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Abstract

We compute the Euler number of the compactified Jacobian of a curve
whose minimal unibranched normalization has only plane irreducible sin-
gularities with characteristic Puiseux exponents (p, q), (4, 2q, s), (6, 8, s),
or (6, 10, s). Further, we derive a combinatorial method to compute the
Betti numbers of the compactified Jacobian of an unibranched rational
curve with singularities like above. Some of the Betti numbers can be
stated explicitly.

Let C be an irreducible and reduced projective curve and Σ ⊂ C its singu-
larities. The generalized Jacobian JC of C consists of the locally free sheaves of
rank 1 and degree 0 on C. It is an extention of the Jacobian of the normaliza-
tion C̃ of C by an affine commutative subgroup of dimension δ :=

∑

p∈Σ δ(C,p),
thus its dimension equals the arithmetic genus ga(C) of C. Unfortunately, JC
is never compact except when C is smooth, but it is an open subspace of the
compactified Jacobian J̄C, which consists of all rank one torsion free sheaves F
of degree zero, i.e., χ(F) = 1− ga(C). The compactified Jacobian is irreducible
if and only if all singularities of C are planar [AIK, R]. Only in this case JC
is dense in J̄C, and J̄C is in fact a compactification of JC. The Euler number
e(J̄C) of J̄C is of particular interest because of the following two applications:

Inspired by the work of Yau and Zaslow, Beauville showed that while count-
ing the rational curves in a complete linear system on a K3–surface the Euler
number of J̄C is the multiplicity every curve has to be counted with [YZ, B].
Beauville also showed that the Euler number of the compactified Jacobian of
a rational curve C equals the Euler number of the compactified Jacobian of
the minimal unibranched partial normalization Č of C. Further, for a rational
unibranched curve C its compactified Jacobian is homeomorphic to the direct
product of compact spaces, the Jacobi factors J(C,p), p ∈ Σ, which depend only
on the analytic type of the singularities of C. The Jacobi factors can be defined
to be the compactified Jacobian of any rational curve with (C, p) as its unique
singularity. Hence, it remains to compute the Euler numbers of the Jacobi
factors for the unibranched plane singularities.

Fantechi, Götsche, and van Straten proved that the Euler number of the Ja-
cobi factor of a plane singularity (C, p) equals the multiplicity of the δ–constant
strata in the base of the semi–universal deformation of the singularity [FGS].

Unfortunately, this surprising result did not help to compute the Euler num-
bers e(J(C,p)). So far the only known Euler numbers of the Jacobi factors are

1



those of the plane singularities with C∗–action, V (xp − yq) with gcd(p, q) = 1,
whose Euler numbers, 1

p+q

(

p+q
p

)

, were computed by Beauville. Here, we will use
a natural decomposition of the Jacobi factors to compute further examples:

Main Theorem. The following table assigns to an unibranched plane singu-
larity with characteristic Puiseux exponents which occur in the left column the
Euler number of its Jacobian factor:

Puiseux exponents Euler number

(p, q) with gcd(p, q) = 1
1

p+ q

(

p+ q

p

)

(4, 2q, s) with gcd(qs, 2) = 1
(q + 1)(q2 + 5q + 3)

12
+

(q + 1)2

8
s

(6, 8, s) with gcd(s, 2) = 1
229

2
+

25

2
s

(6, 10, s) with gcd(s, 2) = 1
511

2
+

49

2
s

The reason for the restriction to the above Puiseux exponents is that in these
cases a natural decomposition of the Jacobian factor is a cell decomposition into

complex cells, JX =
⋃e(JX)

i=1 Cni . We show by several examples that this is not
the case for the more complicated cases. From the cell decomposition the Betti
numbers of the Jacobi factors can be computed by purely combinatorial means.
Explicit formulas are harder to derive, we will prove in Section 5 the following:

Theorem. Let X be a unibranched plane singularity with characteristic Puiseux
exponents (p, q) and JX its δX = (p − 1)(q − 1)/2 dimensional Jacobi factor.
Then the odd homology groups of JX all vanish. The even homology groups are
free abelian groups. The ranks of H0(JX), H2(JX), . . . , H2(q−⌈ q

p
⌉)(JX) are the

same as the first q − ⌈ q
p
⌉ + 1 coefficients of the power series

∏p−1
i=1 (1 − ti)−1.

The ranks of H2δX
(JX), H2δX−2(JX), . . . , H2δX−2⌊ q

p
⌋(JX) are the same as the

first ⌈ q
p
⌉ coefficients of the power series (1 − t)1−p.

This proves in particular the conjectures of Warmt about the odd homology
groups and H2(JX), H4(JX) [W2, 5.8.4]. An analogous theorem is shown for
singularities with characteristic Puiseux exponents (4, 2q, s). In this case one
can also describe all Betti numbers conjecturally.

As singularities with the same characteristic Puiseux exponents are topo-
logically equivalent, these theorems provide evidence for the general conjecture
that the topology of the compactified Jacobian depends only on the topology of
the curve.

The author thanks F. Grunewald, D. van Straten, and T. Warmt for several
inspiring discussions.
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1 Jacobi factors and their cell decomposition

The definition of the Jacobi factor of a singularity X as the compactified Ja-
cobian of any rational curve with X as its unique singularity is unsuitable for
us, because the definition is not purely local. We will use Rego’s definition,
which we will explain in a moment after fixing some notation [R, GP]. We
always assume that X is a unibranched plane singularity given by the equation
f ∈ C[[x, y]]. The complete local ring R = C[[x, y]]/(f) of the singularity has
R̃ = C[[t]] as its normalization. By Puiseux’s Theorem there exist tn, ϕ ∈ C[[t]]
such that R is embedded as R ∼= C[[tn, ϕ]] into R̃ = C[[t]]. The conductor of R is
C := AnnR(R̃/R). SinceX is planar, we have δX := δR := dim R̃/R = dimR/C
and C = (t2δR) [JP, 5.2.4].

Let M be any torsion free R–module of rank 1. Such a module M can be
embedded into R̃. In this situation we define the conductor C(M) of M to be
C(M) := AnnR(R̃/M). Because it is an ideal in R̃ as well, we identified it with
the natural number c = c(M) such that C = (tc) ⊂ R̃. The embedding of M
into R̃ can be chosen such that C ⊂ M ⊂ R̃ and dim R̃/M = dimM/C = δR;
we will call such an embedding δR–normalized. A δR–normalized module M
can be considered as a point of the Grassmannian G(R̃/C, δR), which consists
of the δR–dimensional subspaces of R̃/C. The Jacobi factor JX or JR of the
singularity is the set of points of G(R̃/C, δR), which are R–modules. Therefore,
M/C ∈ G(R̃/C, δR) lies in JR if RM ⊆ M . This turns out to be a linear
condition on G(R̃/C, δR) when one considers G(R̃/C, δR) to be embedded by
the Plücker embedding [GP, 1.4]. Different points of JR may correspond to
isomorphic R–modules. In fact, one has

Theorem 1 The subsets of JR consisting of isomorphic modules are biregular
to affine spaces.

Proof. Two R–submodules M1,M2 ⊂ R̃ are isomorphic if there is an x ∈
Q(R̃) = C((t)) such that M2 = xM1. If M1 and M2 are δR–normalized, the
order of x must be zero, i.e., x ∈ R̃∗. Therefore, the subsets of isomorphic
modules are the orbits of the action of (R̃/C)∗ on JR. Since C

∗ ⊂ (R̃/C)∗ acts
trivially and the representation of (R̃/C)∗/C∗ on JR is unipotent, the orbits are
affine spaces by the Theorem of Chevalley–Rosenlicht [CG, 3.14]. 2

Unfortunately, there are infinitely many isomorphism classes of torsion free
modules of rank 1 if the singularity is not an A2k, E6, or E8 singularity by a
theorem of Greuel and Knörrer [GK]. To get a finite cell decomposition, we
use the natural valuation v : R̃ = C[[t]] → N and decompose JR according to
the images of the modules under the map v. To prove the Main Theorem, we
will show that this decomposition is a cell decomposition into affine complex
spaces in the cases of the Main Theorem, then we will count the nonempty
ones. This will require some work, because the Theorem of Chevalley–Rosenlicht
cannot be applied anymore. We start by translating parts of the problem to a
combinatorial problem with the help of the valuation v.

We have v(R̃) = N and the image of R under v is a semi–group Γ. The above
properties of the conductor translate into #(N−Γ) = δR and min{x ∈ N|x+N ⊂
Γ} = 2δR. For a module M ⊂ R̃, we get an associated Γ–semi–module ∆ :=
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v(M), i.e., Γ+∆ ⊆ ∆. If M is δR–normalized, then #(N−∆) = δR. We will call
a semi–module ∆ with this property δR–normalized, too. Two Γ–modules are
isomorphic if one is the shift of the other by an integer. Corresponding to the
definition of the conductor of a module M ⊂ R̃, we define the conductor c(∆)
of the semi–module ∆ ⊂ N to be the smallest natural number c with c+N ⊆ ∆.

We call the subset of modules of JX with associated semi–module ∆ simply
the ∆–subset of JX . This decomposition of JX into ∆–subsets corresponds to
the Schubert cell decomposition of the Grassmannian. More precisely, consider
the flag in R̃/C = C[[t]]/(t2δX ) given by the ideals (ti), i = 1, . . . , 2δX , and
the Schubert cell decomposition corresponding to it. Then the valuation map
v : C[[t]] → N induces a map

G(R̃/C, δX) −→ {S ⊂ {0, . . . , 2δX − 1} | #S = δX}

Λ + C 7−→ v(Λ + C) ∩ {0, . . . , 2δX − 1},

and its fibers are precisely the Schubert cells. Recalling that JX is the inter-
section of G(R̃/C, δX) and a linear subspace L, we see that the ∆–subsets are
linear sections of these Schubert cells. We will show in Section 3 that these
∆–subsets are again complex cells in the cases of the Main Theorem. To prove
that they form a CW–complex like the Schubert cell decomposition seems in-
credible tedious mainly because the dimension of the Schubert cells does not
drop uniformly during the intersection process. Luckily, this is not necessary to
compute the homology groups by [F, 19.1.11]. In particular, we obtain that all
odd homology groups are zero, and the even ones are free abelian groups whose
rang equals the number of ∆–subsets of the corresponding dimension.

Before attacking the problem of proving that the ∆–subsets are affine in
the cases of the Main Theorem, we discuss the Γ–semi–modules. In particular,
we need to count them. Later on we need ”syzygies“ of the generators of a
semi–module. However, such a notion seems cumbersome to define. Therefore,
we pass over to the graded semi–group algebra C[Γ] = span {tγ |γ ∈ Γ} and
correspondingly to the graded C[Γ]–module C[∆] = span {tδ|δ ∈ ∆}, where we
can use the conventional definition of syzygies. The connection of these objects
with an R–module M with v(M) = ∆ is as follows:

Define the initial term of a power series f =
∑∞

i=k λit
i, λk 6= 0, to be

in(f) := λkt
k and set in(0) := 0. Then the graded semi–group algebra C[Γ]

equals the initial ring in(R) := span {in(f)|f ∈ R} ⊆ C[[t]]. Analogously, for
any maximal CM–module M the graded semi–module module C[∆] equals the
initial module in(M) := span {in(f)|f ∈M} ⊆ C[[t]].

The study of the C[Γ]–semi–modules is done in the next section; the proof
that the ∆–subsets are complex cells in the following section. Everything con-
cerning the Puiseux exponents (6, 8, s) and (6, 10, s) was moved to Section 4
which is combinatorically more complicated and included only for completeness
and the most interested reader. In the final Section 5 the Betti numbers of the
Jacobi factors are discussed.
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2 The number and the syzygies of the C[Γ]–
modules

During this section we will always assume that any Γ–semi–module ∆ is 0–
normalized, i.e., min ∆ = 0, to obtain unique representatives in the isomorphism
classes of the semi–modules. In particular, one has Γ ⊆ ∆.

For a singularity with only two characteristic Puiseux exponents (p, q), p < q,
the semi–group Γ is generated by p and q, Γ = 〈p, q〉. To study the Γ–semi–
modules, we introduce the notion of a basis for them, modeled after the Apéry–
basis for semi–groups (see [JP, A, H] for the semi–group case).

Definition 2 Let Γ = 〈p, q〉. A p–basis of a Γ–semi–module ∆ is the unique
p–tuple (a0, . . . , ap−1) such that

∆ =

p−1
⋃

i=0

(ai + pN) and ai ≡ iq mod p.

In particular, the {ai} generate ∆ as a Γ–semi–module and c(∆) = max{ai} −
p+ 1.

By the definition of the p–basis and Nq ⊂ Γ ⊆ ∆, there exist α1, . . . , αp−1 ∈
N such that

a0 = 0, a1 = q − α1p, a2 = 2q − α2p, . . . , ap−1 = (p− 1)q − αp−1p.

To simplify the notation, we define α0 = 0. The condition that ∆ =
⋃

(ai + pN)
is a Γ–semi–module is equivalent to ai + q ∈ ∆ and — with a cyclic notation of
the indices — to ai + q ≥ ai+1. The latter is the same as 0 ≤ α1 ≤ α2 ≤ . . . ≤
αp−1 ≤ q. Due to the 0–normalization we have ai ≥ 0, i.e., αi ≤ iq/p.

Proposition 3 For the semi–group Γ = 〈p, q〉, gcd(p, q) = 1, the number of
isomorphism classes of Γ–semi–modules is 1

p+q

(

p+q
p

)

.

Proof. Beauville proves this result with the help of generating functions [B,
4.3]. Fantechi, Götsche, and van Straten derive this from a local computation
in a moduli space for rational curves [FGS, G1]. We give a third, shorter
proof using the p–bases. For a moment we normalize our Γ–modules only by
min(∆ ∩ pN) = 0, i.e., a0 = 0. Then by the above arguments all such modules
can be obtained by choosing 0 ≤ α1 ≤ α2 ≤ . . . ≤ αp−1 ≤ q; hence, there are
(

p+q−1
p−1

)

= p
p+q

(

p+q
p

)

of them. If we shift ∆ =
⋃

(ai+pN) by −aj, j = 0, . . . , p−1,

we obtain an isomorphic semi–module ∆′ with min(∆′ ∩ pN) = 0 and these are
also the only shifts of ∆ that satisfy the additional condition. Therefore, to get
the number of isomorphism classes of Γ–semi–modules, we have to divide the
above number by p. 2

For the purpose of the next section we need to compute the syzygies of the
graded C[Γ]–semi–modules. We start with a very general lemma.

Lemma 4 Let Γ be any semi–group Γ ⊂ N with #(N \ Γ) < ∞ and ∆ a 0–
normalized semi–module. Let A = (ta1 , . . . , tak) be a graded generating set of
a C[Γ]–module C[∆]. There is a minimal generating set C of syzygies of A
consisting of bivectors, i.e., vectors v = (0, . . . , 0, tγi , 0, . . . , 0,−tγj , 0, . . . , 0) ∈
C[Γ]k with A · v = 0.
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Proof. Clearly, any relation between the generators can be splitted into the sum
of graded ones. Next, we show that any graded relation between the generators
can be splitted into a linear combination of bivectors that are relations as well.
Assume we have a graded vector w = (w1t

γ1 , . . . , wnt
γn) with A · w = 0, i.e.,

∑

wit
γi+ai = 0 and γi + ai = const for all i with wi 6= 0. Therefore

∑

wi = 0.
Choose j with wj 6= 0 and set vi = (0, . . . , 0, tγi , 0, . . . , 0,−tγj , 0, . . . , 0) for i 6= j
with wi 6= 0 where the nonzero entries are at the positions i and j. Then
∑

wivi = w using
∑

wi = 0. Finally, we can choose a minimal generating set
among all these bivectors using Nakayama’s lemma. 2

The degree deg(v) of the above bivector syzygy v is by definition ai + γi.
The bivector syzygy is — up to an unimportant choice of sign — determined
by the exponents; hence, we will sometimes use the shorter additive notation

ai + γi = aj + γj .

The syzygies of a C[Γ]–module for Γ = 〈p, q〉 are nearly obvious.

Proposition 5 Let Γ = 〈p, q〉 and ∆ =
⋃p−1

i=0 (ai +pN) be a Γ–semi–module like
above. Then the C[Γ]–module C[∆] is generated by A = (ta0 , ta1 , . . . , tap−1) and
the syzygies of A are generated minimally by the following p–bivectors:

v0 := (tq,−tα1p, 0, . . . , 0), v1 := (0, tq,−t(α2−α1)p, 0, . . . , 0),

v2 := (0, 0, tq,−t(α3−α2)p, 0, . . . , 0), . . .

vp−2 := (0, . . . , 0, tq,−t(αp−1−αp−2)p), vp−1 := (−t(q−αp−1)p, 0, . . . , 0, tq).

In particular, the degree of one of these syzygies is greater than c(∆).

Proof. Because {a0, . . . , ap−1} generate the Γ–semi–module ∆, A generates the
C[Γ]–module C[∆]. Clearly, all of the above bivectors are syzygies and none of
them is a linear combination of the others. Therefore, it remains to show that the
above bivectors form a generating set. By Lemma 4 all syzygies are generated
by bivectors and finding a bivector (0, . . . , 0, tγi , 0, . . . , 0,−tγj , 0, . . . , 0) relating
tai and taj is the same as finding γi and γj with ai + γi = aj + γj . W.l.o.g.
assume i < j. Because we are looking for a minimal generating set, we may
assume that neither (γi − q, γj − q) ∈ Γ2 nor (γi − p, γj − p) ∈ Γ2, thus either
γi ∈ qN and γj ∈ pN or the other way around. Recalling that ai ≡ iq mod p
and that q generates the group Z/pZ, we get that either γi = (j − i)q and
γj = (αj − αi)p or γi = (q + αi − αj)p and γj = (p + i − j)q. Thus we found
only the two bivectors

(0, . . . , 0, t(j−i)q ,0, . . . , 0,−t(αj−αi)p,0, . . . , 0) and

(0, . . . , 0,−t(q+αi−αj)p,0, . . . , 0, t(p+i−j)q ,0, . . . , 0),

which are the linear combinations of the elementary bivectors v0, . . . , vp−1.
Namely, the first is

j−1
∑

l=i

t(j−l−1)q+(αl−αi)pvl
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and the second is

p−1
∑

l=j

t(p+i−l−1)q+(αl−αj)pvl +
i−1
∑

l=0

t(i−l−1)q+(q+αl−αj)pvl.

This shows that the vk generate the syzygies. Since c(∆) = max{ak − p + 1},
at least one of the degrees of the vk, deg vk = ak + q, is greater than c(∆). 2

Now we turn to the singularities with the three characteristic Puiseux ex-
ponents (2p, 2q, s) with gcd(p, q) = 1, gcd(s, 2) = 1, and 2p < 2q < s. We will
give here the general definitions and then restrict ourselves to (4, 2q, s), leaving
the (6, 2q, s) case for Section 4. The semi–group Γ is generated by γ0 := 2p,
γ1 := 2q, and γ2 := (p− 1)γ1 + s [A, H]. Note that these generators are related
by pγ1 = qγ0 and 2γ2 = βγ1 + ηγ0 for suitable β ∈ {0, . . . , p − 1} and η ∈ N.
Any γ ∈ Γ can be written uniquely as

γ = µ2γ2 + µ1γ1 + µ0γ0 with µ2 ∈ {0, 1}, µ1 ∈ {0, . . . , p− 1}, µ0 ∈ N.

The same holds for γ ∈ Z if one allows µ0 ∈ Z. We use this to define a special
basis for any Γ–semi–module:

Definition 6 Let Γ = 〈γ0 = 2p, γ1 = 2q, γ2 = 2(p− 1)q + s〉. A 2× p–basis of
a Γ–semi–module ∆ is the unique 2 × p–matrix

(

a00 a01 ··· a0,p−1

a10 a11 ··· a1,p−1

)

such that

∆ =
⋃

i=0,1

j=0,...,p−1

(aij + γ0N) and aij ≡ iγ2 + jγ1 mod γ0.

Here, the a0J are even and the a1J are odd numbers. Again, there exist
αij ∈ N (α00 := 0) with

aij = iγ2 + jγ1 − αijγ0 for i ∈ {0, 1}, j ∈ {0, . . . , p− 1}.

The fact that ∆ is a Γ–semi–module is equivalent to aij +γ1, aij +γ2 ∈ ∆. With
a cyclic notation of the indices, the first is equivalent to aij + γ1 ≥ ai,j+1 and
the second to a0j + γ2 ≥ a1j and a1j + γ2 ≥ a0,j+β , using the above relation
2γ2 = βγ1 + ηγ0. Expressed in terms of the αij , this means

0 ≤ α01 ≤· · ·≤ α0,p−1−β ≤ α0,p−β ≤· · ·≤ α0,p−1 ≤ q

≥ ≥ ≥ ≥ ≥

α10 ≤ α11 ≤· · ·≤ α1,p−1−β ≤ α1,p−β ≤· · ·≤ α1,p−1 ≤ q + α10

≥ ≥ ≥ ≥ ≥

η + α0β η + α0,β+1 η + α0,p−1 η + q + α00 η + q + α0,β−1

The 0–normalization of ∆ is equivalent to aij ≥ 0 or to α00 = 0, α0j < jq/p
and α1j < (γ2 + jγ1)/γ0. In particular, we have α0,p−1 < q − q/p sharpening
α0,p−1 ≤ q. For j ≤ p− 1 − β we get

α1j <
2γ2 − γ2 + jγ1

γ0
=
ηγ0 + (β + j)γ1 − γ2

γ0
≤ η +

(p− 1)γ1 − γ2

γ0
< η

and for any j ≤ p− 1 we obtain similarly

α1j <
ηγ0 + (β + j)γ1 − γ2

γ0
≤ η +

(p− 1)γ1

γ0
+

(p− 1)γ1 − γ2

γ0
< η + q.
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Therefore, the 0–normalization of the Γ–semi–module already implies the last
row of the inequalities between the αij in the above diagram. Now, we are ready
to compute the number of Γ–semi–modules for p = 2.

Proposition 7 The number of 0–normalized Γ–semi–modules for the semi–
group Γ = 〈4, 2q, 2q + s〉 with gcd(qs, 2) = 1 is

(q + 1)(2q2 + 4q + 3)

12
+ s

(q + 1)2

8
.

Proof. We have to count the triples α = (α01, α10, α11) with the restrictions

0 ≤ α01 ≤ q/2
≥ ≥

α10 ≤ α11 ≤ q + α10 ;

≥ ≥

2q+s
4

4q+s
4

thus we have to count the elements of

A :=
{

α ∈ [0, q
2 ] × [0, 2q+s

4 ] × N | max{α01, α10} ≤ α11 ≤ min{q + α10, q + s
4}

}

.

We set

A0 =
{

α ∈ [0, q
2 ] × [0, 2q+s

4 ] × N | α10 ≤ α11 ≤ q + α10

}

A1 =
{

α ∈ [0, q
2 ] × [0, 2q+s

4 ] × N | α10 ≤ α11 < α01

}

A2 =
{

α ∈ [0, q
2 ] × [0, 2q+s

4 ] × N | q + s
4 < α11 ≤ q + α10

}

.

Due to α01 ≤ q/2 ≤ q + α10 and α10 ≤ q/2 + s/4, we have A1, A2 ⊆ A0.
Obviously, also A = A0 \ (A1 ∪ A2) and A1 ∩ A2 = ∅ holds. Therefore, the
number of elements of A is #A0 − #A1 − #A2 or

⌈ q

2

⌉

·

⌈

2q + s

4

⌉

·(q+1)−

⌊ q

2
⌋

∑

α01=1

α01
∑

α10=0

(α01−α10)−
⌈q

2

⌉

⌊ 2q+s

4
⌋

∑

α10=⌈ s
4
⌉

(

q + α10 −
⌊

q +
s

4

⌋)

.

Using the substitution q = 2q̄ + 1 and s = 4s̄ + 1 resp. s = 4s̄ + 3 for the
intermediate steps, the above sum can be evaluated easily to obtain the number
in the statement of the proposition. 2

Later we will show that some of the Γ–semi–modules cannot occur as the
0–normalization of an associated semi–module of a maximal CM–module over
the local ring of the singularity. We call the ones that occur admissible. Their
combinatorial definition is as follows:

Definition 8 Let Γ = 〈γ0 = 2p, γ1 = 2q, γ2 = (p− 1)γ1 + s〉 with p = 2 or
(p, q) ∈ {(3, 4), (3, 5)}. A 0–normalized Γ–semi–module ∆ is admissible iff

∆ ∩ {a0j + s | j = 0, . . . , p− 1} 6= ∅.
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Proposition 9 Let Γ = 〈4, 2q, 2q + s〉 be the above semi–group for p = 2. The
number of admissible Γ–semi–modules is

(q + 1)(q2 + 5q + 3)

12
+

(q + 1)2

8
s.

Proof. We are going to count the nonadmissible semi–modules, i.e., the 0–
normalized semi–modules with s, a01 + s 6∈ ∆. We have

s = γ2 − γ1 = γ2 + γ1 − qγ0 ≡ a11 mod γ0

a01 + s = γ2 − α01γ0 ≡ a10 mod γ0.

Hence, s, a01 + s 6∈ ∆ is equivalent to s < a11 and a01 + s < a10, i.e., α11 < q
and α10 < α01. Together with the conditions for ∆ being a 0–normalized semi–
module,

α01 <
q
2 , α10 <

2q+s
4 , max{α01, α10} ≤ α11 ≤ min{q + α10, q + s

4},

the nonadmissible semi–modules correspond to the triples (α01, α10, α11) ∈ N3

with
α01 <

q
2 , α10 < α01, α01 ≤ α11 < q.

Clearly, the numbers of these is

⌊ q

2
⌋

∑

α01=0

α01(q − α01) =
1

2

(

q + 1

3

)

.

We obtain the number of admissible semi–modules as the difference of the num-
ber of all semi–modules (Proposition 7) and this term. 2

We already know from Lemma 4 that the syzygies of a graded generating
set of a C[Γ]–module C[∆] are generated by bivectors. We are going to select a
small subset of these bisectors, which generate the syzygies of degree less than
the conductor c(∆). Later on, only these syzygies will be of interest to us.

Proposition 10 Let Γ = 〈γ0 = 4, γ1 = 2q, γ2 = γ1 + s〉, and ∆ =
〈0, a01; a10, a11〉 like above. The C[Γ]–module C[∆] is generated by A =
(1, ta01 , ta10 , ta11), and the syzygies of A of degree less than c(∆) are generated
by

(tγ1 ,−tα01γ0 , 0, 0), (−t(q−α01)γ0 , tγ1 , 0, 0), and (tγ2 , 0,−tα10γ0 , 0).

Proof. By Lemma 4 there is a generating set of syzygies consisting of bivectors.
Any bivector syzygy of degree d may be written additively as

aij + (ξ2γ2 + ξ1γ1 + ξ0γ0) = akl + (ζ2γ2 + ζ1γ1 + ζ0γ0) = d

with ξ1, ξ2, ζ1, ζ2 ∈ {0, 1} and ξ0, ζ0 ∈ N. We may assume that the bivector
syzygy is not the multiple of another; hence, for all r ∈ {0, 1, 2} one of the ξr, ζr
is zero.

Recall that c(∆) = max{aij} − γ0 + 1 ≤ c(Γ). We have a00 = 0, a01 ≤ γ1,
a10+γ1 ≥ a11, and a11+γ1 ≥ a10, thus a1j+γ2 > a1j+γ1 > c(∆). Consequently,
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of all possible bivector syzygies only the following four may be of degree less
than c(∆):

a00 + γ1 = a01 + α01γ0 a01 + γ1 = a00 + (q − α01)γ0

a00 + γ2 = a10 + α10γ0 a01 + γ2 = a11 + (α11 − α01)γ0.

However, the degree of the last relation is also greater than c(∆) due to
a00, a10 ≤ γ2. 2

3 The cell decomposition

We return to our singularity (X, 0) with local ring R. Its Jacobi factor JR ⊂
G(R̃/C, δR) consists of the torsion free modules of rank 1 and was decomposed
according to their associated semi–modules. We will show that these subsets
are biregular to an affine space CN . Given a Γ–semi–module ∆ we are going to
explicitly construct all R–modules M ⊆ R̃ = C[[t]] with associated semi–module
∆. There is a small technical problem: The associated semi–module ∆M of a
module M is δR–normalized, while we were using 0–normalized semi–modules
in the last section for notational convenience. However, if d := min ∆M then
−d + ∆M is 0–normalized and the module t−dM ⊆ R̃ has this semi–module
as associated semi–module. With the help of this obvious bijection we may
continue to assume that the occurring Γ—semi–modules are 0–normalized.

We start our proof with several remarks about the elements of M ⊂ C[[t]].
Any element x =

∑

k∈N
λkt

k ∈ M can be normalized as follows: To get the

coefficient of the initial term λv(x)t
v(x) equal to one, we multiply by 1/λv(x).

Then one removes the terms λδt
δ, δ ∈ ∆, δ > v(x), in increasing order by

subtracting suitable multiples of elements y ∈ M with v(y) = δ; thus as the
normal form of x we obtain a polynomial of type

tv(x) +
∑

k∈]v(x),∞[\∆

λkt
k.

There is only one normalized x of a fixed order v(x), because the difference of
two such lies in M and has no powers of t which can occur as an initial term
and must therefore vanish.

The same ideas lead to a reduction algorithm for an element x ∈ C[[t]] with
respect to a set {m0, . . . ,mn} ⊂ C[[t]]: Let ∆ be the Γ–semi–group generated
by {v(m0), . . . , v(mn)}. Set x0 = x ∈ C[[t]]. Starting with i = 0 we do for
increasing i ∈ N the following: If i 6∈ ∆, set si = 0 and xi+1 = xi. If i ∈ ∆, then
locate the ti–term, λ̃it

i, in xi, find si ∈ R, ji ∈ {0, . . . , n} with λ̃it
i = simji

and
set xi+1 = xi − simji

. The xi converge to an

x∞ =
∑

k 6∈∆

µkt
k.

Unfortunately, x∞ depends in general on the choices made. However, this
does not make the reduction process useless. Its main application is the follow-
ing: If the m0, . . . ,mn generate the R–module M and v(M) = ∆, then x ∈ M
iff x∞ = 0. Namely, on the one hand if x∞ = 0 then the algorithm yields
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x =
∑

simji
∈ M , on the other hand if x∞ 6= 0 then v(x∞) 6∈ ∆ and this

implies x∞ 6∈M and x = x∞ +
∑

simji
6∈M .

Often one starts with a module M and then picks normalized genera-
tors m0, . . . ,mn such that ∆ := v(M) is generated as a Γ–semi–module by
v(m0), . . . , v(mn). We will call such a set a ∆–generating set of M . We write
the generators as

m0 = 1+
∑

k∈]0,∞[\∆

λ0
kt

k = 1+
∑

k 6∈∆

λ0
k t

k

m1 = ta1+
∑

k∈]a1,∞[\∆

λ1
k−a1

tk = ta1+
∑

a1+k 6∈∆

λ1
k t

a1+k

...

mn = tan+
∑

k∈]an,∞[\∆

λn
k−an

tk = tan+
∑

an+k 6∈∆

λn
k t

an+k.

The special choice of the lower indices of the λ will be crucial later on.

Now we start the other way around. Given ∆ with generators {a0 =
0, . . . , an}, let m0, . . . ,mn be like above and M the module generated by them.
Clearly, ∆ ⊆ v(M). We want to see which conditions the λ must satisfy such
that v(M) = ∆; we consider them now as variables. To count the number of
the λ, we introduce the gap counting function g∆ by g∆(k) = #([k,∞[ \∆) for
k ∈ N, i.e., g∆ counts the gaps of ∆ greater than or equal to k. With this
notation, there are

∑n
j=0 g∆(aj) of the λ variables.

We want to consider syzygies between the mj as well as between their initial
terms. For a graded vector r = (rj) ∈

⊕

j R(−aj) we define the initial vector
as follows: Let δ := min{v(rj) + aj}. Then in(r) = (sj) with sj = in(rj) if
v(rj) + aj = δ and 0 otherwise. The important consequence is that if r is a
syzygy of the generators (mj) of M then in(r) is a syzygy of (in(mj)) = (taj ).

Our leading idea for the following is

Lemma 11 With the above notation let M be the R–module generated by
{m0, . . . ,mn}. Further, let V ⊂

⊕

j R(−aj) such that the initial vectors
{in(r)|r ∈ V } of V generate the syzygies of the generating set A = (taj ) of
C[∆]. Then v(M) = ∆ if and only if for each r = (rj) ∈ V the following holds:

Let δ := min{v(rjmj)}. Then the initial terms of
∑

rjmj cancel, i.e.,
v(

∑

rjmj) > δ, and there exist sj ∈ R with v(sjmj) > δ and
∑

rjmj =
∑

sjmj.

We will call
∑

sjmj a higher order expression of
∑

rjmj . Note that a higher
order expression can be obtained trivially if δ ≥ c(∆) because tc(∆)+k ∈ M for
k ∈ N. A higher order expression for a term T =

∑

rjmj may be found by
reducing it with the above algorithm. If T reduces to zero, then the algorithm
produces an expression with T =

∑

simji
with v(simji

) > δ which we can
reorder to get the higher order expression. If T reduces to T∞ 6= 0, then
in(T∞) ∈ v(M) \ ∆ showing v(M) 6= ∆.
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Proof. Clearly, we always have v(M) ⊇ ∆. We have equality iff there is no
element x =

∑

rjmj ∈M with v(x) 6∈ ∆. We claim that this is the case if and
only if the following holds:

(∗) For any δ ∈ ∆ and r = (rj) ∈
⊕

j R(−aj) with v(rj) + aj = δ or rj = 0
such that the initial terms of

∑

rjmj cancel, i.e., v(
∑

rjmj) > δ,
∑

rjmj can
be expressed as

∑

sjmj with v(sjmj) > δ.

To prove this claim, assume that (∗) holds, and there is an x =
∑

rjmj ∈M
with v(x) 6∈ ∆. Further, we assume that the linear combination is chosen such
that δ := min{v(rjmj)} ∈ ∆ is maximal. Since δ ∈ ∆ and v(x) 6∈ ∆, the
initial terms of

∑

rjmj cancel and by (∗) there exist sj with x =
∑

rjmj =
∑

sjmj and v(sjmj) > δ. But this contradicts the maximality assumption on
min{v(rjmj)}.

The other way around, assume we have rj such that (∗) fails. Set x0 :=
∑

rjmj and reduce it with the above algorithm to x∞. x0 cannot be reduced
to zero because

∑

rjmj = x0 =
∑∞

i=0 simji
would show that (∗) holds for rj .

Therefore, x∞ 6= 0 and v(x∞) 6∈ ∆ shows v(M) = ∆.

Cancellation of the initial terms in (∗) means precisely that in(r) is a syzygy
of the generating set A = (in(mj)) = (taj ) of C[∆]. Note that if (∗) holds for r
then it holds for all r′ with in(r′) = in(r), because

∑

r′jmj =
∑

rjmj +
∑

(r′j −
rj)mj =

∑

(sj +rj −r′j)mj and v(sj), v(rj −r′j) > v(r′j). Therefore, it is enough
to check (∗) for a set of vectors which generate the syzygies of C[∆]. 2

We now study the different cases of characteristic Puiseux exponents sepa-
rately. We start again with a unibranched plane singularity that has the charac-
teristic Puiseux exponents (p, q). Then by Puiseux’s Theorem the local ring R
of the singularity is isomorphic to a ring C[[tp, ϕ]] ⊂ C[[t]] ∼= R̃ where ϕ = tq+
higher order terms. Further Γ = 〈p, q〉. Let ∆ be any 0–normalized Γ–semi–
module. As a generating set for ∆ we choose the unique p–basis (a0, . . . , ap−1)
and define mj as above. By Proposition 5 and Lemma 11 the module M has
v(M) = ∆ iff higher order expressions for the following p terms can be found:

T j := ϕmj − t(αj+1−αj)pmj+1 =:

∞
∑

k=1

cjkt
aj+q+k j = 0, . . . , p− 2

T p−1 := ϕmp−1 − t(q−αp−1)pm0 =:

∞
∑

k=1

cp−1
k tap−1+q+k.

We study the coefficients cjk more closely. For k ∈ N define the gap function
g̃∆ by g̃∆(k) = 1 if k 6∈ ∆ and 0 otherwise. Then with cyclic index notation

cjk = g̃∆(aj + k)λj
k − g̃∆(aj+1 + k)λj+1

k + polynomial in λj
l with l < k.

To find the higher order expressions for the T j, we reduce the T j by the above
algorithm. We denote the resulting terms by T̃ j. These terms must vanish,
otherwise v(M) 6= ∆. The terms T̃ j have only powers of t whose exponents do
not lie in ∆. Let us study the coefficients of these t–powers more closely. There
are two important observations: The first is that during this process a coefficient
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cjk is only modified by the addition of polynomials in the λi
l with l < k, except

it is made to vanish. The second concerns the occurrence of the λj
k and λj+1

k in

the final coefficients c̃jk. If g̃∆(aj + k) = 0 or g̃∆(aj+1 + k) = 0, then aj + k ∈ ∆
or aj+1 + k ∈ ∆ and further aj + k + q = aj+1 + k + (αj+1 − αj)p ∈ ∆ for
j < p − 1 resp. ap−1 + k + q = a0 + k + (q + α0 − αp−1)p ∈ ∆ for j = p − 1,
showing that the t–power taj+q+k will be eliminated in the process. Therefore,
all cjk which do not have a λj

k − λj+1
k term vanish during this process. Thus in

the end the remaining coefficients c̃jk with aj + q + k 6∈ ∆ are of the form

c̃jk = λj
k − λj+1

k + polynomial in λ∗l with l < k,

and there are
∑p−1

j=0 g∆(aj + q) of these. The vanishing of these coefficients is
equivalent to M being an R–module with associate semi–module ∆. For fixed k
we may view c̃jk = 0 as an inhomogeneous linear equation system in the variables

λj
k. Because of Proposition 5 there is a J ∈ {0, . . . , p−1} with c(TJ) ≥ c(∆) and

consequently T̃j = 0, therefore there are at most p−1 nonzero equations and the
linear system is in row echelon form. Hence, we can easily obtain a dependency
of some of the λ∗k on the other λ∗k and the λ∗l with l < k. Finally, we substitute
successively the solutions for the λ with lower index less than k into the solutions
for the λ with lower index k; thereby obtaining an explicit form of the equations
c̃jk = 0, expressing some λ–variables as polynomial functions of the other.

Summarizing, we have shown that all possible coefficients for the mi such
that v(M) = ∆ can be obtained as the graph of a polynomial function in
∑

g∆(aj) −
∑

g∆(aj + q) variables. Setting d = δR − g∆(0), we note that
different values for the remaining free λ–variables lead to different modules tdM
and modulo C to different points of G(R̃/C, δR), because of the normalized form
of the mj. Thus we have proved

Theorem 12 Let R be the local ring of a unibranched plane singularity with
characteristic Puiseux exponents (p, q) and ∆ be a δR–normalized 〈p, q〉–semi–
module, whose 0–normalization ∆0 has the p–basis (a0, . . . , ap−1). Then the
subset of modules of JR with associated semi–module ∆ is biregular to an affine
space CN with

N =

p−1
∑

j=0

(

g∆0
(aj) − g∆0

(aj + q)
)

,

where for a k ∈ N the number g∆0
(k) := #([k,∞[ \∆0) is the number of gaps

in ∆0 equal to or greater than k.

Since the number of 〈p, q〉–semi–modules is 1
p+q

(

p+q
p

)

by Proposition 3, the
Jacobi factor JR has a cell decomposition into the same number of complex cells.
In particular, its Euler number is also 1

p+q

(

p+q
p

)

, proving the main theorem in
this case.

Now we treat the case of a singularity with characteristic Puiseux exponents
(4, 2q, s) using the notation of the preceeding section. The local ring R of such a
singularity is isomorphic to C[[t4, ϕ]] ⊂ C[[t]], where ϕ = t2q + ts+ higher order
terms [Z, p. 784]. Let ψ ∈ R be the normalized element with v(ψ) = γ2 = 2q+s.
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A 0–normalized Γ–semi–module ∆ has a 2×2–basis (a00 = 0, a01; a10, a11), thus
we have the ansatz

m00 = 1+
∑

k∈]0,∞[\∆

λ00
k t

k m01 = ta01 +
∑

k∈]a01,∞[\∆

λ01
k−a01

tk

m10 = ta10+
∑

k∈]a10,∞[\∆

λ10
k−a10

tk m11 = ta11 +
∑

k∈]a11,∞[\∆

λ11
k−a11

tk

for the generators of an R–module M with associated semi–module ∆. By
Proposition 10 and Lemma 11 we have v(M) = ∆ iff we can find higher order
expressions for the three terms

T 1 := ϕm00 − t4α01m01 =:

∞
∑

k=1

c1kt
γ1+k

T 2 := t4(q−α01)m00 − ϕm01 =:

∞
∑

k=1

c2kt
a01+γ1+k

T 3 := ψm00 − t4α10m10 =:

∞
∑

k=1

c3kt
γ2+k.

We follow the same strategy as before: reduce T 1, T 2, T 3 with respect to
{mij} and solve the equations given by the remaining coefficients. However, the
resulting equations are not so easy to solve, and we have to take more care in
the reduction process of T1 and T2, which we think of being processed at the
same time with increasing index of the λ variables. First, we note that

c1k = c2k = g̃∆(k)λ00
k − g̃∆(a01 + k)λ01

k for k = 1, . . . , s− γ1 − 1

c1s−γ1
= g̃∆(s− γ1)λ

00
s−γ1

− g̃∆(a01 + s− γ1)λ
01
s−γ1

+ 1

c2s−γ1
= g̃∆(s− γ1)λ

00
s−γ1

− g̃∆(a01 + s− γ1)λ
01
s−γ1

− 1

by the special form of ϕ. We want to organize the reduction process in such
a way that in the intermediate stages the coefficients c̃1k, c̃

2
k satisfy c̃1k = c̃2k

for k = 1, . . . , s − γ1 − 1 and c̃1s−γ1
− c̃2s−γ1

= 2 as long as possible. Because

v(T 1), v(T 2) ≥ γ1 and γ1 + 2N ⊂ Γ, the even powers of t, c̃12kt
γ1+2k in T 1

and c̃22kt
a01+γ1+2k in T 2, can be eliminated by subtracting elements of the form

c̃12kt
4lϕim00, i ∈ {0, 1}. Whereas one has to use different pairs of (l, i) for T 1

and T 2, the coefficient c̃12k is equal to c̃22k for 0 < 2k < s − γ1. Therefore, the
coefficients of the resulting terms differ only in and after the (s−γ1)–th t–power
term; in particular, the differences c̃1j − c̃2j for j = 1, . . . , s − γ1 are the same

before and after the subtraction. The lower odd powers of t in T 1 and T 2 we
do not eliminate at all while (a) the degree is less than s resp. a01 + s and (b)
there has not been an odd degree γ1 +2k+1 resp. a01 + γ1 +2k+1 where both
degrees lie in ∆. After that we eliminate as many powers of t as possible in the
usual way. By Lemma 11 v(M) = ∆ holds iff the remaining coefficients c̃1k, c̃

2
k, c̃

3
k

of the reduced terms T̃ 1, T̃ 2, T̃ 3 vanish. Our special treatment of the lower odd
powers of t does not influence this, because for each of them c̃12k+1t

γ1+2k+1 resp.

c̃22k+1t
a01+γ1+2k+1 which we might have removed by subtraction there was a

nonremovable c̃22k+1t
a01+γ1+2k+1 resp. c̃12k+1t

γ1+2k+1 term, which forces c̃22k+1
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resp. c̃12k+1 to vanish and with it the other one due to c̃12k+1 = c̃22k+1. The
advantage of this process is that we keep the difference c̃1k − c̃2k fixed as long as
possible. Let us exploit this.

We show that the 0–normalized associated semi–module ∆ of an R–module
has to be admissible, i.e., {s, a01 + s}∩∆ 6= ∅. Assume that this is not the case.
Since {s, a01 +s} ≡ {1, 3} mod 4, there is no odd number equal or less than s in
∆ and condition (b) is satisfied up to (s, a01 + s); hence c̃1s−γ1

− c̃2s−γ1
= 2 even

at the end of the reduction process. Therefore, not both coefficients c̃1s−γ1
, c̃2s−γ1

can vanish at the same time, and we cannot find higher order expressions for
T 1 and T 2 simultaneously.

Now, we will show that when ∆ is admissible the final equations c̃ik = 0 are
solvable. We claim that either c̃ik is already zero or

c̃1k = λ00
k − λ01

k + . . . , c̃2k = λ00
k − λ01

k + . . . , c̃3k = λ00
k − λ10

k + . . . ,

where the dots stand for polynomials in the λ with lower index less than k. This
follows as before. We discuss as an example the coefficient c̃1k. Looking at the
definition of c̃1k, we see immediately that

c̃1k = g̃∆(k)λ00
k − g̃∆(a01 + k)λ01

k + . . . .

Now g̃∆(k) = 0 or g̃∆(a01 + k) = 0 implies k ∈ ∆ or a01 + k ∈ ∆ thus γ1 + k =
a01 + k + 4α01 ∈ ∆ and the term c̃1kt

γ1+k will be eliminated.

Again, we solve the equations c̃ik = 0 first for fixed index k and then suc-
cessively substitute the solutions for the index less than k into the solutions for
index k. The difficulty is that c̃1k and c̃2k have the same term λ00

k − λ01
k , and it

is therefore impossible to solve these equations for λ00
k and λ01

k when c̃1k and c̃2k
are nonzero and not the same. We have to treat two cases separately.

Let us assume that the smallest odd number n ∈ ∆∩ [γ1,∞[ is less or equal
to s. We visualize which coefficients can be eliminated by the following diagram:

0 1 2 3 · · · n− γ1 +1 +2 +3 +4 · · ·
T 1 0 = /◦ = /× = /◦ · · · × × × × · · ·
T 2 0 = /◦ = /× = /◦ · · · × × × · · ·

The k–th column stands for the coefficients of tγ1+k and ta01+γ1+k in T1 and T2;
“=” stands for equal coefficients in the these terms, “×” for “coefficient can be
eliminated” and “◦” for “coefficient cannot be eliminated”. After the (n− γ1)–
th coefficient at least one of the coefficients with the same odd index k can be
eliminated, because the corresponding t–powers have the degrees (k, a01 + k),
hence they are (1, 3) or (3, 1) modulo 4 and both are greater than n, thus one
of them lies in n+ 4N ⊂ ∆.

Therefore, up to the index n − γ1, c̃
1
k = c̃2k, and after that at least one of

the c̃1k, c̃2k vanishes; thus there is at most one equation for each odd index and
solving it is trivial. In addition, a higher order expression for T 3 is trivially
obtained because the order of each of its t–powers is greater than the conductor
c(∆) = max{aij} − 3 ≤ max{n, n+ γ1, a01} ≤ γ2. Therefore, we found explicit
polynomial equations for the g∆(γ1) nontrivial equations c̃1k = 0 and the addi-
tional g∆(a01 +n) nontrivial equations c̃2k = 0 with k ≥ n−γ1. This shows that
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the ∆–subset of JX is a complex cell of dimension

∑

g∆(aij) − g∆(γ1) − g∆(a01 + n).

The second case we have to consider is when the smallest odd number of ∆
is greater than s. Because ∆ is admissible, we have a01 + s ∈ ∆, in a diagram

0 1 2 3 · · · s− γ1 +1 +2 +3 +4 · · ·
T 1 0 = /◦ = /× = /◦ · · · ◦ × × · · ·
T 2 0 = /◦ = /× = /◦ · · · × × × × · · ·

During the reduction process for the first s − γ1 − 1 coefficients we use only
multiples of m00. To eliminate the ta01+s–term of T 2, we have to use a multiple
of m10 due to a01 + s ≡ a10 mod 4. Because of c2s−γ1

= −1 + . . ., we add (1 +
. . .)ta01+s−a10m10 to T 2, in particular we add λ10

2+4l to the coefficient c̃2s−γ1+2+4l

for a01 + s+ 2 + 4l 6∈ ∆. Tracking the variables λ00
k , λ01

k , λ10
k with the greatest

index in these coefficients we find

c̃1s−γ1+2+4l = λ00
s−γ1+2+4l − λ01

s−γ1+2+4l + . . .

c̃2s−γ1+2+4l = λ00
s−γ1+2+4l − λ01

s−γ1+2+4l + λ10
2+4l + . . .

at this point, and this will not change later during the reduction process except
when c̃1s−γ1+2+4l is made to vanish. Hence, c̃1s−γ1+2+4l = c̃2s−γ1+2+4l = 0 can be

solved for λ10
2+4l and λ00

s−γ1+2+4l. Due to a01 + s+ 4l ∈ ∆, we have c̃2s−γ1+4l ≡ 0

and solving c̃1s−γ1+4l = c̃2s−γ1+4l = 0 is trivial. Plugging these solutions back

into T 1 and T 2, we see that with our reduction process we have found higher
order expressions for T 1 and T 2 of the form

ϕm00 − t4α01m01 = f00m00 + f01m01 + f10m10 + f11m11

t4(q−α01)m00 − ϕm01 = g00m00 + g01m01 − t4(α10−α01)m10 + g10m10 + g11m11

with v(f00m00), v(f01m01) > γ1, v(f10m10), v(f11m11) > s

and v(g00m00), v(g01m01) > a01 + γ1, v(g10m10), v(g11m11) > a01 + s.

The amazing fact is that from these two equations we can find a higher order
expression for T 3 without imposing further restrictions on the λ–variables. We
multiply the first equation by ϕ and the second by t4α01 , then all products on
the left hand sides are of order 2γ1. We subtract the second from the first
equation and move the terms from the left hand side to the right hand side to
obtain

0 = h00m00 + h01m01 − t4α10m10 + h10m10 + h11m11 (+)

with v(h00m00), v(h01m01) > 2γ1, v(h10m10), v(h11m11) > s+ γ1 = γ2.

Assume that v(h00m00), v(h01m01) < γ2, then cancellation of the initial
terms takes place in h00m00 + h01m01, i.e., (in(h00), in(h01)) is a syzygy of
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(in(m00), in(m01)). As the syzygies of (in(m00), in(m01)) are generated by
(in(ϕ),−t4α01 ) and (t4(q−α01),−in(ϕ)), we can find r1, r2 ∈ R with

(in(h00), in(h01)) = in(r1)(in(ϕ),−t4α01) + in(r2)(t
4(q−α01),−in(ϕ));

thus in

T := r1T
1 + r2T

2 = (r1ϕ+ r2t
4(q−α01))m00 + (−r1t

4α01 − r2ϕ)m01

the coefficients of m00 and m01 have also the same initial terms,
(in(h00), in(h01)). From the higher order expressions of T 1 and T 2 we obtain
one for T ,

∑

sijmij . We subtract T −
∑

sijmij = 0 from (+) to get rid of the
initial terms of h00m00 and h01m01 in (+) without changing any of the extra
conditions. Continuing this way we arrive at the stage where we may assume
that v(h00m00), v(h01m01) ≥ γ2.

As γ2 is the smallest odd number in Γ and v(m01) > 0 is even, we conclude
that v(h01m01) = v(h01) + v(m01) > γ2. Therefore, the cancellation of the ini-
tial terms in (+) takes places between h00m00 and t4α10m10 with v(h00) = γ2,
providing a higher order expression for the term h00m00 + t4α10m10, which is
essentially T 3 and may be used instead of it. Namely, because the syzygy
(in(h00),−t

4α10) between in(m00) and in(m10) together with the above two syzy-
gies between in(m00) and in(m01) generate all the syzygies of C[∆] below the
degree of the conductor c(∆), the conditions of the Lemma 11 are satisfied. As
we solved the g∆(γ1) nontrivial equations c̃1k = 0 and the additional g∆(a01 + s)
nontrivial equations c̃2k = 0 by polynomial functions we have shown that the
∆–subset of the Jacobi factor JR is a complex cell of dimension

∑

g∆(aij) − g∆(γ1) − g∆(a01 + s).

Summarizing we proved

Theorem 13 Let R be the local ring of a unibranched plane singularity
with characteristic Puiseux exponents (4, 2q, s) and ∆ be a δR–normalized
〈4, γ1 = 2q, γ2 = 2q + s〉–semi–module, whose 0–normalization ∆0 has a 2 × 2–
basis (a00 = 0, a01; a10, a11). Then the subset of modules of JR with associated
semi–module ∆ is nonempty if ∆0 is admissible, i.e., {s, a01 + s} ∩ ∆0 6= ∅. In
this case it is biregular to an affine space CN with

N =
∑

g∆0
(aij) − g∆0

(γ1) − g∆0
(a01 + n)

where n is the smallest odd number in (∆0 ∪ {s}) ∩ [γ1,∞[.

As a consequence the number of admissible semi–modules (Proposition 9) is the
Euler number of JR, as stated in the main theorem.

In the next section we are going to prove an analogous theorem for the
characteristic Puiseux exponents (6, 8, s) and (6, 10, s). It seems that there are
no further Puiseux exponents where such a theorem holds — with the probable
exception of (6, 14, 15). The rows of the following table consist of a ring R and
its associated semi–group Γ together with the 0–normalization of a Γ–semi–
module ∆ such that the ∆–subset of JR is not affine, but CN × C∗, a union of
two affine spaces, or worse.
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R Γ ∆0

C[t6, t14 + t17] 〈6, 14, 45〉 〈0, 8, 16, 23, 31, 39〉

C[t6, t9 + t10] 〈6, 9, 19〉 〈0, 3, 7, 10, 17, 20〉

C[t6, t9 + t13] 〈6, 9, 22〉 〈0, 3, 7, 10, 17, 20〉

C[t9, t12 + t14] 〈9, 12, 38〉 〈0, 3, 13, 28, 32, 35〉

C[t10, t14 + t17] 〈10, 14, 73〉 〈0, 4, 16, 31, 37〉

C[t8, t12 + t14 + t15] 〈8, 12, 26, 53〉 〈0, 4, 13, 17, 19, 22, 23〉

4 The Puiseux exponents (6, 8, s) and (6, 10, s)

In this section we deal with the cases when the characteristic Puiseux exponents
of the singularity are (6, 8, s) and (6, 10, s). The above examples suggest that
these two cases are the last ones where the natural cell decomposition of the
Jacobi factor is affine. The basic ideas for the proof of this are the same as
in the (4, 2q, s) case, but the arguments have to be sharpened. In particular,
the combinatorics of the Γ–semi–modules is more complicated. As most of this
section is very technical, we recommend it only for the most interested reader.

We follow the proof for the (4, 2q, s) case. Recall that Γ is generated by
γ0 = 6, γ1 = 2q, and γ2 = 2γ1 + s and that a 0–normalized Γ–semi–module has
a 2 × 3–basis, see Definition 6. We compute the number of Γ–semi–modules.

Proposition 14 The number of 0–normalized Γ–semi–modules for the semi–
group Γ = 〈6, 2q, 4q + s〉 with gcd(q, 3) = gcd(s, 2) = 1 is

(q + 1)(q + 2)(7q3 + 24q2 + 29q + 15)

180
+ s

(q + 1)2(q + 2)2

72
.

Proof. This time we have to count the number of 5–tuples α =
(α01, α02, α10, α11, α12) which satisfy

q/3 2q/3

< <

0 ≤ α01 ≤ α02

≥ ≥ ≥

α10 ≤ α11 ≤ α12 ≤ q + α10.

> > >

4q+s
6

6q+s
6

8q+s
6

Let A be the set of these. We may view this set as A = Ā \ (A3 ∪A4) with

Ā =
{

α ∈ N5 | α01 <
q
3 , α01 ≤ α02 <

2q
3 ;α1j <

(4+2j)q+s

6 ,

α10 ≤ α11 ≤ α12 ≤ q + α10

}

A3 = Ā ∩
{

α ∈ N5 | α02 > α12

}

=
{

α ∈ N
5 | α01 <

q
3 , α01 ≤ α02 <

2q
3 ;α10 ≤ α11 ≤ α12 < α02

}

A4 = Ā ∩
{

α ∈ N
5 | α02 ≤ α12, α01 > α11

}

=
{

α ∈ N5 | α01 <
q
3 , α01 ≤ α02 <

2q
3 ;α10 ≤ α11 < α01, α02 ≤ α12 ≤ q + α10

}

.
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We split Ā again as Ā = A0 \ (A1 ∪A2) with

A0 =
{

α ∈ N5 | α01 <
q
3 , α01 ≤ α02 <

2q
3 ;α10 <

4q+s
6 , α10 ≤ α11 ≤ α12 ≤ q + α10

}

A1 =A0 ∩
{

α ∈ N5 | α11 >
6q+s

6

}

=
{

α ∈ N5 | α01 <
q
3 , α01 ≤ α02 <

2q
3 ; s

6 < α10 <
4q+s

6 ,

6q+s
6 < α11 ≤ α12 ≤ q + α10

}

A2 = Ā ∩
{

α ∈ N5 | α11 <
6q+s

6 , α21 >
8q+s

6

}

=
{

α ∈ N5 | α01 <
q
3 , α01 ≤ α02 <

2q
3 ; 2q+s

6 < α10 <
4q+s

6 , α10 ≤ α11 <
6q+s

6 ,
8q+s

6 < α12 ≤ q + α10

}

.

By definition the A1, . . . , A4 ⊂ A0 are pairwise disjoint, thus #A = #A0 −
∑4

i=1 #Ai. The sets Ai are written down in such a way that when one reads the
inequalities from the left to the right there are only restrictions on the newly
appearing variables; hence, they can be counted, for example

#A1 =

⌊ q

3
⌋

∑

α01=0

⌊ 2q

3
⌋

∑

α02=α01

⌊ 4q+s

6
⌋

∑

α10=⌈ s
6
⌉

q+α10
∑

α11=⌈ 6q+s
6

⌉

(q + 1 + α10 − α11).

It is possible to evaluate these sums and obtain for #A the number in the
statement. 2

Next we count the Γ–semi–modules of which we show later that they are not
the 0–normalization of an associated semi–module of a torsion free module over
the local ring of the singularity.

Proposition 15 Let Γ = 〈6, 2q, 4q + s〉 be the above semi–group with q ∈ {4, 5}.
The number of admissible Γ–semi–modules is

(q + 1)(q + 2)(7q3 + 24q2 + 29q + 15)

180
−

2(4q + 7)

15

(

q + 2

4

)

+ s
(q + 1)2(q + 2)2

72
.

Proof. A proof of this Proposition can be obtained by mixing the ideas of the
proofs of Proposition 9 and Proposition 14. 2

Evaluating this formula for q = 4, 5, one obtains the numbers given in the
statement of the Main Theorem.

It remains to compute the syzygies of the canonical generators of the C[Γ]–
module C[∆]. We continue to use the notation of Section 2

Proposition 16 Let Γ = 〈γ0 = 2p, γ1 = 2q, γ2 = 2(p− 1)q + s〉, choose β ∈
{0, . . . , p − 1} and η ∈ N such that 2γ2 = βγ1 + ηγ0. Further, let ∆ be a 0–
normalized Γ–semi–module with 2 × 3–basis (aij). Then the C[Γ]–module C[∆]
is generated by A = (taij ), and the syzygies of this generating set are generated
by the following additively written bivector syzygies:

• aij + γ1 = ai,j+1 + ∗γ0

19



• a0j + γ2 = a1,j−µj
+ µjγ1 + ∗γ0 where µj is chosen maximal under the

condition a0j + γ2 ≥ a1,j−µj
+ µjγ1.

• a1j + γ2 = a0,j+β−νj
+ νjγ1 + ∗γ0 where νj is chosen maximal under the

condition a1j + γ2 ≥ a0,j+β−νj
+ νjγ1.

Here, we use cyclic index notation and ∗ stands for an easily computed unique
natural number.

Proof. By Lemma 4 there is a generating set of syzygies consisting of bivectors.
Any bivector syzygy of degree d may be written additively as

aij + ξ2γ2 + ξ1γ1 + ξ0γ0 = alk + ζ2γ2 + ζ1γ1 + ζ0γ0 = d

with ξ2, ζ2 ∈ {0, 1}, ξ1, ζ1 ∈ {0, . . . , p− 1}, and ξ0, ζ0 ∈ N. We may assume that
the bivector syzygy is not the multiple of another; hence, for all r ∈ {0, 1, 2}
one of the ξr , ζr = 0 is zero. Considering the above relations modulo γ0 and
using 2γ2 = βγ1 + ηγ0 one sees

i+ ξ2 ≡ l + ζ2 mod 2 and j + ξ1 + βδ2i+ξ2
≡ k + ζ1 + βδ2l+ζ2

mod p;

here δ2n is the Kronecker δ–symbol, i.e., δ2n = 0 except for n = 2 where δ22 = 1.
In particular, a minimal syzygy between the {aij} for fixed i does not involve a
γ2. Therefore, any such bivector syzygy is of the type aij + kγ1 = ai,j+k + ∗γ0,
and thus a combination of the ail + γ1 = ai,l+1 + ∗γ0 for l = j, . . . , j + k − 1.
Next, we note that a syzygy a0j + γ2 + kγ1 = a1,j+k + ∗γ0 is a combination of
a0j+γ2 = a1,j+∗γ0 and a1j+kγ1 = a1,j+k+∗γ0, and similarly for a1j+γ2+kγ1 =
a0,j+β+k+∗γ0. Also, if there exists a relation of the type a0j+γ2+∗γ0 = a1,j−k+
kγ1, it can be obtained from a0j +γ2 = a1,j +∗1γ0 and a1,j−k +kγ1 = a1,j +∗2γ0

using the assumed relation to see that ∗2 ≥ ∗1. Again, an analogous statement
holds for a1j + γ2 + ∗γ0 = a0,j+β−k + kγ1.

Thus it remains to show that all relations of the type aij + γ2 = . . . can be
obtained from the ones in the statement of the theorem. Since the ones with
the most γ1’s on the right hand side for each fixed a0j or a1j on the left hand
side are the ones in the statement, the other can be obtained from them by
replacing aij + kγ1 on the right hand side by the corresponding ai,j+k + ∗γ0.2

Our main interest are the syzygies whose degree is less than the conductor
of the module. Let us isolate these for p = 3.

Corollary 17 Let Γ = 〈γ0 = 6, γ1 = 2q, γ2 = 4q + s〉, and ∆ =
⋃

(aij +
γ0N) like above. The C[Γ]–module C[∆] is generated by A =
(1, ta01 , ta02 , ta10 , ta11 , ta12), and the syzygies of A of degree less than c(∆) are
generated by the following additively written bivector syzygies:

— If max{aij} = a0J for a suitable J ∈ {1, 2} use the following relations:

• a02 + γ1 = a00 + ∗γ0 if J = 1 or a00 + γ1 = a01 + ∗γ0 if J = 2.

• a1j + γ1 = a1,j+1 + ∗γ0 for j ∈ {0, 1, 2}

— If max{aij} = a1J for a suitable J ∈ {0, 1, 2}, choose K,L ∈ {0, 1, 2}\{I}
with K + 1 ≡ L mod 3 and use the following relations:
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• a0j + γ1 = a0,j+1 + ∗γ0 for j ∈ {0, 1, 2}

• a1K + γ1 = a1L + ∗γ0

• a0K + γ2 = a1K + ∗γ0

• a0L + γ2 = a1K + γ1 + ∗γ0 if a0L + γ2 ≥ a1K + γ1

a0L + γ2 = a1L + ∗γ0 else.

Proof. Obviously, any relation involving the maximal aij has degree greater
than c(∆). Therefore, for the first case it is enough to remark that because
of max{aij} = a0J ≤ 2γ1 < γ2 any relation involving a γ2 has also degree
greater than c(∆). For the more general second case we need only to argue for
a1j+γ2 > c(∆). By the definition of the aij we have a0j ≤ 2γ1, a1,j+1 ≤ a1j+γ1,
and a1,j+2 ≤ a1j + 2γ1; hence, c(∆) < max{alk} ≤ a1j + 2γ1 < a1j + γ2. 2

Finally, it remains to prove that the ∆–subsets of the Jacobi factor JR are
affine. As shown by examples at the end of the last section this is probably only
possible for the characteristic Puiseux exponents (6, 8, s) and (6, 10, s).

Theorem 18 Let R be the local ring of a unibranched plane singularity with
characteristic Puiseux exponents (6, 8, s) or (6, 10, s) and Γ its associated semi–
group. Let ∆ be a δR–normalized Γ–semi–module. Then the ∆–subset of JR is
biregular to an affine space C

N and nonempty iff the 0–normalization of ∆ is
admissible.

The proof proceeds as before. Again, the local ring of a singularity is isomor-
phic to C[[t6, ϕ]] ∈ C[[t]], where ϕ = tγ1 +ts+ . . ., because by a coordinate trans-
formation any t–power whose exponent lies in Γ\{γ1} or in ((γ1−γ0)+Γ)\{γ1}
can be eliminated [Z, p. 784]. These two characteristic Puiseux exponents series
are the only ones — apart from the ones already discussed — where there are no
t–powers in ϕ between the t–powers to the second and third Puiseux exponent.
We denote the normalized element of R of order γ2 = 2γ1 + s by ψ.

Let (aij) be the 2×3–basis of the 0–normalization of ∆. We will work during
this proof only with the 0–normalization and may therefore denote it by ∆ as
well. For an R–module M with associated semi–module ∆ we have the ansatz

mij = taij +
∑

k∈]aij ,∞[\∆

λij
k−aij

tk

for its six generators. These generators must satisfy the condition of Lemma 11
for the syzygies of Corollary 17. The most interesting syzygies are the ones
between 1, ta01 , and ta02 . They lead to the terms

T 1 := ϕm00 − t6α01m01 =:
∞
∑

k=1

c1kt
γ1+k

T 2 := ϕm01 − t6(α02−α01)m02 =:

∞
∑

k=1

c2kt
a01+γ1+k

T 3 := ϕm02 − t6(q−α02)m00 =:

∞
∑

k=1

c3kt
a02+γ1+k
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for which we have to find higher order expressions. We proceed as before: reduce
T 1, T 2, T 3 with respect to {mij} in some modified way, solve the equations given
by the remaining coefficients for a fixed index k and successively substitute these
solutions into each other.

As before we find that

cjk = g̃∆(a0,j−1 + k)λ0,j−1
k − g̃∆(a0j + k)λ0j

k for k = 1, . . . , s− γ1 − 1 and

cjs−γ1
= g̃∆(a0,j−1 + s− γ1)λ

0,j−1
s−γ1

− g̃∆(a0j + s− γ1)λ
0j
s−γ1

+ 1.

We note that the sum c1k + c2k + c3k is zero for k = 1, . . . , s − γ1 − 1 and
c1s−γ1

+ c2s−γ1
+ c3s−γ1

= 3. These are the invariants that we want to keep
as long as possible during our modified reduction process. First, we con-
sider the elimination of the even t–powers. Since all even numbers greater
than or equal to 2γ1 − 4 are contained in Γ, we can subtract — for fixed
even k — appropriate multiples of m00 from all T j to eliminate the terms
c̃jkt

a0j+γ1+k when γ1 + k ≥ 2γ1 − 4. This does not change the sum condi-
tions, because modulo the ideals (ts+1), (ta01+s+1), resp. (ta02+s+1) we sub-
tract c̃1kt

γ1+km00 from T 1, c̃2kt
a01+γ1+km00 from T 2, and c̃3kt

a02+γ1+km00 =
−(c̃1k + c̃2k)ta02+γ1+km00 from T 3. For γ1 = 8 this leaves only the terms

cj2t
a0j+γ1+2 to discuss. If a01 = 2, then a00 + γ1 + 2, a02 + γ1 + 2 ∈ a01 + Γ

and a01 + γ1 + 2, a02 + γ1 + 2 ∈ a00 + Γ; thus, we can subtract c̃12ϕm01 from
T 1, c̃22t

12m00 from T 2, and add c̃12t
6(4−α02)m01 + c̃22ϕt

6(3−α02)m00 to T 3. Due to
c̃32 = −c̃12− c̃

2
2, this eliminates all the c̃j2 coefficients and leaves the sum condition

intact. If a01 = 8 and a02 ∈ {4, 10}, then a00 +γ1 +2, a01 +γ1 +2 ∈ a02 +Γ and
a01 + γ1 + 2, a02 + γ1 + 2 ∈ a00 + Γ and an analogous subtraction and addition
works. The case of a01 = 8 and a02 = 16 is trivial because here m01 and m02

must be the normalization of ϕm00 resp. ϕ2m00. For γ1 = 10 the same ideas
work, because we can always find two indices j1, j2 such that

#
(

{a0j + γ1 + 2k | j = 0, 1, 2} ∩ (a0j̺
+ Γ)

)

≥ 2 for ̺ = 1, 2 and

{a0j + γ1 + 2k | j = 0, 1, 2} ⊂ (a0j1 + Γ) ∪ (a0j2 + Γ).

An analogous result does not hold for γ1 > 10.

Now, we consider the elimination of the odd t–powers. If we can eliminate
only one of the terms c̃2kt

a01+γ1+k of T 2 or c̃3kt
a02+γ1+k of T 3 for an odd index

k < s − γ1 and also not c̃1kt
γ1+k of T 1, we do not eliminate at all. Because we

later force the remaining two coefficients to be zero, the third will be zero as well
due to the sum condition. Therefore, we will still find a higher order expression
for T 1, T 2, T 3 by this modified reduction process. As soon as we find an odd
index n with γ1 +n ∈ ∆ or a01 +γ1 +n ∈ ∆ and a02 +γ1 +n ∈ ∆, we eliminate
all possible t–powers. We claim that these conditions imply that at least one
of each of the following triples of the odd exponents (a0j + γ1 + n + 2k)j=0,1,2

lies in ∆ — with the exception of the trivial case of a01 = γ1 and a02 = 2γ1. If
γ1+n ∈ ∆ this is obvious, as {a0j+γ1+n+2k | j = 0, 1, 2} ≡ {1, 3, 5} mod 6 and
a0j +γ1+n+2k > γ1+n and hence {a0j +γ1+n+2k | j = 0, 1, 2}∩(γ1+n+6N)
is nonempty. If a01 + γ1 + n ∈ ∆ and a02 + γ1 + n ∈ ∆, this statement has to
be checked case by case. We do this with the help of the following diagrams
that indicate which odd terms can be eliminated; the second column stands for
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t–powers with the exponents (a0j + γ1 + n)j=0,1,2, the third for the exponents
(a0j +γ1+n+2)j=0,1,2 and the last one for the exponents (a0j +γ1+n+4)j=0,1,2.
Since ∆+6N ⊂ ∆, it is enough to consider only the next two odd numbers. For
γ1 = 8 we get

+0 +2 +4
a00 = 0 ×
a01 = 2 ×
a02 = ? × ×

+0 +2 +4
a00 = 0 ×
a01 = 8 × ×
a02 = 4 ×

+0 +2 +4
a00 = 0
a01 = 8 × ×
a02 = 10 × ×

For γ1 = 10 we get

+0 +2 +4
a00 = 0 ×
a01 = 4 ×
a02 = ? × ×

+0 +2 +4
a00 = 0
a01 = 10 × ×
a02 = 8 × ×

+0 +2 +4
a00 = 0 ×
a01 = 10 × × ×
a02 = 2 ×

+0 +2 +4
a00 = 0
a01 = 10 × ×
a02 = 14 × ×

We are ready to prove that for any R–modules M its 0–normalized associ-
ated semi–module ∆ is admissible, i.e., it has a nonempty intersection with
{s, a01 + s, a02 + s}. If it were empty, then by the above discussion we have to
apply only operations during the reduction that do not change the sum condi-
tion; hence, the requirement that after the normalization process the coefficients
c̃1s−γ1

, c̃2s−γ1
, c̃3s−γ1

have to vanish contradicts the fact that their sum is three.

We need to show that in the remaining cases the equations can be solved by
expressing some of the λ–variables as polynomials of the other. The coefficients
c1k, c

2
k, c

3
k are of the form

cjk = g̃∆(a0,j−1 + k)λ0,j−1
k − g̃∆(a0j + k)λ0j

k + . . .

where the lower dots stand for polynomials in the λ with indices less than
k. During the reduction process some of the ck1 , c

k
2 , c

k
3 are made to vanish, in

particular those where the gap function g̃∆ assumes the value zero by the usual
arguments. In the end we are left with either zero coefficients or coefficients c̃jk
that look like

c̃1k = λ00
k − λ01

k + . . . c̃2k = λ01
k − λ02

k + . . . c̃3k = λ02
k − λ00

k + . . . .

For fixed k we can obviously solve the equations c̃jk = 0 for λ00
k , λ

01
k , λ

02
k if

their sum is zero, which is the case for k < min{n, s − γ1}, or if at least one
of them is zero, which is always the case for k ≥ n. Thus it remains to discuss
the coefficients with indices in the range ]s − γ1, n[. This range is nonempty
only if ∆ contains no odd number less or equal to s and either a01 + s ∈ ∆
or a02 + s ∈ ∆, but not both. Let us start with a01 + s ∈ ∆. Assume that

23



we reduced all T j for the t–powers with exponents less then a0j + s. Because
a01 + s ≡ γ1 + s ≡ γ2 + 2γ1 ≡ a12 mod 6 we can subtract c̃2s−γ1

ta01+s−a12m12

from the term T 2 to eliminate the c̃2s−γ1
ta01+s term. As the constant term of the

original c2s−γ1
is -1, the constant term of c̃2s−γ1

is -1, too. Thus we are adding
λ12

k to c̃2s−γ1+k for all k with a01 + s + k 6∈ ∆. Tracking again the variables

λ0j
k , λ

12
k with the greatest index, we find that at this moment in the process we

have for the coefficients c̃js−γ1+k with a0j + s + k 6∈ ∆ — the others are made
to vanish later on anyway —

c̃1s−γ1+k = λ00
s−γ1+k − λ01

s−γ1+k + . . . c̃2s−γ1+k = λ01
s−γ1+k − λ02

s−γ1+k + λ12
k + . . .

c̃3s−γ1+k = λ02
s−γ1+k − λ00

s−γ1+k + . . .

and this will not change later in the process. Now there is no difficulty in solving
these equations for λ00

s−γ1+k, λ02
s−γ1+k, and λ12

k .

The case of a02 + s ∈ ∆ is similar, one uses a multiple of m10 for the term
T 3. In the whole we have shown so far:

The existence of higher order expressions for the terms T 1, T 2, T 3 can be
expressed as a polynomial dependence of some of the λ–variables on the other
λ–variables.

Now we have to find higher order expressions for the terms derived from
the remaining syzygies of the canonical generating set of C[∆]. The case where
max{aij} = a0J — see Corollary 17 – is nearly trivial. In fact, as there is only
one interesting cancellation of initial terms between the m00,m01,m02 getting
the condition of Lemma 11 to hold for it is trivial and the above discussion
is not needed here. The three cyclic cancellations of initial terms between the
m10,m11,m12 derived from the syzygies between (ta10 , ta11 , ta12) ∈ C[∆] are

T 4 := ϕm10 − t6(α11−α10)m11 =:

∞
∑

k=1

c4kt
a10+γ1+k

T 5 := ϕm11 − t6(α12−α11)m12 =:
∞
∑

k=1

c5kt
a11+γ1+k

T 6 := ϕm12 − t6(q+α10−α12)m10 =:

∞
∑

k=1

c6kt
a12+γ1+k.

These terms are easily expressed as higher order expressions. Namely, the coef-
ficients have again the typical form

c4k = λ10
k − λ11

k + . . . c5k = λ11
k − λ12

k + . . . c6k = λ12
k − λ10

k + . . . ;

here we suppress the gap function in front of the λ, because the coefficients
where it is relevant will be made to vanish later on. We will show that for fixed
k at least one of the coefficients vanishes during the reduction process. Let
J ∈ {0, 1, 2} be such that minj{a1j} = a1J . Then we see that {a1j +γ1 +k | j =
0, 1, 2} ∩ 6N 6= ∅ for even k and {a1j + γ1 + k | j = 0, 1, 2} ∩ (a1J + 6N) 6= ∅ for
odd k by considering the numbers modulo 6; thus at least one of the t–powers
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ta1j+γ1+k, j = 0, 1, 2, can be eliminated. In the end, at most two of three
equations c̃4k = c̃5k = c̃6k = 0 are nontrivial and solving them for one or two of

the λ1j
k is easy.

We turn to the case of the syzygies of C[∆] described in Corollary 17, where
max{aij} = a1J and K,L ∈ {0, 1, 2} with K + 1 ≡ L and K + 2 ≡ J modulo 3.
We have to find higher order expressions for the terms

T 4 := ϕm1K − t6∗m1L =:

∞
∑

k=1

c4kt
a1K+γ1+k

T 5 := ψm0K − t6(α1K−α0K)m1K =:
∞
∑

k=1

c5kt
a0K+γ2+k

T 6 := ψm0L − ϕt6∗m1K =:

∞
∑

k=1

c6kt
a0L+γ2+k

T 6′ := ψm0L − t6(α1L−α0L)m1L =:

∞
∑

k=1

c6k
′ta0L+γ2+k

where one uses T 6 if a0L + γ2 ≥ a1K + γ1 and T 6′ otherwise. The coefficients
are

c4k = λ1K
k − λ1L

k + . . . c5k = λ0K
k − λ1K

k + . . .

c6k = λ0L
k − λ1K

k + . . . c6k
′ = λ0L

k − λ1L
k + . . . ,

where we suppressed the gap function again.

Now if ∆ contains an odd number n ≤ s + 6 — for example s itself —
then n + γ1, n + 2γ1 ∈ ∆ and {n, n + γ1, n + 2γ1} ≡ {1, 3, 5} mod 6, thus
c(∆) ≤ n+ 2γ1 − 6 + 1 ≤ γ2 + 1. Consequently c(∆) ≤ γ2, because γ2 ∈ Γ ⊂ ∆.
Therefore, the only t–powers in the terms T 4, T 5, T 6, T 6′ whose exponents may
be less than c(∆) occur in the term T 4. Solving the coefficients of its reduction
is trivial, even if we already used up either λ1K

k or λ1L
k before.

Another exceptional case in the treatment of T 1, T 2, T 3 was when there is an
even number k with a01 + s− k, a02 + s− k ∈ ∆. Choose I ∈ {0, 1, 2} such that
a01 + s− k ≡ a1I mod 6, then a1I ≤ a01 + s− k ≤ γ2 − γ1 − 2, a1,I+1 ≤ γ2 − 2,
a1,I+2 ≤ γ2+γ1−2 and we get c(∆) ≤ γ2+γ1−2−6+1 ≤ γ2+3 due to γ1 ≤ 10.
Now the terms T 5, T 6 resp. T 6′ have order greater then a0K + γ2 and a0L + γ2.
One of the a0K , a0L is at least 2, thus the order of the corresponding term
is equal to or greater than the conductor c(∆) and a higher order expression
can be found trivially. Therefore, we need to consider only one of the terms
T 5, T 6/T 6′ besides T 4. They contain the so far unused variables λ1K

k , λ1L
k and

finding higher order expressions for them is easy.

The final exceptional case we had during the search for higher order expres-
sions for T 1, T 2, T 3 was when a01 = γ1 and a02 = 2γ1. If max{a1i} 6= a12,
then a0K + γ2 or a0L + γ2 equals 2γ1 + γ2 < c(∆) and we argue as before. If
max{a1i} = a12, then the term T 5 is essentially T 6, because m01 is the normal-
ization of ϕm00. Therefore, we are left again with only two terms, T 4, T 5, to
consider, which we can solve easily.
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Now we turn to the cases of a01 + s ∈ ∆ or a02 + s ∈ ∆, but s 6∈ ∆, where
we had to make use of the λ–variables in m12 resp. m10 during the search for
the higher order expression for T 1, T 2, T 3. In fact, we found the following

ϕm00 − t6α01m01 =

3
∑

j=1

f0jm0j +

3
∑

j=1

f1jm1j

ϕm01 − t6(α02−α01)m02 = εt6(α12−α01−q)m12 +

3
∑

j=1

g0jm0j +

3
∑

j=1

g1jm1j

ϕm02 − t6(q−α02)m00 = ηt6(α10−α02)m10 +

3
∑

j=1

h0jm0j +

3
∑

j=1

h1jm1j

with

v(f0jm0j) > γ1 v(g0jm0j) > a01 + γ1 v(h0jm0j) > a02 + γ1

v(f1jm1j) > s v(g1jm1j) > a01 + s v(h1jm1j) > a02 + s.

Here, ε = 1 if a01 + s ∈ ∆ and η = 1 if a02 + s ∈ ∆, otherwise they are 0.

Assume now that a01 + s ∈ ∆. As a01 + s ≡ a12 mod 6, we find a12 ≤
a01 + s ≤ γ1 + s = γ2 − γ1. Thus we have either c(∆) ≤ γ2, which can be
treated like above, or max{a1j} = a11. In the latter case we have to consider
the following syzygies of C[∆]

a12 + γ1 = a10 + 6(q + α10 − α12)

a02 + γ2 = a12 + 6(α12 − α02)

a00 + γ2 = a12 + γ1 + 6(α12 − q)

and the corresponding T 4, T 5, T 6 terms. The T 4 term is the only one involving
the variables λ10

k and a higher order expression can be found by an appropriate
choice of these. Higher order expressions for T 5, T 6 can be obtained from the
equations (+). Namely, multiply the first equation by ϕ2, the second by ϕt6α01 ,
the third by t6α02 and add them to obtain after moving the left hand side to
the right hand side:

0 = ϕt6(α12−q)m12 + ηt6α10m10 +

3
∑

j=1

u0jm0j +

3
∑

j=1

u1jm1j

with v(u1jm1j) > γ2. As in the case with the Puiseux exponents (4, 2q, s)
we replace the multiples of T 1, T 2, T 3 by their higher order expressions to
achieve that v(u0jm0j) ≥ γ2. In fact, as the first odd number in Γ is γ2 and
v(m01), v(m02) ≥ 2 are even, we find v(u01m01), v(u02m02) > γ2. Therefore, we
got a higher order expression for the cancellation of the initial terms in

ϕt6(α12−q)m12 + ηt6α10m10 − (1 + η)ψm00.

Replacing ηt6(α12−q)T 4 by its higher order expression, which was found earlier,
we find the higher order expression for T 6 or a term that can take the place of
T 6 in Lemma 11.
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To obtain the higher order expression for T 5, we multiply the above equations
with different elements, namely ϕt6(q−α02), t6(q−α02+α01), and ϕ2 before adding
them and obtain this time

0 = t6(α12−α02)m12 + ηϕ2t6(α10−α02)m10 +

3
∑

j=1

w0jm0j +

3
∑

j=1

w1jm1j

with v(w1jm1j) > a02 + γ2. Again, we use the higher order expressions for
T 1, T 2, T 3 to get v(w0jm0j) ≥ a02 + γ2. With further use of these we can
achieve that v(w00m00), v(w01m01) > a02 + γ2, thus the only terms of the least
order a02 + γ2 are the first two terms and w02m02. Now, if η = 0 then we may
view the above equation as a higher order expression for T 5. If η = 1 then the
order of T 5 is greater than a10 + 2γ1 + 6(α10 − α02) > a10 + γ1 ≥ a11 ≥ c(∆)
and a higher order expression is obtained trivially.

The remaining regular case is when a02+s ∈ ∆. As a02+s ≡ a10 ≡ γ2 mod 6
this is only a weak restriction on a10. Let us assume that s, a01 + s 6∈ ∆,
otherwise we are in one of the above cases. In addition, we assume c(∆) > γ2,
i.e., c(∆) ≥ γ2 + 2, because otherwise the same arguments as in the special
cases apply. We claim that max{aij} = a12. If we had max{aij} = a11, then
γ2 +2 ≤ c(∆) = a11 − 5 = γ2 + γ1 − 6α11 − 5 ; hence α11 = 0 and a11 = γ2 + γ1.
This implies a01 = γ1 and a10 = γ2 and from a02 + s ≥ a10 we get a02 = 2γ1,
but this was a special case discussed above.

Because of max{aij} = a12 the syzygies of C[∆] of degree below c(∆) are
generated by:

a10 + γ1 = a11 + 6(α11 − α10)

a00 + γ2 = a10 + 6α10

a01 + γ2 = a10 + γ1 + 6(α10 − α01) if a01 + γ2 ≥ a10 + γ1

a01 + γ2 = a11 + 6(α11 − α01) else.

A higher order expression for the term T 5 corresponding to the second syzygy
can be derived from (+) (with ε = 0 and η = 1) by multiplying the three
equations with ϕ2, ϕt6α01 , t6α02 respectively and adding them to obtain

0 = t6α10m10 +

3
∑

j=1

u0jm0j +

3
∑

j=1

u1jm1j

with v(u1jm1j) > γ2. The usual argument leads to a higher order expression
for T 5.

If a01 + γ2 ≥ a10 + γ1, then we can also derive a higher order expression for
T 6 from (+) by multiplying the equations by t6(q−α01), ϕ2, ϕt6(α02−α01) adding
them and proceeding as before. A higher order expression for the term T 4

can now be found by reducing it and solving the remaining coefficients for the
variables λ11

k , which occur only in T 4.

At last when a01 + γ2 < a10 + γ1, we use the variables λ11
k to get a higher

order expression for T 6′. We claim that a higher order expression for T 4 can be
found trivially because its order is greater than c(∆). From a01 + γ2 < a10 + γ1

we conclude a01 + γ2 ≤ a10 + γ1 − 6 and a12 ≤ a01 + γ2 + γ1 ≤ a10 + 2γ1 − 6,
thus we have c(∆) ≤ a10 + 2γ1 − 2 · 6 + 1 < a10 + γ1.
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5 Betti numbers

For any plane singularity X the Jacobi factor JX is δX–dimensional. More
precisely, the subset Pic0(X) of free modules of JX is biregular to CδX and
JX is its closure. Rego proved that the number of components of Jx \ Pic0(X)
equals the multiplicity of the singularity X minus one [R]. Such results and
more follow from purely combinatorial reasoning for singularities which possess
an affine cell decomposition. We start our discussion with some notations:

Definition 19 For the semi–group Γ = 〈p, q〉 ⊂ N, gcd(p, q) = 1, we denote the
0–normalized semi–modules by Mod(Γ). The dimension of a Γ–semi–module ∆
with p–basis (a0 = 0, a1, . . . , ap−1) is defined as

dim∆ :=

p−1
∑

j=0

(g∆(aj) − g∆(aj + q)) =

p−1
∑

j=0

#([aj , aj + q[\∆) .

Analogously, for the semi–group Γ = 〈4, 2q, 2q+ s〉 ⊂ N, gcd(2, qs) = 1, we
denote the admissible 0–normalized semi–modules by Mod(Γ). The dimension
of an admissible Γ–semi–module ∆ with 2 × 2–basis (a00 = 0, a01; a10, a11) is
defined as

dim∆ :=

1
∑

i,j=0

g∆(aij) − g∆(γ1) − g∆(a01 + n),

where n := min ({s} ∪ (∆ ∩ [γ1,∞[∩(1 + 2N))).

The codimension of ∆ is codim∆ := δΓ − dim ∆, where δΓ := dimΓ.
Thereby, the semi–modules are splitted into the disjoint subsets

Modd(Γ) := {∆ ∈ Mod(Γ) | dim∆ = d}

or dually
Modd(Γ) := {∆ ∈ Mod(Γ) | codim∆ = d}.

Either geometrically from the next theorem or combinatorically from the
proofs of the following Theorems, we will see that the values of the functions dim
and codim lie in the range [0, δΓ] and Mod0(Γ) = {Γ} as well as Mod0(Γ) = {N}.

As an immediate consequence of the affine cell decomposition of the Jacobi
factors and the remarks in Section 1 we have

Theorem 20 Let X be a unibranched plane singularity with characteristic
Puiseux exponents (p, q) or (4, 2q, s). Let Γ be its associated semi–group and
and JX its Jacobi factor. Then the odd (co–)homology groups of JX are zero,
and the even (co–)homology group are free abelian groups with Betti numbers

h2d(JX) = #Modd(Γ) and h2d(JX) = #Modd(Γ).

It is easy to write a computer program that computes all Γ–semi–modules
together with their dimension. We discuss the results for the singularities with
Puiseux exponents (p, q) first. For the singularities with Puiseux exponents (2, q)
and (3, q) one obtains the following list, which has an obvious construction rule.
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(p, q) δX e(X) h0 h2 h4 h6 h8

(2,3) 1 2 1 1
(2,5) 2 3 1 1 1
(2,7) 3 4 1 1 1 1
(2,9) 4 5 1 1 1 1 1
(2,11) 5 6 1 1 1 1 1 1
(3,2) 1 2 1 1
(3,4) 3 5 1 2 1 1
(3,5) 4 7 1 2 2 1 1
(3,7) 6 12 1 2 3 2 2 1 1
(3,8) 7 15 1 2 3 3 2 2 1 1
(3,10) 9 22 1 2 3 4 3 3 2 2 1 1
(3,11) 10 26 1 2 3 4 4 3 3 2 2 1 1
(3,13) 12 35 1 2 3 4 5 4 4 3 3 2 2 1 1
(3,14) 13 40 1 2 3 4 5 5 4 4 3 3 2 2 1 1

The Betti numbers for the singularities A2k, E6, E8, i.e., for the singularities
with the characteristic Puiseux exponents (2, q), (3, 4), and (3, 5), have been
computed by Cook [C] and Warmt [W1]. For p ≥ 4 an explicit formula for the
Betti numbers seems difficult to find. A long list of examples is included so that
the reader may try himself.
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(p, q) δX e(X) h0h2 h4 h6 h8 . . .

(4,3) 3 5 1 2 1 1
(4,5) 6 14 1 3 3 3 2 1 1
(4,7) 9 30 1 3 5 5 5 4 3 2 1 1
(4,9) 12 55 1 3 6 7 8 7 7 5 4 3 2 1 1
(4,11) 15 91 1 3 6 9 10 11 10 10 8 7 5 4 3 2 1 1
(4,13) 18 140 1 3 6 10 12 14 14 14 13 12 10 8 7 5 4 3 2 1 1
(4,15) 21 204 1 3 6 10 14 16 18 18 18 17 16 14 12 10 8 7 5 4 3 2 1 1
(4,17) 24 285 1 3 6 10 15 18 21 22 23 22 22 20 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,19) 27 385 1 3 6 10 15 20 23 26 27 28 27 27 25 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,21) 30 506 1 3 6 10 15 21 25 29 31 33 33 33 32 31 29 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,23) 33 650 1 3 6 10 15 21 27 31 35 37 39 39 39 38 37 35 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,25) 36 819 1 3 6 10 15 21 28 33 38 41 44 45 46 45 45 43 42 39 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,27) 39 1015 1 3 6 10 15 21 28 35 40 45 48 51 52 53 52 52 50 49 46 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,29) 42 1240 1 3 6 10 15 21 28 36 42 48 52 56 58 60 60 60 59 58 56 54 51 48 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,31) 45 1496 1 3 6 10 15 21 28 36 44 50 56 60 64 66 68 68 68 67 66 64 62 59 56 52 48 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(5,2) 2 3 1 1 1
(5,3) 4 7 1 2 2 1 1
(5,4) 6 14 1 3 3 3 2 1 1
(5,6) 10 42 1 4 6 7 7 5 5 3 2 1 1
(5,7) 12 66 1 4 7 9 10 9 8 6 5 3 2 1 1
(5,8) 14 99 1 4 8 11 13 13 12 10 9 6 5 3 2 1 1
(5,9) 16 143 1 4 9 13 16 17 17 15 13 11 9 6 5 3 2 1 1
(5,11) 20 273 1 4 10 16 22 25 28 27 26 23 21 17 15 11 9 6 5 3 2 1 1
(5,12) 22 364 1 4 10 17 24 29 33 34 34 31 29 25 22 18 15 11 9 6 5 3 2 1 1
(5,13) 24 476 1 4 10 18 26 33 38 41 42 40 38 34 31 26 23 18 15 11 9 6 5 3 2 1 1
(5,14) 26 612 1 4 10 19 28 37 43 48 50 50 48 44 41 36 32 27 23 18 15 11 9 6 5 3 2 1 1
(5,16) 30 969 1 4 10 20 31 43 53 61 67 70 71 68 66 60 56 50 45 38 34 27 23 18 15 11 9 6 5 3 2 1 1
(5,17) 32 1197 1 4 10 20 32 45 57 67 75 80 83 82 80 75 71 64 59 52 46 39 34 27 23 18 15 11 9 6 5 3 2 1 1
(5,18) 34 1463 1 4 10 20 33 47 61 73 83 90 95 96 95 91 87 80 75 67 61 53 47 39 34 27 23 18 15 11 9 6 5 3 2 1 1
(5,19) 36 1771 1 4 10 20 34 49 65 79 91 100 107 110 111 108 104 98 92 84 78 69 62 54 47 39 34 27 23 18 15 11 9 6 5 3 2 1 1
(5,21) 40 2530 1 4 10 20 35 52 71 89 106 119 131 138 144 144 143 138 133 124 118 108 100 90 82 71 64 54 47 39 34 27 23 18 15 11 9 6 5 3 2 1 1
(5,22) 42 2990 1 4 10 20 35 53 73 93 112 128 142 152 160 163 164 160 156 148 141 131 123 112 103 92 83 72 64 54 47 39 34 27 23 18 15 11 9 6 5 3 2 1 1
(5,23) 44 3510 1 4 10 20 35 54 75 97 118 137 153 166 176 182 185 183 180 173 166 156 148 136 127 115 105 93 84 72 64 54 47 39 34 27 23 18 15 11 9 6 5 3 2 1 1
(5,24) 46 4095 1 4 10 20 35 55 77 101 124 146 164 180 192 201 206 207 205 199 193 183 174 163 153 140 130 117 106 94 84 72 64 54 47 39 34 27 23 18 15 11 9 6 5 3 2 1 1



(p, q) δX e(X) h0h2 h4 h6 h8 . . .

(6,5) 10 42 1 4 6 7 7 5 5 3 2 1 1
(6,7) 15 132 1 5 10 14 17 16 16 14 11 9 7 5 3 2 1 1
(6,11) 25 728 1 5 14 26 39 50 59 63 64 62 59 53 47 41 34 28 23 18 13 10 7 5 3 2 1 1
(6,13) 30 1428 1 5 15 30 49 67 85 97 106 108 109 104 99 90 82 71 63 53 45 36 30 23 18 13 10 7 5 3 2 1 1
(6,17) 40 4389 1 5 15 34 61 95 131 167 200 227 248 259 266 264 260 249 237 220 204 184 167 147 131 113 98 82 70 57 47 37 30 23 18 13 10 7 5 3 2 1 1
(6,19) 45 7084 1 5 15 35 65 105 151 199 247 290 328 355 376 385 389 385 376 361 344 322 299 275 250 226 202 179 157 137 117 100 84 70 57 47 37 30 23 18 13 10 7 5 3 2 1 1
(7,2) 3 4 1 1 1 1
(7,3) 6 12 1 2 3 2 2 1 1
(7,4) 9 30 1 3 5 5 5 4 3 2 1 1
(7,5) 12 66 1 4 7 9 10 9 8 6 5 3 2 1 1
(7,6) 15 132 1 5 10 14 17 16 16 14 11 9 7 5 3 2 1 1
(7,8) 21 429 1 6 15 25 35 40 43 44 40 37 32 28 22 18 13 11 7 5 3 2 1 1
(7,9) 24 715 1 6 16 29 43 54 62 66 66 63 58 51 45 37 31 24 19 14 11 7 5 3 2 1 1
(7,10) 27 1144 1 6 17 33 52 70 84 93 97 97 92 86 77 69 58 50 40 33 25 20 14 11 7 5 3 2 1 1
(7,11) 30 1768 1 6 18 37 61 86 108 124 135 139 138 132 124 112 101 88 76 63 53 42 34 26 20 14 11 7 5 3 2 1 1
(7,12) 33 2652 1 6 19 41 70 102 133 159 178 190 194 193 184 174 159 145 127 112 95 81 66 55 43 35 26 20 14 11 7 5 3 2 1 1
(7,13) 36 3876 1 6 20 45 80 120 162 199 229 249 262 265 261 251 237 218 200 179 159 137 119 100 84 68 56 44 35 26 20 14 11 7 5 3 2 1 1
(7,15) 42 7752 1 6 21 50 95 151 216 280 341 389 429 453 468 468 462 443 423 394 367 332 302 268 238 205 179 151 129 106 88 70 58 44 35 26 20 14 11 7 5 3 2 1 1
(8,3) 7 15 1 2 3 3 2 2 1 1
(8,5) 14 99 1 4 8 11 13 13 12 10 9 6 5 3 2 1 1
(8,7) 21 429 1 6 15 25 35 40 43 44 40 37 32 28 22 18 13 11 7 5 3 2 1 1
(8,9) 28 1430 1 7 21 41 65 86 102 115 118 118 113 106 96 85 73 63 53 42 34 26 20 15 11 7 5 3 2 1 1
(8,11) 35 3978 1 7 23 51 90 135 180 220 251 272 282 282 275 262 244 223 200 177 154 132 111 92 75 61 47 37 28 21 15 11 7 5 3 2 1 1
(8,13) 42 9690 1 7 25 61 117 190 273 357 435 501 551 584 600 600 588 566 535 498 458 415 372 329 288 249 213 179 150 123 100 80 64 49 38 28 21 15 11 7 5 3 2 1 1
(9,2) 4 5 1 1 1 1 1
(9,4) 12 55 1 3 6 7 8 7 7 5 4 3 2 1 1
(9,5) 16 143 1 4 9 13 16 17 17 15 13 11 9 6 5 3 2 1 1
(9,7) 24 715 1 6 16 29 43 54 62 66 66 63 58 51 45 37 31 24 19 14 11 7 5 3 2 1 1
(9,8) 28 1430 1 7 21 41 65 86 102 115 118 118 113 106 96 85 73 63 53 42 34 26 20 15 11 7 5 3 2 1 1
(9,10) 36 4862 1 8 28 63 112 167 219 268 303 326 338 338 331 314 293 268 245 215 190 162 139 116 97 77 63 48 38 28 22 15 11 7 5 3 2 1 1
(9,11) 40 8398 1 8 29 69 129 203 282 360 428 482 520 541 547 538 519 489 456 416 376 334 295 254 219 184 155 127 104 82 66 50 39 29 22 15 11 7 5 3 2 1 1



At least, we are able to describe their asymptotic behavior for q → ∞. The
following two theorems determine the first ⌊ q

p
⌋+1 and the last q−⌈ q

p
⌉+1 of the

δX +1 = (p−1)(q−1)/2+1 Betti numbers. In particular, all the Betti numbers
for the singularities with characteristic Puiseux exponents (2, q) or (3, q) are
described.

Theorem 21 Let X be a unibranched plane singularity with Puiseux ex-
ponents (p, q) and JX its Jacobi factor. Then the even Betti numbers

h0(JX), h2(JX), . . . , h2⌊ q

p
⌋(JX) of the cohomology of JX are the same as the

first ⌊ q
p
⌋ + 1 coefficients of the power series

P :=
1

(1 − t)p−1
.

Proof. P is the Poincare series of the polynomial ring in the p − 1 variables
t1, . . . , tp−1. Let Mond be the set of monomials of degree d in this ring. For
Γ = 〈p, q〉 and d ≤ ⌊ q

p
⌋ we define the map

Φd : Mond −→ Modd(Γ)

p−1
∏

j=1

t
rj

j 7−→

〈

aj := jq −

(

∑j

i=1
ri

)

p

∣

∣

∣

∣

j = 0 . . . p− 1

〉

.

The theorem is proved when we have shown that Φd is well–defined and bijective.
Note that (aj) is a p–basis, thus the map is injective. To see that the map is
well–defined, we need to show that a semi–module ∆ with a p–basis like above
has really codimension d. From

∑p−1
i=1 ri ≤ ⌊ q

p
⌋ we see that 0 = a0 < a1 < a2 <

. . . < ap−1 and aj + q < aj+2; hence, defining for any interval I ⊆ N

Sj(I) := {n ∈ I | n = iq mod p for some i ∈ {0, 1, . . . , j}}

we find for ∆ =
⋃

(aj + pN)

[aj, aj + q[ ∩∆ = Sj([aj , aj + q[) ∪ {aj + q − kp | 0 < k ≤ rj+1}

where the union is disjoint. We compare ∆ with the semi–module Γ, which has
the p–basis (jq). Here we have

[jq, jq + q[ ∩Γ = Sj([qj, qj + q[).

Because jq ≡ aj mod p, we obviously have #Sj([aj , aj + q[) = #Sj([qj, qj+ q[).
Therefore,

# ([aj , aj + q[ ∩∆) = #([jq, jq + q[ ∩Γ) + rj+1,

and the dimension formula implies that codim∆ =
∑p−1

j=1 rj = d.

It remains to prove that the maps Φd are surjective, i.e., we need to show
that the dimension of any semi–module not in the image of any Φ0, . . . ,Φ⌊ q

p
⌋ has

codimension greater than ⌊ q
p
⌋. Let ∆ be any 0–normalized semi–module with

p–basis (aj = jq − αjp). Set r0 := 0 and rj := αj − αj−1 ≥ 0 for 0 < j ≤ p− 1.
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The semi–module ∆ lies in the image of Φd for some d ≤ ⌊ q
p
⌋ iff d =

∑p−1
j=1 rj .

Therefore, for the surjectivity of the Φd, d ≤ ⌊ q
p
⌋, it is enough to show that

dim∆ ≥ min







p−1
∑

j=1

rj ,

⌈

q

p

⌉







;

however, we will show the stronger statement

dim ∆ ≥

p−1
∑

j=1

min

{

rj ,

⌈

q

p

⌉}

.

We prove this by successively reducing the vector r = (rj) to zero, where the
statement is trivial. Let k be the least integer with rk 6= 0. We define the semi–
module ∆′ to be the one that corresponds to the vector r′ = (0, . . . , 0, rk −
1, rk+1, . . . , rp−1), i.e., ∆′ has the p–basis (a′j) with a′j = aj for j < k and
a′j = aj + p for j ≥ k. Our estimate is proven when we have shown that
dim∆′ ≥ dim ∆ with strict inequality when rk ≤ ⌈ q

p
⌉. Set Ij := [aj , aj + q[ and

I ′j := [a′j , a
′
j + q[ . Then Ij = I ′j = [jq, jq + q[ for j < k and their disjoint union

is [0, kq[ . Because ∆′ ⊂ ∆, we have #([0, kq[ \∆′) ≥ #([0, kq[ \∆) as a first
indication of dim∆′ ≥ dim ∆.

For j ≥ k we have I ′j = p+ Ij , and there is the natural injective map

Ψj : Ij ∩ ∆ −→ I ′j ∩ ∆′, n 7−→ n+ p.

Because ∆′ \ (p+ ∆) = {0, q, 2q, . . . , (k− 1)q} and #I ′j = q, we have that either
Ψj is bijective or (I ′j ∩ ∆′) \ ImΨj = {lq} for some l < k. In the later case we
get a′j < lq, in particular a′j ∈ [0, kq[ and aj = a′j − p ∈ [0, kq[ as well. It follows
that aj ∈ [0, kq[∩(∆ \ ∆′). Summarizing we have shown that either

#(I ′j ∩ ∆′) = #(Ij ∩ ∆) or

#(I ′j ∩ ∆′) = #(Ij ∩ ∆) + 1 and aj ∈ [0, kq[∩(∆ \ ∆′).

Since

dim∆ = #([0, kq[ \∆) +

p−1
∑

j=k

#(Ij \ ∆)

dim∆′ = #([0, kq[ \∆′) +

p−1
∑

j=k

#(I ′j \ ∆′),

we conclude that dim ∆′ ≥ dim∆.

Now assume that rk ≤ ⌈ q
p
⌉. Then a′k = kq − (rk − 1)p > (k − 1)q and

the interval I ′k cannot contain any of the 0, q, . . . , (k − 1)q, thus #(I ′k ∩ ∆′) =
#(Ik ∩ ∆). Since we have ak = kq − rkp ∈ [0, kq[∩(∆ \ ∆′) as well, it follows
that dim∆′ > dim∆. 2

Theorem 22 Let X be a unibranched plane singularity with Puiseux exponents
(p, q) and JX its Jacobi factor. Set n := q − ⌈ q

p
⌉. Then the even Betti numbers
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h0(JX), h2(JX), . . . , h2n(JX) of the homology of JX are the same as the first
n+ 1 coefficients of the power series

P :=
1

p−1
∏

i=1

(1 − ti)

.

Proof. P is the Poincare series of the weighted polynomial ring in the p − 1
variables t1, . . . , tp−1 where the weighted degree of ti is i. Let Mon be the set of
all monomials and Mond the monomials of weighted degree d in this ring. The
strategy of this proof is to define an obviously surjective map from Mon into
the set of 〈p〉–semi–modules, Mod(〈p〉),

Ψ : Mon −→ Mod(〈p〉),

and then show that it induces a bijection between Mond and Modd(Γ) for d ≤ n.

For a 〈p〉–semi–module ∆ we have also a notion of a p–basis. It is the unique

set {b0 = 0, b1, . . . , bp−1} such that ∆ =
⋃p−1

j=0(bj + pN). Whenever possible we
will assume that the bj are ordered by 0 = b0 < b1 < . . . < bp−1. Now the map

Ψ is defined in the following way: Let m =
∏p−1

j=1 t
rj

j be a monomial of weighted

degree d =
∑p−1

j=1 rjj. Then Ψ(m) is the unique 〈p〉–semi–module ∆ which
possesses an ordered p–basis {bj} with #([bj−1, bj ] \ ∆) = rj for j = 1 . . . r− 1,
i.e., there are rj gaps in ∆ between the basis elements bj−1 and bj . A p–basis for
such a ∆ can be constructed inductively: Having found b0 = 0, b1, . . . , bj−1 let

bj be the position of the (rj +1)–th gap in
⋃j−1

i=0 (ai +pN) after bj−1. Obviously,
Ψ is bijective. The following table illustrates this map for p = 3. The module
∆ is represented as a sequence of members of ∆, “•”, and gaps of ∆, “◦”; the
elements of the 3–basis are underlined.

wdeg Mon ∆
0 1 • • • • • • • • • •

1 t1 • ◦ • • • • • • • •

2 t21 • ◦ ◦ • • • • • • •
t2 • • ◦ • • • • • • •

3 t31 • ◦ ◦ • ◦ • • • • •
t1t2 • ◦ • • ◦ • • • • •

4 t41 • ◦ ◦ • ◦ ◦ • • • •
t21t2 • ◦ ◦ • • ◦ • • • •
t22 • • ◦ • • ◦ • • • •

Several arguments of this proof are based on a comparison of an arbitrary
〈p〉–semi–module ∆ with the 〈p〉–semi–modules ∆r := Ψ(tr1). Note that

∆r =

{

0, p, 2p, . . . ,

⌊

r

p− 1

⌋

p, r +

⌊

r

p− 1

⌋

+ 1, r +

⌊

r

p− 1

⌋

+ 2, . . .

}

,

and the conductor of ∆r is r + ⌈ r
p−1⌉. The most important case is the one for

r = n. Here one finds ∆n = pN ∪ (q + N) and the conductor is q or q − 1. The
essential comparison property of the ∆r is
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(†) Let m be a monomial of weighted degree d and ∆ = Ψ(m) be the corre-
sponding 〈p〉–semi–module, then c(∆) ≤ c(∆d).

We prove the claim (†) by induction. Assuming it holds for ∆ = Ψ(tr1

1 · · · t
r̺

̺ )

we will show that for ∆′ = Ψ(tr1

1 · · · t
r̺+1
̺ ) we have c(∆′) ≤ c(∆d+̺) as well.

(Some or all of the ri may be zero.) First we consider the modules ∆d and
∆d+̺. Let lp be the smallest p–multiple with lp > c(∆d) =: c. Then we have
the following partition of ∆d:

∆d = ∆d+̺ ∪ {c+ 1, c+ 2, . . . , c+ ̺} if c ∈ pN ⊂ ∆d

∆d = ∆d+̺ ∪ {c, c+ 1, . . . , lp− 1} ∪ {lp+ 1, lp+ 2, . . . , c+ ̺} if c+ ̺ ≥ lp

∆d = ∆d+̺ ∪ {c, c+ 1, . . . , c+ ̺− 1} else.

Therefore, we have

c(∆d+̺) =

{

c(∆d) + ̺ for [c(∆d), c(∆d) + ̺] ∩ pN = ∅

c(∆d) + ̺+ 1 else.

The claim (†) is proved when we have shown that

c(∆′) ≤

{

c(∆) + ̺ for [c(∆), c(∆) + ̺] ∩ pN = ∅

c(∆) + ̺+ 1 else,

because on the one hand if c(∆) < c(∆d) then c(∆′) ≤ c(∆) + ̺ ≤ c(∆d+̺) and
on the other hand if c(∆) = c(∆d) then c(∆′) ≤ c(∆d+̺) is obvious from the
above.

Let {bj} be an ordered p–basis of ∆. We know for the ordered p–basis of ∆′

that b′j = bj for j < ̺ and b′j > bj for j ≥ ̺. By the definition of ∆′, ∆ and ∆′

differ only by one element, an additional gap in ∆ between the (̺−1)–th and ̺–
th element of the p–basis {b′j} of ∆′ — the last gap in ∆′ at all. By the definition
of b̺ this must be b̺, i.e., ∆ = ∆′ ∪ {b̺}. In particular, c(∆′) = b̺ + 1. To get
an estimate for c(∆) from below, consider ∆ in the interval between b̺ − ̺− 1
and b̺

[b̺ −̺−1, b̺[ \∆ = [b̺ −̺−1, b̺[ \

p−1
⋃

j=0

(bj +pN) = [b̺−̺−1, b̺[ \

̺−1
⋃

j=0

(bj +pN).

Because the interval [b̺ − ̺ − 1, b̺[ are ̺ + 1 consecutive numbers, the above
set is nonempty, thus there is a gap in ∆ greater or equal to b̺ − ̺− 1. Hence,
c(∆) ≥ b̺ − ̺, and c(∆′) ≤ c(∆) + ̺+ 1. If this inequality is not strict, we find

[c(∆), c(∆) + ̺[ = [b̺ − ̺, b̺[⊂

̺−1
⋃

j=0

(bj + pN).

This can only happen if [c(∆), c(∆)+̺[∩(bj +pN) 6= ∅ for all j = 0, . . . , ̺−1;
in particular, with j = 0 we find the claimed estimate c(∆′) ≤ c(∆) + ̺ for
[c(∆), c(∆) + ̺[∩pN = ∅, and the statement (†) is proved.

The statement (†) has two immediate consequences. If d ≤ n then c(∆) ≤
c(∆d) ≤ c(∆n) ≤ q and thus the 〈p〉–semi–module is trivially a Γ–semi–module
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as well. Further, the dimension of any Γ–semi–module ∆ with c(∆) ≤ q is

dim∆ =

p−1
∑

j=0

g∆(bj) =

p−1
∑

j=0

p−1
∑

i=j+1

ri =

p−1
∑

j=1

rjj.

Hence, if m is the unique monomial with Ψ(m) = ∆ then dim ∆ = wdegm.
This shows that the image of Mond under Ψ lies in Modd(Γ). Therefore, we
obtain injective maps

Ψd : Mond −→ Modd(Γ).

The proof of the Theorem is finished when we have shown that they are surjec-
tive as well.

For the surjectivity of Ψd with d ≤ n, we must show that for any ∆ ∈
Modd(Γ) the unique monomial m with Ψ(m) = ∆ has weighted degree d. By
the above argument this is clear if c(∆) ≤ q. Thus to prove the surjectivity of
the Ψ0, . . . ,Ψn, it is enough to show that for any ∆ ∈ Mod(Γ) with dim ∆ ≤ n
we have c(∆) ≤ q. We will prove that c(∆) > q implies dim∆ > n by an
inductive process like above. We close the last gap in the semi–module ∆ to
obtain the semi–module ∆′, thereby reducing the conductor. We will show that
dim∆′ ≤ dim ∆ and dim∆ > n if c(∆′) ≤ q < c(∆).

If {bj} is an ordered p–basis of ∆, then its conductor is c := bp−1−p+1. The
semi–module ∆′ has an unordered p–basis {b′j} with b′j = bj for j < p − 1 and
b′p−1 = bp−1−p. The conductor of ∆′ is c′ := max{bp−2−p+1, bp−1−2p+1}; in
particular c−p ≤ c′ < c. Since bp−1 ≥ c and b′p−1 ≥ c′, we have [bp−1, bp−1+q[⊂
∆,∆′ and [b′p−1, b

′
p−1+q[⊂ ∆′, and the dimensions of ∆ and ∆′ can be computed

very similarly as

dim∆ =

p−1
∑

j=0

#(Ij \ ∆) resp. dim∆ =

p−1
∑

j=0

#(Ij \ ∆′) with Ij = [bj , bj + q[ .

Due to ∆′ = ∆ ∪ {b′p−1}, we get

dim∆ = dim∆′ + #J with J :=
{

j ∈ {0, . . . , p− 1} | b′p−1 ∈ Ij
}

,

showing dim ∆ ≥ dim∆′.

Now, let us assume additionally that c′ ≤ q < c. We need to show that
dim∆ > n. We claim that

(††) #J ≥ #([c′, q] \ pN).

Knowing this we can easily finish the proof. Choose l ∈ N such that c(∆l) =
c′, then dim ∆l ≤ dim∆′ by (†). Further, ∆n\∆l = [c′, q[ \pN; hence, dim∆n =
dim∆l + #([c′, q[ \pN). Putting this together, we get

dim ∆ = dim ∆′ + #J ≥ dim∆l + #([c′, q] \ pN) = dim∆n + 1 = n+ 1.

Finally, it remains to prove (††). For each of the k ∈ [c′, b′p−1[ find the index
jk with bjk

≡ k mod p. Then jk ∈ J is equivalent to b′p−1 ∈ [bjk
, bjk

+ q[ or to
bjk

> b′p−1 − q. Since b′p−1 6∈ ∆, we find b′p−1 − q 6∈ ∆ and b′p−1 − q 6∈ ∆′ as well.
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Therefore, jk ∈ J is in fact equivalent to bjk
≥ b′p−1 − q. This implies that only

b′p−1 − q of the b′p−1 − c′ integers in [c′, b′p−1[ can fail to have a corresponding
j index that lies in J ; in particular, #J ≥ q − c′, nearly proving (††). If we
actually have #J = q − c′ then b′p−1 − q of the bjk

must be less than b′p−1 − q;
thus we must have bj = j for j = 0 . . . b′p−1 − q − 1. Let l ∈ [c′, b′p−1[ be
the integer with l ≡ b0 = 0 mod p. If l were greater than q, we would have
bb′

p−1
−l = b′p−1 − l ≡ b′p−1 mod p, contradicting the definition of a p–basis.

Therefore, l ≤ q and [c′, q] ∩ pN 6= ∅, proving (††). 2

We turn to the singularities with characteristic Puiseux exponents (4, 2q, s).
With the help of a computer program one obtains the following list of Betti
numbers:
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(4, 2q, s) δX e(X) h0h2h4 h6 h8 . . .

(4,6,7) 8 23 1 3 4 4 4 3 2 1 1
(4,6,9) 9 27 1 3 4 4 4 4 3 2 1 1
(4,6,11) 10 31 1 3 4 4 4 4 4 3 2 1 1
(4,6,13) 11 35 1 3 4 4 4 4 4 4 3 2 1 1
(4,10,11) 14 76 1 3 6 8 9 9 9 8 7 5 4 3 2 1 1
(4,10,13) 15 85 1 3 6 8 9 9 9 9 8 7 5 4 3 2 1 1
(4,10,15) 16 94 1 3 6 8 9 9 9 9 9 8 7 5 4 3 2 1 1
(4,10,17) 17 103 1 3 6 8 9 9 9 9 9 9 8 7 5 4 3 2 1 1
(4,14,15) 20 178 1 3 6 10 13 15 16 16 16 15 14 12 10 8 7 5 4 3 2 1 1
(4,14,17) 21 194 1 3 6 10 13 15 16 16 16 16 15 14 12 10 8 7 5 4 3 2 1 1
(4,14,19) 22 210 1 3 6 10 13 15 16 16 16 16 16 15 14 12 10 8 7 5 4 3 2 1 1
(4,14,21) 23 226 1 3 6 10 13 15 16 16 16 16 16 16 15 14 12 10 8 7 5 4 3 2 1 1
(4,18,19) 26 345 1 3 6 10 15 19 22 24 25 25 25 24 23 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,18,21) 27 370 1 3 6 10 15 19 22 24 25 25 25 25 24 23 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,18,23) 28 395 1 3 6 10 15 19 22 24 25 25 25 25 25 24 23 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,18,25) 29 420 1 3 6 10 15 19 22 24 25 25 25 25 25 25 24 23 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,22,23) 32 593 1 3 6 10 15 21 26 30 33 35 36 36 36 35 34 32 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,22,25) 33 629 1 3 6 10 15 21 26 30 33 35 36 36 36 36 35 34 32 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,22,27) 34 665 1 3 6 10 15 21 26 30 33 35 36 36 36 36 36 35 34 32 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,22,29) 35 701 1 3 6 10 15 21 26 30 33 35 36 36 36 36 36 36 35 34 32 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,26,27) 38 938 1 3 6 10 15 21 28 34 39 43 46 48 49 49 49 48 47 45 43 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,26,29) 39 987 1 3 6 10 15 21 28 34 39 43 46 48 49 49 49 49 48 47 45 43 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,26,31) 40 1036 1 3 6 10 15 21 28 34 39 43 46 48 49 49 49 49 49 48 47 45 43 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,26,33) 41 1085 1 3 6 10 15 21 28 34 39 43 46 48 49 49 49 49 49 49 48 47 45 43 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,30,31) 44 1396 1 3 6 10 15 21 28 36 43 49 54 58 61 63 64 64 64 63 62 60 58 55 52 48 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,30,33) 45 1460 1 3 6 10 15 21 28 36 43 49 54 58 61 63 64 64 64 64 63 62 60 58 55 52 48 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,30,35) 46 1524 1 3 6 10 15 21 28 36 43 49 54 58 61 63 64 64 64 64 64 63 62 60 58 55 52 48 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,30,37) 47 1588 1 3 6 10 15 21 28 36 43 49 54 58 61 63 64 64 64 64 64 64 63 62 60 58 55 52 48 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,34,35) 50 1983 1 3 6 10 15 21 28 36 45 53 60 66 71 75 78 80 81 81 81 80 79 77 75 72 69 65 61 56 52 48 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,34,37) 51 2064 1 3 6 10 15 21 28 36 45 53 60 66 71 75 78 80 81 81 81 81 80 79 77 75 72 69 65 61 56 52 48 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,34,39) 52 2145 1 3 6 10 15 21 28 36 45 53 60 66 71 75 78 80 81 81 81 81 81 80 79 77 75 72 69 65 61 56 52 48 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1
(4,34,41) 53 2226 1 3 6 10 15 21 28 36 45 53 60 66 71 75 78 80 81 81 81 81 81 81 80 79 77 75 72 69 65 61 56 52 48 44 40 37 33 30 27 24 21 19 16 14 12 10 8 7 5 4 3 2 1 1



The table leads to the following

Conjecture 23 For a unibranched plane singularity with characteristic
Puiseux exponents (4, 2q, s) the δX + 1 = 2q + (s − 1)/2 even Betti numbers
of the cohomology of its Jacobi factor are as follows:

1. the first (q + 1)/2 even Betti numbers h0(JX), h2(JX), . . . , hq−1(JX) are
the same as the first (q + 1)/2 coefficients of the power series (1 − t)−3.

2. the last (3q + 1)/2 even Betti numbers h2δx(JX), h2δx−2(JX), . . .,
hs+q−2(JX) are the same as the first (3q + 1)/2 coefficients of the power

series
∏3

j=1(1 − tj)−1.

3. h2(q−1)(JX) = h2q(JX) = . . . = hs+1(JX) = (q + 1)2/4.

4. For l = 1, . . . , (q − 3)/2 : h2(q−1−l)(JX) = h2(q−l)(JX) − l.

5. For l = 1, . . . , (q − 5)/2 : hs+1+2l(JX) = hs−1+2l(JX) −
⌈

l
2

⌉

.

Part 1 and Part 2 of the conjecture are proven in Theorems 24 and 25. They
describe 2q+1 of the 2q+(s−1)/2 Betti numbers. Unfortunately, we are not able
to prove the remaining parts of the Conjecture. However, the conjecture implies
that the sequence of Betti numbers of JX′ for a singularity X ′ with Puiseux
exponents (4, 2q, s+ 2) can be obtained from the sequence for a singularity X
with Puiseux exponents (4, 2q, s) by inserting (q+ 1)2/4 = e(JX′)− e(JX) after
h2(q−1)(JX). We prove this partially by showing in Theorems 26 and 27 that the
first (s− q)/2+2 and the last (q+ s)/2+1 numbers of the above two sequences
are the same, thus determining all or at least s+ 3 of the Betti numbers.

Theorem 24 Let X be a unibranched plane singularity with Puiseux ex-
ponents (4, 2q, s) and JX its Jacobi factor. Then the even Betti numbers
h0(JX), h2(JX), . . . , h2⌊ q

2
⌋(JX) of the cohomology of JX are the same as the

first ⌊ q
2⌋ + 1 coefficients of the power series

P :=
1

(1 − t)3
.

Proof. The proof is similar to the proof of Theorem 21. For d ≤ ⌊ q
2⌋ we construct

a bijection between the monomials of degree d of the polynomial ring in the vari-
ables t1, t2, t3 and the admissible semi–modules of Γ = 〈4, γ1 = 2q, γ2 = γ1 + s〉
of codimension d

Φd : Mond −→ Modd(Γ)

tr1

1 t
r2

2 t
r3

3 7−→

〈

a00 = 0, a01 = γ1 − 4r1, a10 = γ2 − 4(r1 + r2),
a11 = γ2 + γ1 − 4(r1 + r2 + r3)

〉

.

The maps Φd are well–defined if we can show that a semi–module ∆ with a 2×2–
basis like the one on the right hand side is admissible and of correct dimension.
Admissibility is obvious as a01+s = a10+4r2 ∈ ∆. We compute its codimension
by comparing it with the Γ–semi–module Γ itself. Due to r1 + r2 + r3 < q/2,
we have the following ordering

a00 = 0 < a01 ≤ γ1 < s < a10 ≤ a01 + s ≤ γ2 < a11.
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As a10, a11 > s, we find n = min(({s, a10, a11} + 4N) ∩ [γ1,∞[) = s, and the
dimension of ∆ can be computed as

dim∆ = #([0, γ1[ \∆) + #([a01, a01 + s[ \∆) + #([a10,∞[ \∆).

The semi–module Γ is Φ0(1); hence, an analogous formula holds for it as well.
Because of the above ordering we get the following partitions

[0, γ1[ \Γ = [0, γ1[ \∆ ∪{a01 + 4k | 0 ≤ k < r1}

−4r1 + ([γ1, γ1 + s[ \Γ) = [a01, a01 + s[ \∆∪{a10 + 4k | 0 ≤ k < r2}

−4(r1 + r2) + ([γ2,∞[ \Γ) = [a10,∞[ \∆ ∪{a11 + 4k | 0 ≤ k < r3}.

Therefore, codim∆ = dimΓ − dim∆ = r1 + r2 + r3 = d as desired.

The maps Φd are clearly injective, thus it remains to show that they are
surjective, too. We must prove that the modules which are not in the image
of some Φ0, . . . ,Φ⌊ q

2
⌋ have codimension greater than ⌊ q

2⌋. Since there are two
types of admissible modules, this falls naturally into two parts.

Let us assume that we have an admissible module ∆ with a01 +s ∈ ∆. Since
a01 +s ≡ a10 mod 4, we get a01 +s ≥ a10. By the relation between the elements
of a 2 × 2–basis — see the paragraph below Definition 6 — we find r1, r2, r3
with

a00 = 0, a01 = γ1−4r1, a10 = γ2−4(r1+r2), a11 = γ2+γ1−4(r1+r2+r3).

We claim the following rough estimate

(⋆) codim∆ ≥ r1 + min{r2, q + 1 − r3} + min
{

r3,
⌈

q
2

⌉}

.

This implies in particular that if r1 + r2 + r3 > ⌊ q
2⌋ then codim∆ > ⌊ q

2⌋,
i.e., any admissible semi–module ∆ with a01 + s ∈ ∆ that is not in the image
of some Φ0, . . . ,Φ⌊ q

2
⌋ has a codimension greater than ⌊ q

2⌋.

We prove the claim (⋆) by modifying Γ into ∆ in three steps. The first step
consists of the remark that the module ∆′ = Φr1

(tr1

1 ) was described above in
detail. In particular, we found codim∆′ = r1 and for its 2 × 2–basis (a′ij) the
ordering

a′00 = 0 < a′01 = a01 < γ1 < s < a′10 = a01 + s = a01 +n′ ≤ γ2 < a′11 = a′10 + γ1.

In the second step we consider the semi–module ∆̃ with 2× 2–basis ã00 = 0,
ã01 = a01, ã10 = a′10 − 4r2 = a10, and ã11 = a′11 − 4r2 = a10 + γ1, i.e., ∆̃ is
obtained from ∆′ by closing the 2r2 gaps a′10 − 4k, a′11 − 4k for k = 1, . . . , r2.
We write the dimension formulas as

dim∆′ = (g∆′(0) + g∆′(a01) − g∆′(γ1)) + g∆′(a′10) − g∆′(a01 + n′)

dim ∆̃ = (g∆̃(0) + g∆̃(a01) − g∆̃(γ1)) + g∆̃(ã10) − g∆̃(a01 + ñ).

Since 0 < a01 ≤ γ1 the closing of any 2r2 gaps in ∆′ decreases the term in the
brackets for ∆′ to the terms for ∆̃ by at least 2r2. Next note that a01 +n′ ≥ a′10
by the definition of n′, thus the only gaps greater than or equal to a01 + n′ in
∆′ are those which are a′11 mod 4 and analogously for ∆̃. Since ñ ≤ n′ = s,
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we can estimate the length of the intervals [a01 + ñ, ã11[ and [a01 + n′, a′11[ by
ã11 − (a01 + ñ) ≥ a′11 − 4r2 − (a01 + s) = γ1 − 4r2 and a′11 − (a01 + s) = γ1;
hence, g∆̃(a01 + ñ) ≥ g∆′(a01 + n′)−min{r2, ⌊

γ1

4 ⌋}. Summing up, we get as an
intermediate result

dim∆′ ≥ dim ∆̃ + r2 + max
{

0, r2 −
⌊q

2

⌋}

+ g∆′(a10) − g∆̃(ã10).

The only gaps in ∆′ after a′10 are the ⌊ q
2⌋ gaps which are equal to a′11 mod 4.

∆̃ has also ⌊ q
2⌋ gaps equal to ã11 mod 4 after ã10, but may have in addition

some that are equal to a01 mod 4 if ã10 < a01−4. In this case set r̃2 = ⌈ s
4⌉ then

a′10−4r̃2 ∈ ]a01−4, a01[ and thus a01−4(r2− r̃2), a01−4(r2− r̃2−1), . . . , a01−4
are the addition gaps. Therefore, g∆̃(ã10)− g∆′(a10) = max{0, r2 −⌈ s

4⌉} and in

the whole codim ∆̃ ≥ codim∆′ + r2 = r1 + r2.

In the final step we compare the codimensions of ∆̃ and ∆ itself. The
only difference in the 2 × 2–bases of ∆̃ and ∆ is that a11 = ã11 − 4r3, i.e.,
we are closing the r3 gaps ã11 − 4, . . . , ã11 − 4r3 = a11 in ∆̃. By the same
argument as before, the term g∆̃(0) + g∆̃(a01) − g∆̃(γ1) is at least r3 greater
than g∆(0) + g∆(a01) − g∆(γ1). Due to a10 ≤ a01 + ñ, all closed gaps equal to
or after a01 + ñ are closed gaps after a10 as well, thus using n ≤ ñ

g∆̃(a10) − g∆̃(a01 + ñ) ≥ g∆(a10) − g∆(a01 + ñ) ≥ g∆(a10) − g∆(a01 + n).

However, for the first time there may be gaps in ∆ after a11, and we obtain as
an intermediate result only

codim∆ ≥ r1 + r2 + r3 − g∆(a11).

We can count the gaps after a11 precisely. There max{0, r3 − ⌈ q
2⌉} equal to a10

modulo 4 and max{0, r3 + r2 − ⌈γ2

4 ⌉} equal to a01 modulo 4. Using ⌈γ2

4 ⌉ =

⌈ 2q+s
4 ⌉ ≥ q + 1, we obtain (⋆) by

codim∆ ≥ r1 + (r2 − max{0, r2 + r3 − (q + 1)}) +
(

r3 − max
{

0, r3 −
⌈

q
2

⌉})

= r1 + min{r2, q + 1 − r3} + min
{

r3,
⌈

q
2

⌉}

.

The second type of admissible modules are those with s ∈ ∆. Let us assume
in addition that a10 > a01+s for a semi–module ∆, otherwise we have a01+s ∈ ∆
and ∆ is admissible of first type as well. We show that for all these semi–modules
codim∆ ≥ ⌈ q

2⌉ by comparing ∆ with the following simple semi–module

∆ = 〈a00 = 0, a01 = γ1, a10 = γ2, a11 = s = γ2 + γ1 − 4q〉 .

We find n = s and dim∆ = g∆(0) + g∆(s) = gΓ(0) − q + ⌊ q
2⌋ = dimΓ − ⌈ q

2⌉;

hence codim ∆ = ⌈ q
2⌉. We will modify ∆ in three steps into ∆ and show that

the codimension does not decrease during these modifications.

First let ∆′ = 〈0, a01, a10, a11〉. If α01 is chosen such that a01 = γ1 − 4α01,
then we are closing the α01 gaps a01, a01 + 4, . . . , γ1 − 4 in ∆. Hence, g∆′(k) =
g∆(k) for k ≥ γ1. Further n = n′ = s and g∆′(0) = g∆(0) − α01, g∆′(a01) =
g∆(a01) + 2α01, g∆′(a01 + s) = α01, as well as g∆(a01 + s) = 0. Plugging this
into the dimension formulas yields dim∆ = dim∆′.
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Next we modify ∆′ into ∆̃ = 〈0, a01, a10, a11〉. Setting α10 = (a10 − a10)/4,
this means that we are closing the α10 gaps a10, a10 + 4, . . . , a10 − 4 of ∆′. We
have the ordering a10 > a01 + s > s = a11 thus ñ = s and g∆̃(k) = g∆′(k)−α10

for k ≤ a10. In addition g∆̃(a10) = g∆′(a10) = 0, because a10 resp. a10 are the

greatest elements of the 2×2–bases of ∆̃ resp. ∆′. From the dimension formula
we obtain codim∆̃ = codim∆′ + α10 ≥ ⌈ q

2⌉.

Finally, the semi–module ∆ is obtained from ∆̃ by closing the (s−a11)/4 =: β
gaps a11, a11 − 4, . . . , s − 4 = a11 − 4. By definition n ≤ ñ = s and because no
gaps after s were closed, we obtain g∆(a01 + n) ≥ g∆(a01 + ñ) = g∆̃(a01 + ñ).
As usual, g∆̃(0)+ g∆̃(a01)− g∆̃(γ1) is at least β greater than the corresponding
term for ∆. From the semi–module property a11 ≥ a10 − γ1 we conclude a11 >
a01 + s− γ1 > a01. Thus the only gaps after a11 resp. a11 are those which are
equal to a10 modulo 4, and we find g∆(a11) = g∆̃(a11) + β. Summing up, we

obtain codim∆ ≥ codim ∆̃ ≥ ⌈ q
2⌉ again. 2

Theorem 25 Let X be a unibranched plane singularity with Puiseux exponents
(4, 2q, s) and JX its Jacobi factor. Set k := (3q − 1)/2. Then the even Betti
numbers h0(JX), h2(JX), . . . , h2k(JX) of the homology of JX are the same as
the first k + 1 coefficients of the power series

P :=
1

(1 − t)(1 − t2)(1 − t3)
.

Proof. The beginning of this proof is the same as the one of the proof of
Theorem 22 with p replaced by 4 and q replaced by γ1 = 2q. Of all the modules
∆r = ψ(tr1) the following two will be of special importance at the end:

∆k = 4N ∪ (γ1 + N) with c(∆k) = γ1 and

∆k−1 = 4N ∪ (γ1 − 2 + N) with c(∆k−1) = γ1 − 2.

The last step of the proof, where one proves that the maps Ψd : Mond →
Modd(Γ) are surjective has to be modified due to the different dimension for-
mula. As before we show that c(∆) > γ1 implies dim∆ > k by an inductive
process. Let ∆′ be the Γ–semi–module obtained from ∆ by closing the last gap.
If {b0 = 0, b1, b2, b3} is an ordered 4–basis of ∆ then its conductor is c := b3− 3.
Because c > γ1, b3 is the element a10 or a11 is a 2 × 2–basis of ∆. The module
∆′ has the unordered 4–basis {b′j} with b′0 = 0, b′1 = b1, b

′
2 = b2, and b′3 = b3−4,

and its conductor is c′ = max{b2 − 3, b3 − 3}. The dimension formula says

dim∆ = (g∆(0) + g∆(a01) − g∆(γ1)) + g∆(a10) + g∆(a11) − g∆(a01 + n)

and analogously for ∆′. Since we are closing one gap in ∆ greater than γ1, the
term in the brackets decreases by one for ∆′. Because b3 = a10 or b3 = a11,
g∆(a11) resp. g∆(a10) decreases by one or stays the same. By definition b3 > c
and b′3 ≥ c′, hence g∆(b3) = g∆′(b′3) = 0. The number n may stay the same or
be reduced by at most 4. If n′ = n, then obviously g∆(a01 + n) decreases by
one or stays the same. If n′ < n, then b′3 must be the smallest odd number in
∆′. Hence, the smallest odd number in ∆ is b′3 + 2 = b3 − 2 = b2 = n. Due
to a01 ≥ 2 and γ1 + 2N ⊂ ∆,∆′, we find 0 ≤ g∆(a01 + n) ≤ g∆(b3) = 0 and
0 ≤ g∆′(a01 + n′) ≤ g∆′(b′3) = 0, showing g∆(a01 + n) = g∆′(a01 + n′) = 0.
Summing up the changes, we obtain dim∆ ≥ dim∆′.
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Now, let us assume additionally that c′ ≤ γ1 < c, i.e., we are closing the
last gap, γ1 + 1 or γ1 + 3, greater than γ1. Choose the index J such that
a1J = b3. We first consider the case where the last gap is γ1 + 3. Here we have
a1,1−J ≤ γ1 + 1, thus g∆(a1,1−J) decreases by one during this process. The
above discussion yields dim∆ > dim∆′. Due to c(∆′) = γ1, we get dim∆ >
dim∆′ ≥ dim ∆k = k by (†).

Finally, we consider the other case, where the last gap of ∆ is γ1+1. Because
we always have n ≥ γ1 + 1 and a01 + n ≥ γ1 + 3, we get g∆(a01 + n) =
g∆′(a01 + n′) = 0. Therefore, by the above discussion dim∆ > dim∆′ and if
c(∆′) = γ1, we can finish the proof like above. However, c(∆′) may as well
be γ1 − 2. Here a1,1−J < γ1 < b′3 thus g∆′(a1,1−J) = g∆(a1,1−J ) − 1 and the
above discussion yields dim∆ > dim∆′ + 1. Using c(∆k−1) = γ1 − 2 and (†),
we obtain dim∆ > dim∆′ + 1 ≥ dim∆k−1 + 1 = k. 2

Theorem 26 Let X and X ′ be unibranched plane singularities with Puiseux
exponents (4, 2q, s) resp. (4, 2q, s′) with s′ ≥ s and JX resp. JX′ their Jacobi
factors. Set k := (s − q)/2 + 1. Then the first k + 1 even Betti numbers
of the cohomology of JX and JX′ are the same, i.e., h2d(JX) = h2d(JX′) for
d = 0, . . . , k.

Proof. Let Γ and Γ′ be the semi–groups corresponding to the singularities. By
induction we may assume s′ = s + 2. We are going to show that the following
map is well–defined and bijective for d ≤ k

Φd : Modd(Γ) −→ Modd(Γ′)

∆ = 〈0, a01, a11, a11〉 7−→ ∆′ = 〈0, a01, a
′
10 = a10 + 2, a′11 = a11 + 2〉

If the 2 × 2–basis of ∆ is written as a00 = 0, a01 = γ1 − 4α01, a10 = γ2 − 4α10,
a11 = γ2 + γ1 − 4α11 then ∆′ is the Γ′–semi–module whose 2 × 2–basis has the
same αij . ∆′ is admissible, because s = a11 + 4l ∈ ∆ or a01 + s = a10 + 4l ∈ ∆
implies s′ = a′11 +4l ∈ ∆′ or a01 +s′ = a′10 +4l ∈ ∆′. The injectivity of the map
is trivial, its well–definedness and surjectivity will follow from the statement

(>) Let ∆ be an admissible Γ–semi–module and J the index with a1J =
min{a10, a11} then

a) codim∆ ≤ k =⇒ a10, a11 > γ1 or (a1J , a1,1−J) = (γ1 − 1, 2γ1 − 1)
b) codim∆ ≤ k − 1 =⇒ a10, a11 > γ1 + 2 or (a1J , a1,1−J) = (γ1 + 1, 2γ1 + 1)

Assume we have proven (>). For the well–definedness of Φd we need to show
that codim∆′ = codim∆ or equivalently dim∆′ = dim∆ + 1. If a10, a11 > γ1,
then we obtain ∆′ from ∆ by inserting a gap and nongap after γ1, more precisely
∆′ = (∆ ∩ [0, γ1]) ∪ (2 + (∆ ∩ [γ1,∞[)). Here n = min{s, a10, a11} and n′ =
min{s′, a′10, a

′
11}. In the dimension formula for ∆′ the term g∆′(0) + g∆′(a01)−

g∆′(γ1) is by one greater than the corresponding term for ∆ because of the extra
gap after γ1. In contrast g∆′(a10) + g∆′(a11) − g∆′(a01 + n′) is the same as the
term for ∆, because everything is shifted by 2. Hence, dim∆′ = dim∆ + 1 as
desired.

If (a1J , a1,1−J) = (γ1 − 1, 2γ1 − 1) then (a′1J , a
′
1,1−J) = (γ1 + 1, 2γ1 + 1),

n = γ1 + 3, and n′ = γ1 + 1. Obviously, #([a01, γ1[ \∆) = #([a01, γ1[ \∆′) + ε
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where ε = 0 if a01 = γ1 and ε = 1 otherwise. Further, g∆(0) = g∆′(0) + 1,
g∆(a10) = g∆′(a′10), and g∆(a11) = g∆′(a′11). Thus the interesting terms are
g∆(a01 + n) = g∆(2γ1 − 4α01 + 3) and g∆′(a01 + n′) = g∆′(2γ1 − 4α01 + 1). As
shifting by 2 gives a bijection between [2γ1−4α01+3,∞[ and [2γ1−4α01+5,∞[ ,
which respects membership in ∆ resp. ∆′, we have g∆′(a01 + n′) = g∆(a01 +
n)+ #([2γ1 − 4α01 + 1, 2γ1− 4α01 + 5[ \∆′). From a01, a

′
1J ≤ γ1 + 1 we see that

the only possible gap in in the above interval must be equal to a′1,1−J = 2γ1 +1
modulo 4, i.e., it can only be 2γ1−4α01 +1. For this to be a gap, we must have
α01 > 0, hence g∆′(a01 +n′) = g∆(a01 +n)+ ε. This shows that we always have
dim∆′ = dim ∆ + 1.

The surjectivity follows now, too. Let ∆′ ∈ Modd(Γ′) with d ≤ k. As
k = k′ − 1 we may apply b) to ∆′ to obtain a′10, a

′
11 > γ1 + 2 or (a′10, a

′
11) =

(γ1 + 1, 2γ1 + 1). Thus ∆′ is the image of ∆ = 〈0, a01, a
′
10 − 2, a′11 − 2〉 under

Φd — that ∆ has the correct dimension was shown above.

We prove the statement (>) by first considering two special types of semi–
modules and then compare the other modules with them. Define

∆10
α := 〈0, a01 = γ1, a10 = γ2 − 4α, a11 = γ2 + γ1 − 4α〉 for

⌈

q
2

⌉

≤ α ≤
⌊

γ2

4

⌋

∆11
α := 〈0, a01 = γ1, a10 = γ2 − 4α, a11 = s− 4α〉 for 0 ≤ α ≤

⌊

s
4

⌋

the definition is such that in ∆1J
α the minimum of a10 and a11 is a1J and

a1,1−J = a1J + γ1. Their dimension is computed easily: Using n ≥ a1J ⇒
n+ γ1 ≥ a1,1−J ≥ c(∆1J

α ), we find g∆1J
α

(γ1 + n) = 0

dim∆10
α = g∆10

α
(0) + g∆10

α
(a10) = dim Γ − 2α+

⌊

q
2

⌋

=⇒ codim∆10
α = 2α−

⌊

q
2

⌋

dim∆11
α = g∆11

α
(0) + g∆11

α
(a11) = dim Γ − (2α+ q) +

⌊

q
2

⌋

=⇒ codim∆11
α = 2α+

⌈

q
2

⌉

We claim that for these two types of semi–modules a1J ≤ γ1 − 1 implies
codim∆1J

α ≥ k. If s ≡ 1 mod 4, then a1J ≤ γ1−1 is equivalent to α ≥ (s+3)/4
for ∆10

α and α ≥ (s− 2q + 1)/4 for ∆11
α and their codimension is bounded by

codim∆1J
α ≥ min

{

s+3
2 −

⌊

q
2

⌋

, s−2q+1
2 +

⌈

q
2

⌉}

= s+1
2 −

⌊

q
2

⌋

= k.

An analogous consideration for s ≡ 3 mod 4 yields the same result. Obviously,
a1J ≤ γ1 + 1 implies codim∆1J

α ≥ k− 1 in the same way. Finally, note that the
codimension is strictly increasing in α.

Now (>) follows from this and the following comparison statement, which
we prove in a moment:

(>>) Let ∆ be an admissible Γ–semi–module with 2 × 2–basis (aij). Let
J be the index with a1J = min{a10, a11}. Assume that a1J ≤ γ1 + 1. Let
∆1J be the unique special semi–module like above with the same a1J . Then
codim∆ ≥ codim∆1J with strict inequality if a1J + γ1 > a1,1−J .

For example, we show (> a). Let ∆ be a semi–module as in (>>) with
a1J ≤ γ1 − 1 then ∆1J = 〈0, γ1, a1J , a1J + γ1〉. Now (>>) implies codim∆ ≥
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codim∆1J ≥ k and equality holds only for a1,1−J = a1J + γ1 and a1J = γ1 − 1.
This is the statement (> a).

To prove the claim (>>) we modify ∆1J in two steps into ∆ and watch for the
dimension changes. The 2× 2–basis of ∆1J is by definition (0, γ1; a1J , a1J + γ1)
— up to the oder of the last two elements. Let α01 := (γ1 − a01)/4 and define
∆̃ = ∆1J ∪{a01, . . . , γ1 − 4}, i.e., ∆̃ has a 2× 2–basis (0, a01; a1J , a1J + γ1). We
compare its dimension

dim ∆̃ = g∆̃(0) + #([a01, γ1[ \∆̃) + g∆̃(a1J ) − g∆̃(a01 + ñ)

with the dimension g∆1J (0) + g∆1J (a1J) of ∆1J . Since we are closing α01 gaps,
we find g∆̃(0) = g∆1J (0)−α01 and g∆̃(a1J ) ≤ g∆1J (a1J ). In the interval [a01, γ1[

there are α01 gaps in ∆̃ equal to a1J + γ1 modulo 4. The only other possible
gaps in this interval have to be equal to a1J modulo 4. Let l be one of them.
Then l + γ1 ≡ a1J + γ1 mod 4 and a01 < l < min{γ1, a10} implies a01 + γ1 <
l+γ1 < min{a1J +γ1, 2γ1}; hence, l+γ1 is also a gap in ∆̃. Now we have either
ñ = γ1 +1 or ñ is the smallest number greater than γ1 and equal to a1J mod 4.
In the first case we have trivially a01 + ñ ≤ γ1 + l; in the second case a01 + ñ
is the smallest number greater than a01 + γ1 and equal to a1J + γ1 mod 4, and
we get again a01 + ñ ≤ l + γ1. Therefore, we found for any of the gaps in
([a01, γ1[ \∆) ∩ (a1J + 4Z) a gap that contributes to g∆̃(a01 + ñ). Summing up

the changes, we obtain dim ∆̃ ≤ dim∆1J .

We obtain ∆ from ∆̃ by closing the η := (a1J + γ1 − a1,1−J )/4 gaps
{a1,1−J , a1,1−J + 4, . . . , a1J + γ1 − 4}. Due to our assumption a1J < a1,1−J ,
the computation of the dimension of ∆ is easy. Obviously, g∆(0) = g∆̃(0) − η,

g∆(a1J ) = g∆̃(a1J ) − η, and #([a01, γ1[ \∆) ≤ #([a01, γ1[ \∆̃). Because n ≤ ñ,
we find g∆(a01 + n) ≥ g∆(a01 + ñ) ≥ g∆̃(a01 + ñ) − η. Finally, g∆(a1,1−J)
maybe nonzero this time, but there can only be gaps equal to a01 modulo 4
after a1,1−J , thus g∆(a1,1−J) ≤ η. In fact, g∆(a1,1−J) ≤ max{η − 1, 0}, using

a01 < a1J + γ1. Summation yields dim∆ + min{η, 1} ≤ dim ∆̃ ≤ dim∆1J . 2

Theorem 27 Let X and X ′ be unibranched plane singularities with Puiseux
exponents (4, 2q, s) resp. (4, 2q, s′) with s′ ≥ s and JX resp. JX′ their Jacobi
factors. Set k := (q + s)/2. Then the first k + 1 even Betti numbers of the
homology of JX and JX′ are the same, i.e., h2d(JX) = h2d(JX′) for d = 0, . . . , k.

Proof. We will prove that Modd(Γ) = Modd(Γ
′) for d = 0, . . . , k, where Γ and

Γ′ are the semi–groups of the singularities X resp. X ′. By induction we may
restrict to the case s′ = s+ 2. We claim the following:

(‡)
a) For ∆ ∈ Modd(Γ) with d ≤ k : c(∆) ≤ s+ 1.

b) For ∆ ∈ Modd(Γ) with d ≤ k − 1 : c(∆) ≤ s− 1.

The obvious consequence of a) is that any such Γ–semi–module ∆ is a Γ′–
semi–module as well. In fact, its dimension as a Γ–semi–module and Γ′–semi–
module must be the same. Namely, the terms of the dimension formula depend
only on the the 4–basis of ∆ as a 〈4〉–semi–module — with the exception of the
computation of n. However, if n differs for ∆ as a Γ–semi–module and Γ′–semi–
module then n must be s for ∆ as a Γ–semi–module and even bigger for ∆ as a
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Γ′–semi–module; hence, a01 + s ≥ 2 + s > c(∆) shows that g∆(a01 + n) = 0 in
both cases. Therefore, we have an inclusion Modd(Γ) ⊆ Modd(Γ

′).
To prove equality, apply b) to a ∆ ∈ Modd(Γ

′). We find c(∆) ≤ s′−1 = s+1,
thus ∆ is also a Γ–semi–module, and we have just shown that it has the same
dimension d as a Γ–semi–module.

The claim (‡) is proven by comparing ∆ with simpler semi–modules. For c ∈
N\(1+Γ) define ∆c as the Γ–semi–module ∆c = Γ∪(c+N), then c(∆c) = c. The
dimension of ∆s−1 = Γ+sN = 〈0, γ1, s+ 2, s〉 =

〈

0, γ1, γ2 − 4
⌊

q
2

⌋

, γ2 + γ1 − 4q
〉

is

dim∆s−1 = g∆s−1
(0) = gΓ(0) − q −

⌊q

2

⌋

=
γ2 + γ1 − 3

2
− q −

⌊ q

2

⌋

= k − 1.

Clearly, the dimensions of ∆s+1 = ∆s−1 \ {s} and ∆s+3 = ∆s−1 \ {s, s+ 2} are
k resp. k + 1.

Now (‡) follows from the obvious fact that dim ∆c is monotone increasing
and

(‡‡) for ∆ ∈ Mod(Γ) with c := c(∆) ≥ s we have dim ∆ ≥ dim∆c.

For example, assume c ≥ s + 2. Since the even number s+ 1 lies in Γ ⊂ ∆
we find c ≥ s+ 3, thus dim∆ ≥ dim∆c ≥ dim∆s+3 = k + 1.

It remains to prove (‡‡) by modifying ∆c in two steps into ∆. Let {b0 =
0, b1, b2, b3} be an ordered 4–basis of ∆c as a 〈4〉–semi–module. By the definition
of ∆c we find b1 = γ1, c = b3 − 3, and b2 = γ2 or b2 = b3 − 2 . Let {e0 =
0, e1, e2, e3} be a 4–basis of ∆ which we order such that ei ≡ bi mod 4. Since
the greatest element of the 4–basis of ∆ as well as of ∆′ is c + 3, one gets
e3 = b3 = c+ 3 > s.

Setting β := (e2 − b2)/4, we define ∆̃ to be the semi–module obtained by

closing the β gaps e2, e2 + 4, . . . , e2 + 4(β − 1) = b2 − 4 in ∆c. Let β̂ be the
number of these gaps that are less than γ1. The dimensions of ∆c and ∆̃ are

dim∆c = g∆c
(0) + g∆c

(b2) − g∆c
(γ1 + s),

dim ∆̃ = g∆̃(0) + g∆̃(e2) − g∆̃(γ1 + ñ),

making use of c ≥ s⇒ nc = s for ∆c. Clearly, g∆̃(0) = g∆c
(0)− β. Between e2

and b2 in ∆̃ there are β gaps equal to b3 mod 4 and max{0, β̂ − 1} gaps equal

to b1 = γ1 mod 4, i.e., g∆̃(e2) = g∆c
(b2) + β + max{0, β̂− 1}. For the last term

g∆̃(γ1 + ñ) we observe the following: If ñ = s then g∆̃(γ1 + ñ) ≤ g∆c
(γ1 + s). If

ñ < s then e2 ≤ ñ and from the semi–module property e3 ≤ e2 + γ1 ≤ ñ+ γ1;
hence, s+ γ1 > ñ+ γ1 ≥ c and g∆c

(γ1 + s) = g∆̃(γ1 + ñ) = 0. Summing up the

above terms we get dim ∆̃ ≥ dim∆c + max{0, β̂ − 1}.

We obtain the semi–module ∆ from ∆̃ by closing the η := (e1 − γ1)/4 gaps
e1, e1 + 4, . . . , γ1 − 4. Again we need to compute the dimension

dim∆ = g∆(0) + #([e1, γ1[ \∆) + g∆(e2) − g∆(e1 + n).
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Obviously, g∆(0) = g∆̃(0) − η. In the interval [e1, γ1[ there are η gaps equal to

b3 modulo 4 and max{0, η− β̂} equal to e2 modulo 4. The number of gaps after

e2 decreases from ∆̃ to ∆ by less than max{0, β̂ − 1}. Therefore,

dim∆ ≥ dim ∆̃ − max{0, β̂ − 1} + max{0, η − β̂} − g∆(e1 + n) + g∆̃(γ1 + ñ)

≥ dim∆c + max{0, η − β̂} − g∆(e1 + n) + g∆̃(γ1 + ñ).

Note that n = ñ, since ∆ and ∆̃ have the same odd numbers. Further, g∆(γ1 +
n) = g∆̃(γ1+n) because ∆ and ∆̃ differ only in numbers less than γ1. Therefore,
we need to count the gaps of ∆ in the interval [e1 + n, γ1 + n[ . The gaps in
this interval are b3 modulo 4, because ∆ being admissible implies b2 ≤ e1 + s
and b2 ≤ e1 + n using n = min(({s} ∪ (b2 + 4N)) ∩ [γ1,∞[). In particular,
g∆(e1 + n) ≤ g∆̃(γ1 + n) + η and the estimate dim∆ ≥ dim∆c is obvious

for β̂ = 0 ⇔ b2 > γ1. However, for any of the min{η, β̂} numbers e2 + 4l ∈
[e1, γ1[∩∆ we find e2 + γ1 + 4l ∈ [e1 + γ1, 2γ1[∩∆ ⊂ [e1 + γ1, γ1 + n[∩∆. Since

e2+γ1+4l ≡ b3 mod 4 at least min{η, β̂} of the positions [e1+n, γ1+n[∩(b3+4Z)

are not gaps. This implies g∆(e1 + n) ≤ g∆̃(γ1 + ñ) + η − min{η, β̂} showing

dim ∆̃ ≥ dim∆c even in this case. 2
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