd

If g0:27'('§ with p,q € N, 0<p<q, then

q—1

R™(p) = —4 log q- cot —+Z log T (
=1

)-sinjgo.

Q.

In the last chapter we give some other functional properties of R*™".
Let £ := O(k1)® ... ® O(k,) be a holomorphic vector bundle on P1C,
equipped with the standard metric (i.e. the curvature of O(1) is the
Fubini-Study Khler form). By a theorem of Grothendieck, each holo-

morphic vector bundle on P!C is of this form. Then we find

Theorem 2. The equivariant analytic torsion T(E,p) with respect to

a rotation by an angle ¢ €]0,2w| is given by

Ik +1]

2R™ () — O = = sin(2m — |k; +1|)%

—2 log 7(E,¢) = o ¢ Zcos k;i+1) §+ Sin%f 2
j=1 m=1

We see in particular that the equivariant torsion 7 gives already for
the trivial line bundle @ on P'C the function

log 7(O, ¢) = cot = ( ZC w _ O log ¢) .

£>1 ¥
odd

’i(pl 0
Let now @ := < > be an element of the (canonical) maximal
0 1Pn+1
Cartan subalgebras of su(n+1), hence an infinitesimal rotation on P"C 2
SU(n+1)/SU(1) x U(n)). Assume that all the ¢; are distinct. Then

we have



Theorem 3. The equivariant torsion 7(O,e®) for the trivial line

bundle O on P™C is given by

n+1 n+1

—2 log 7(0,€®) = (=1)" Y 2iR™"(p;—¢x) [ [ (¢"?* ) —1)""= log n!.
j,k=1 =1
J#k O£k

I) Definition of the torsion

Let M be a Khler manifold of complex dimension n with holo-
morphic tangent bundle T'M and Khler form wj;, £ a hermitian vec-
tor bundle on M and 0 the Dolbeault operator acting on sections of
ANT*OVN @ ¢. We define a hermitian product on the vector space of
smooth sections of AIT*OVM @ & by

(n.17) = /Mm(x),n’(x))

wn

(27)"n!
as in [GS1]. Consider the adjoint operator d" relative to this product

and the Kodaira-Laplace operator
O,:=(0+3)2: TAIT* OV M 0 &) - T(AT*OVM @ ¢).

Let g be a holomorphic isometry of M. Assume that the bundle and its
hermitian metric are holomorphically invariant under the induced action of
g. Let Eig,(O,) be the eigenspace of [J, corresponding to the eigenvalue
A and ¢* the of g induced action on T'(AIT*COVM @ ¢).

Consider the (-function

Z(g,s) = Z (_1)q+1q)\_sng*| Eig (0,)
>0
A€ Specl,
A#£0

for s > 0. The equivariant torsion of M relative to the action of ¢ is
then defined as an exponential of the derivative at zero Z’(g,0) of the
holomorphic continuation of Z(g,+),

1.
7(g) = e 2700

The eigenvalues and eigenspaces for the Kodaira Laplacian for the trivial

line bundle on P"C were determined explicitly by Tkeda and Taniguchi
[IT]. If one regards P"C as SU(n+1)/S(U(1) x U(n)), the eigenspaces
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can be described by sums of irreducible representations of SU(n+1). We
are using their method and results in our proof; see also Malliavin and

Malliavin [MM].

IT) The Laplacian on O(k)-bundles over P!C
Let P'C be the one-dimensional complex projective space equipped
with the usual Fubini-Study metric. That means, P!C is isometric to the
2-sphere with radius 1/2. Take G := SU(2) and K := S(U(1) x U(1))
with the corresponding Lie algebras g and €. We equip G with the metric
¢ —R
(X,Y)— —2tr XY,
which is minus one half of the Killing form. Then we may represent P'C
as the homogeneous space G/K with the induced metric.
Let A be the weight of g which acts on the Cartan subalgebras ¢ by
diag(ip, —ip) — 5= and let
pK e C
(iso 0 ) s eike
0 —ip

be the of kA, k € Z, induced representation of K. This gives an action
of K on the right of G x C as follows:

(9,2) = h = (gh, pi (h™")z)
for g€ G,z € C and h € K. Then the holomorphic line bundle O(k) is

the homogeneous vector bundle

O(k) =G x C:=(GxC)/K.

Py
It is well known that O(2) = TP'C = T*OVUPIC. By a theorem of
Grothendieck [G], each holomorphic vector bundle E on P!C is a direct
sum

E=0k)®... d»0(ky),

k1,...,kn € Z, so it suffices to calculate the torsion for O(k). Obviously,

Z'(+,0) behaves additively under direct sum of vector bundles.
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We equip O(k) with the induced metric. If V is the unique ho-
lomorphic hermitian connection on the bundle of forms with coefficients
in O(k), AT*ODPIC ® O(k), and (e1,ez) a real orthonormal frame in
the real tangent bundle TRP'C, we define the horizontal (or Bochner)

Laplacian as
2

2
A = Z(Ven)z - 21: Vv..en-

1
We know that the curvature tensor of O(1) is simply —2i times the Khler
form of P1C. By applying Licherowicz’s formula (cf. Bismut [B1, Prop.
1.2]), we find that the Kodaira Laplacian acting on T*(®VPIC ® O(k) is
given by

k

D071:—%A+§+1.

To find a better expression for A, we consider the Casimir Operators of
G and K. For a given compact Lie algebra with Killing form B and
orthonormal basis {X7,..., X, } with respect to B, its Casimir operator

is defined as

Cas := _ZXz'Xz

Cas is independent of the choice of the basis. Let Casg be the Casimir
operator of G, acting on C°°(G) by derivation, and Casg the Casimir
operator of K, acting on C via the representation p%, ,. Then it is

easily verified (cf. for example [BGV, Prop. 5.6]) that
2A = Casg + Casg

on sections of T*OVPIC @ O(k) =2 G x C. The factor 2 appears
P s

because we take half of the negative Killing form as metric on G. For

X € & we have pf_(k_Q(X) =—i(k+2), so
p%_o(Cask) = (k +2)?,

hence

Lemma 4.

— k k
0% = —1Casg — 5(— +1).



ITT) Construction of the defining (-function

Let (p%, ES) be the irreducible representation G — End(E§) with
highest weight (A, ¢ € N. Then we have p§(Casg) = —£({ +2) - ldge .

To determine the eigenspaces of (1%!, we use as Ikeda and Taniguchi

the following Frobenius law of Bott [Bo]:

Proposition 5.  For finite dimensional representations (p¥, EX) and
(p,E%) of K and G, we have the canonical isomorphism of vector
spaces

Homg(EC, (G x EX)) = Homg(E®, EX).
pK

Now we know that the characters x§ of p& and x& of p& are given

by
afe¥ 0\ sin(l+1)p
X0 e ™ s ©

(cf. Brcker, tom Dieck [BD, Ch. 5, p. 267]), and

er? 0 ;
XkK ( 0 e—icp) = ezkgo 9

hence we find the decomposition

Z x%  when ¢ even

|n|<t
n even

X¢ =
Z x5 when £ odd .

[n|<€
n odd

Now we can see by Proposition 5 that (p§, ES') occurs as irreducible
subspace of I'(G x C) iff |n| < ¢ and n = {(mod 2):
K

n

Lemma 6. I'(T*®VUP'C® O(k)) contains the L?-dense subspace

G
D Bl aprae -

>0

The density of this subspace follows from the Peter-Weyl theorem (cf.
[Bo]). By Lemma 4, the eigenvalues of (%! for O(k) are given by
((l+k+1) on E,er% for £ >1 when k£ > —1
{ (({—k—1) on Egk_%% for >0 when k< —1.
So we finally obtain the



Lemma 7. Let g:= ( e 0 > € G, p€l0,w[, be an element of the

0 e

maximal torus K (which corresponds to the rotation of S? by the angle
2¢ ). Then the (-function Zy(g,-) of the O(k)-bundle on PC is for

5> % given by

Zr(g,8) = Z X\Cli+2|+2£ (O e )

k+2|+2¢
0 k+2|+

G —0,1
E|k+2‘+2Z§ZkerD

:Zsin(2€+|k’+1|)<p (0 1)

sin
0>1 ®

In particular, Zy(g,s) = Z_k—2(g,s). This is in fact an immediate

consequence of the Poincar duality.

IV) The derivative at zero of the Lerch zeta function

Define for 0 < ¢ < 2w, Re s > 0 the zeta function (™*(p,s) by

> sin ly

s i= Y

=1
¢! continuous holomorphically to the whole complex plane. Let ¢ =

27T§, p,q € N, 0 < p < ¢ be a rational angle and ((+,-) the Hurwitz zeta

function. We obtain

rot I sin(lg + j 4. sinjo I\ S
) = Y TR Y IS (147

By using the equations (see for example [WW, Chap. XIII])

0 r
¢(0,z) =4 —x and %SZOC(S’:")ZI%%

we find

9 rot _ ! . . 1 ]
%C (w,O)_;Slnj¢.<log\/ﬁ—logq-(i_?)'

r(%)

q q .
Because of leinjcp =0 and Zl é sinjp = —% cot g this is equal to
j= j=

0

q :
%Cmt(go,O) = —1log ¢ cot g + Zsinjgo - log F(%) :

J=1
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V) The derivative at zero for arbitrary angles
We are using Kummer’s Fourier series for the logarithm of the I'-
function

log I'(z) = 4log 27?4—2 (

n>1

2 C + log 2
SRR + ‘og e sin 271'71:13‘) 0<z<1).
2n nmw

With the orthogonal relations
a . .
. 2mjp 2min
Z sin COoSs . =0,

q

. 2mip . 2mjn q
Zsm q S q 25'(5P5n(mod ¢) — Op=—n(mod q))

and the Fourier series of the identity function

1 1
x log ¢ = qu—z qusin27mx(0<x<1),

2 nm
n>1
it follows that
) C + log 272 C + log (2r2L2)  C + log (27 24-P)
e et T M { - =
0s 2 P = (ng+p)m (ng —p)m
C

B +logcp+z C+log(2mn+¢) C+ log(2mn — o)
N 21N + 21N — '

We have the identities (see [WW] or Bismut and Soul [B2, Appendix])

Z(nix—nix>—7rcot7rx——=—22§€+1

n>1 >1
odd
logn log n) —log n x
- —9 (—) — o5 (4 D
n>1 n>1 £>0 £>1
odd
and
Z(log(1+%) 10g(1—%)> ZQfoil
et n+x n—x nzanln j:lj
odd
¢
2 ey bt
>1 j=1
odd
so we obtain
0 .0 C+ log go ¢’'(e 1 0 \*
(" (p, 0) = ———2F Z( +Z——C— log27r) C(l+1)- (%)
Z>1 j= 1
odd
C+ 1 ¢
R ZC’(_E)(_l)HTl(';_' _
¥ >1 )
odd
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This gives the Proposition 1 by continuity.

VI) The torsion on P!C

Recall now the zeta function Zj of Lemma 7 with ¢ #0. By a Taylor

expansion of the denominator with respect to |k;f1| we find for s\ 0

0 sin(20 + |k + 1 log ¢ log(£+ |k +1
D g = 3 S |>so_<gs( (b 1)y

0s = sin ¢ C+|k+1))s 50+ |k+1])
sin(20 + |k + 1[)¢ log ¢ |k + 1]\~
_Z sin s (1 + 14 )
e>1 v
sin(20 — |k +1])¢ log ¢ |k + 1]\~
- Y e e )
sin (2 /
£>|k+1|
. [k+1] .
2cos |k + 1] psin2lp log £ sin(2¢ — |k +1|)¢ log ¢
e>1 =1
|E+1] .
2(:05]]{:—1—1]@ ¢ sin(2¢ — |k + 1)) log ¢
ro 2 2 .
sin ¢ C (20,25) + ; sin ¢ 02s +00s),
hence for s =0
+
0 2cos|k+ 1] 0 sin(20 — |k + 1))y
_Z I R B ro .
ds £(9,0) = sin ¢ R ; sin ¢ log ¢

Remark that this computation breaks down for ¢ = 0 because of the
singularity of the Riemann (-function. The isomorphism g corresponds

to a rotation of the sphere by an angle 2¢, so we obtain Theorem 2.

VII) The zeta function on P"C

Now we regard as in [IT] the complex projective space P"C as the

homogeneous space SU(n+1)/S(U(1) x U(n)). Let

o1 0 n+1
h :: { ( | . ‘ ) Z wj - 0}
0 i‘pn-‘rl

1
be the canonical maximal Cartan subalgebra of the Lie algebra su(n+1).

Let Aj;, 1 <j <n, be the fundamental weight
! Pk
Aj : dlag(Zgol, s 7290?1-"-1) = ; %

12



In the following, A(k,0, q) denotes the irreducible SU(n+1) -representation
with highest weight given by (k—q)A1+A,+kA, forall k > g, n>¢q > 0.
Ikeda and Taniguchi found that the spaces

& A(k,0,0) (g =0)

k>0
PAkE0,9)e P Ak,0,g+1)  (0<g<n)
k>q k>q+1
P Ak, 0,n) (q=n)
k>n

can be regarded as L?-dense subspaces of T'(AYT*O:VUP"C), where the
Laplacian acts on A(k,0,q) by multiplication with k(k+n+1—¢q). We
denote by x(k,0,q) the character to the representation A(k,0,q). Hence

we find for our zeta function

n—1
x(k,0,q) x(k,0,q+ 1)
VA . q+1 ( )
(+8) = qzl Zk5k+n+1—q k;_lksk:—kn—q)
k:On
n—|—1
st

x(k,0,q)

= —1)ett

> s g
q=1

The “telescope” effect in the summation is not caused by accident, but

by the natural splitting of each eigenspace Eig,(0) into Eig, () Nkerd
and Eig,(0) Nkerd , which are isomorphic. The character ya of an
irreducible SU(n + 1)-module with highest weight A = mjA; + mo(Agy —
AM)+...+mp(Apy—Ap—1), my > ... > my > myy1 = 0, can classically
be calculated by Weyl’s character formula. One finds with e; := €%

(i@l . 0 ) det( mg+n+1 E);l—é—ll
XA . = .

det (€] e E)?—KH1

0 i@n‘kl

In our case one gets after a rotation of the first q rows
n

n+1-(g—1) nt+1-(g—1)
€1 Cn+1

. 1—q+k 1—q+k

exceptional — 6?+ at eZL ot

q-th row n+1—(q+1) n+1—(q+1)
€1 en1—|—

x(k,0,q) =

€1 €n+1
k

n
€1 €nt1 o O

(-1



We see immediately

x(k—(n+1-¢),0,q9) = —x(—k,0,q)

and x(k,0,q) =0 for k€ {-n,...,¢q—1}\{0,g —n —1}.

VIII) The torsion on P"C

Remark that x(k,0,q) as a function in k& can be regarded as a linear
combination of exponentials exp ik(¢; — ¢¢) with 1 < j,/ <n+1. So

the function

log k
> ki x(k,0,q)

k>1

is a linear combination of Lerch (-functions. Hence it follows, if all

the ¢; are distinct, for s\, 0

x(k,0,q)logk (—k,0,q9)log k
Zl‘ q+1
(+8) = Z (stk—l—n—i—l—q Z k:s (k—n—1+q)*

k>n+1

=Y (—1)et! (Z (x(k,0,9) — x(~k,0,q)) l%k

g=1 k>1
log(n+1—q)
CESEE x(g—n—1,0,9) | +0O(s)

- log k
— ;(_ yatl Z (k,0,q) — x(—k,0,q)) ?{:%S — log n!'+ O(s),

k>1

because of x(¢q—n—1,0,q9) = (—1)?. The Laplace expansion theorem for

determinants shows

n
6n+1

n n
n a1 o |
S (=1 k 0,g)= 1= 3 ek | :
> J e enin : :
q:]_ jzl o« o . n 1 1
—k —k e
61 . 6n+1

Hence we obtain some Vandermonde determinants:

14



n+1 A K €1 ey €nt1 N
(@) :
. € € R '
];'e;ﬁ_él el €y €n+1 1 1
n+1
ei\k e\ * er 1
=3 () - () ) I -
o3 () ()T
7,4=1 k=1
k0

(the ~indicates that the ¢-th column is missing). By using

(%)k _ (%)k = 2isink(p; — @p)

and the definition of R™"(¢), we find Theorem 3.

IX) Remarks about the function R*™*

The function R*' has a rather simple definition and hence a lot of

special properties. Here we only give a few of them.

Theorem 8. The following identities hold
(1) R™"(p) = —R™* (2w — ¢) 0<p<2m),
(2) 2R™"(2¢) = R™"(p) + R™" (1 + ) + log 2. cot p (0 <p <),

(3) 3R (30) = B (9) + B (T 4 )

3
27 3 3¢ 27
—Rmt(—— ) Zlog 3+ cot X il
5 ~ ¥ +20g cot — (O<<,0<3),
oo : h
(4) Rmt(ﬂ—kcp):/ log x%dx (—m<e<m).
0 7'('

PROOF: 1) is trivial by the definition of R™". 2) follows from

2175 (2, 5) = (" (0, 5) + (' (m + @, 5) .

We see by the formulas of § IV that (™%(¢,0) = jcot £. The result

follows then by derivation. In the same way, one gets 3) from
—S IO Tro ro 27-( ro 27T
31T (B, 5) = (M (,8) + O (S ) — (T - ) -
To see the integral formula 4) we are using the Fourier series
7 sinh pr i (—1)%¢

_ Dy
2 sinh mx x2 + (2 S £p (|l <)

15



and the definite integral

x2 4+ 02 201+s cos

* r=8%dx T
/ = = (Is] <1).
0 2

We have for |s| < 1.

9 E s
T (4 . 5) = Z( )smﬁgp —COSWSZ/ Ex dxsmﬁgo

h
——cos—/ s Sin go:cdx.

sinh 7z

The desired result follows. O
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