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Abstract

A cuspidal curve is a curve whose singularities are all cusps, i.e. uni-
branched singularities. The article describes computations which lead to
the following conjecture:

A rational cuspidal plane curve of degree greater or equal to six has
at most three cusps. The curves with precisely three cusps occur in three
series.

Assuming the Flenner–Zaidenberg rigidity conjecture the above con-
jecture is verified up to degree 20.

Let C ⊂ P2 be a plane curve. The curve is called cuspidal if all its singulari-
ties are cusps, i.e., unibranched singularities. It is known that rational cuspidal
plane curves underlie severe restrictions. For example Tono proved [T]:

Theorem 1 A rational cuspidal plane curve has at most eight cusps.

It is not known whether this bound is sharp. In fact, one of the main
purposes of this article is to provide evidence for the following conjecture:

Conjecture 2 A rational cuspidal plane curve has at most three cusps — with
the exception of a rational plane quintic with four cusps.

We will describe the topological type of a cusp singularity by its multiplicity
sequence, m = (m0,m1, . . . ,mn): Let

V := Xn
πn−→ Xn−1 −→ · · · −→ X1

π1−→ X0 = (C2, 0)
∪ ∪ ∪ ∪
Cn −→ Cn−1 −→ · · · −→ C1 −→ C0 = (C, p)

be the minimal embedded resolution of the curve germ (C, p) such that the
total inverse image D := π−1

n ◦ · · · ◦ π−1
1 (C) of the curve is a normal crossing

divisor. Then the multiplicity sequence consists of the multiplicities mi of the
strict transforms Ci of the curve germs. For example a simple cusp has the
multiplicity sequence (2, 1, 1). To shorten the notation, sequences of the same
multiplicity in the multiplicity sequence are indicated by indices, e.g., (7, 23, 12)
means (7, 2, 2, 2, 1, 1). (Here we follow the notation of [dJP] and [MS89], i.e., the
number of 1s at the end of the multiplicity sequence equals the smallest number
greater than one in the multiplicity sequence. [FZ96, FZ00] add an additional
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1.) The ending sequence of 1s is usually dropped from the notation, because it
can be recovered from the rest.

In this article we are hunting for cuspidal curves with the maximal number
of cusps. The known rational cuspidal plane curves with at least three cusps
are:

1. ([MS89, 4] or [Na]) For rational cuspidal plane curves of degree 5 the fol-
lowing combinations of cusps are possible: [(3), (22), (2)], [(22), (22), (22)]
and [(23), (2), (2), (2)].

2. [FZ96, 3.5] For any d ≥ 4, n ≥ m ≥ 1 with n+m = d−2 there is a rational
cuspidal plane curve C of degree d with the three cusps [(d−2), (2n), (2m)].

3. [FZ00, 1.1] For any d = 2k + 3, k ≥ 1, there is a rational cuspidal plane
curve C of degree d with the three cusps [(d− 3, 2k), (3k), (2)].

4. [F, 4] For any d = 3k + 4, k ≥ 1, there is a rational cuspidal plane curve
C of degree d with the three cusps [(d− 4, 3k), (4k, 22), (2)].

All the above curves are unique up to projective equivalence. Not only is
the existence of these curves known, but explicit constructions of them as well.
Flenner, Zaidenberg, and Fenske described how to successively obtain the above
curves in 2), 3), and 4) by plane Cremona transformations starting from three
curves given by equations.

Flenner and Zaidenberg proved more: Assuming that a rational cuspidal
plane curve C of degree d ≥ 6 has at least three cusps and a point of multiplicity
d − 2 or d − 3, then it is one of the curves in 2) or 3) above. Fenske showed
the analogous statement with d − 4 for the curves in 4) under the additional
assumption of γ2 = 0. This condition is explained below and for example implied
by the (unproven) Flenner–Zaidenberg rigidity conjecture.

The purpose of this article is to explain how to obtain by computer compu-
tations the following Theorem:

Theorem 3 If C ⊆ P2 is a rational cuspidal plane curve of degree d ≤ 20 with
at least three cusps and γ2 = 0, then it is contained in the above list.

One is immediately lead to conjecture the following:

Conjecture 4 Any rational cuspidal plane curve with at least three cusps is
contained in the above list.

Finally, we explain the condition γ2 = 0. Let (V,D) be the minimal embed-
ded resolution of C ⊂ P2, which was described above locally. Here D is a normal
crossing divisor endowed with its reduced structure. The deformations of the
pair (V,D) correspond to equisingular deformations of the curve C ⊂ P2 [FZ96,
1.6–2.1]. Let ΘV 〈D〉 denote the logarithmic tangent bundle. The infinitesimal
automorphism group of the pair (V,D) is H0(V,ΘV 〈D〉), the infinitesimal de-
formations are H1(V,ΘV 〈D〉), and the obstruction space for these deformations
is H2(V,ΘV 〈D〉).

We will assume throughout the article that the curve C has at least three
cusps. Then X := P2 \ C is of log–general type [W]. By Iitaka’s Theorem
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[I, Theorem 6] the automorphism group of a log–general surface is finite, thus
H0(V,ΘV 〈D〉) = 0. The pair (V,D) or the curve C is called rigid resp. unob-
structed if h1(V,ΘV 〈D〉) = 0 resp. h2(V,ΘV 〈D〉) = 0. Flenner and Zaidenberg
computed the Euler–characteristic of the logarithmic tangent bundle as

χ(ΘV 〈D〉) = −h1(V,ΘV 〈D〉) + h2(V,ΘV 〈D〉) = KV (KV + D),

where KV is the canonical divisor of V . They conjectured in an even more
general setting that (D,V ) is always rigid and unobstructed. In our special
situation Tono showed [T, 4.1/5]

γ2 := h0(2(KV + D)) = KV (KV + D),

in particular γ2 = χ(ΘV 〈D〉) ≥ 0 and unobstructedness implies rigidity.

How to obtain the Theorem 3
The basic idea is to produce enough combinatorial restrictions on the mul-

tiplicity sequences of the cusps on a rational plane curve such that only the
curves in the list remain as possible curves. These restrictions will be checked
by a computer program [P].

The first step of the program is to produce all possible multiplicity sequences
of cusps which might occur on a curve of degree d. By Proposition [FZ96, 1.2] a
sequence of positive integers m = (m0,m1, . . . ,mn) is the multiplicity sequence
of a cusp p if and only if for each i = 1, . . . , n there is a k ≥ 0 such that

mi−1 = mi + . . . + mi+k, where mi = mi+1 = . . . = mi+k−1

and the number of ending 1s equals the smallest mi > 1.

The resulting curve has to be rational, hence it has to pass the following
test:

• δ–Test : The δ–invariant of a cusp p is δp =
∑n

i=0 mi(mi − 1)/2. On
a rational curve the sum of the δ–invariants of the cusps equals the the
arithmetical genus of C, which is (d− 1)(d− 2)/2. (See for example [OZ,
Lemma 4].)

In particular, for any cusp we have m0 ≤ d− 1. In fact, m0 ≤ d− 2 because
we want to have more than one singularity on C.

By Bezout’s Theorem the tangent line TpC intersects C in p with multiplicity
at most d, i.e., m0 + m1 ≤ d. However, if m0 + m1 = d then TpC intersects C
only in p and by the Lin–Zaidenberg Theorem [LZ] the affine curve C \ {p} ⊂
P2 \ TpC = C2 is biregular to a curve of the form xl − yk = 0 for some k, l ∈ N
with gcd(l, k) = 1. In this case C has at most two cusps, thus in our case we
must have m0 + m1 < d.

After producing the list of singularities which might occur on a rational
cuspidal curve with at least three cusps, the program starts to search for possible
combinations of singularities. First, it searches by a back–tracking algorithm
for combinations of three up to eight cusps, such that the sum of their δ–
invariants equals the arithmetical genus; thereby implying that the resulting
curve is rational. On these combinations the following tests are applied, which
were already used by Flenner and Zaidenberg:
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• γ2–Test : We examine only curves with γ2 = 0. γ2 can be computed as

γ2 = 3(3− d) +
∑

p∈Sing C

(ηp + ωp − 2),

where ηp is defined for a cusp p with multiplicity sequence m by

ηp =
n∑

i=0

(mi − 1)

and ωp is the number of subdivisional blow–ups in the minimal resolution
of the cusp p [FZ96, 2.5]. A blow–up is called subdivisional if the blow–up
is performed at an intersection point of exceptional divisors of previous
blow–ups; otherwise it is called sprouting. The exception is the first blow–
up which is subdivisional by definition. (Note that we follow the definition
of [MS89], where the ωp is one bigger than that of [FZ96, FZ00].) In terms
of the multiplicity sequence the number ωp can be computed as ([FZ96,
2.3] or [MS89, Lemma 1])

ωp =
n∑

i=1

(⌈
mi−1

mi

⌉
− 1

)
+ 1.

• Bezout–Test: Each line in the plane intersects the curve in at most d points
— counting multiplicities. In particular, for a line through the cusps p, q,
the first elements of their multiplicity sequences mp and mq must satisfy

mp
0 + mq

0 ≤ d.

.

• Hurwitz–Test: Let p1, . . . , pr denote the cusps of the curve and mpi their
multiplicity sequences. The projection from pi is a d−mpi

0 covering C ∼=
P1 → P1, to which we apply the Riemann–Hurwitz formula. This yields

2(d−mpi

0 )− 2 =
∑
q∈C

(νq − 1),

where νq is the ramification index of the covering in q ∈ C. For the test
we use the estimates νpi ≥ mpi

1 and νpj ≥ m
pj

0 for j 6= i, thus
r∑

j=1

(mpj

0 − 1) + mpi

0 + mpi

1 ≤ 2d− 2.

These tests sum up the method of Flenner and Zaidenberg for the classi-
fication of rational cuspidal plane curves with at least three cusps and among
them a cusp of multiplicity d − 2 or d − 3. They are also enough to prove our
Theorem for d ∈ {6, 8, 10, 14, 16}, i.e., the program described above produced
only the known combinations of singularities in these cases. For the other de-
grees some additional combinations appeared. The easiest way to reduce the
number of possible combinations further is to apply two propositions of Fenske.
He observed that if the curve has a cusp whose multiplicity sequence starts like
[bd/2c, bd/2c, bd/2c, . . .] for odd d resp. [d/2, d/2, d/2, . . .] for even d, then it can
be transformed into another rational cuspidal plane curve by a plane Cremona
transformation. More precisely, his results are:
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1. [F, 4.1.13, 4.1.14] A rational cuspidal curve C of degree d = 2k + 1 and
cusp type [(k, k, k, m1),m2, . . . ,mr] can be taken by a Cremona transfor-
mation to a rational cuspidal curve C ′ of degree d′ = k + 2 and cusp type
[m1,m2, . . . ,mr]. Further, the curve C ′ has a regular point q whose tan-
gent line cuts C ′ with multiplicity 2 in q and with multiplicity k in the
cusp of type m1.

Rational cuspidal curves of degree d = 2k + 1 and cusp type
[(k, k, k, k,m1),m2, . . . ,mr] with r ≥ 3 and m2, . . . ,mr non–trivial do
not exist.

2. [F, 4.1.15] A rational cuspidal curve C of degree d = 2k and cusp type
[(k, k, k, m1),m2, . . . ,mr] can be taken by a Cremona transformation to a
rational cuspidal curve C ′ of degree d′ = k and cusp type [m1,m2, . . . ,mr].
Further, the tangent line to C ′ in the cusp of type m1 intersects C ′ only
in this cusp (with multiplicity k).

This excludes the following number of cases:

d 7 9 11 12 13 15 17 19
number of cases 3 5 9 2 16 24 6 52

This deals with most previously unknown combinations. The remaining ones
are listed in the following table, together with the name of a test, which shows
that it cannot exist. We will describe these tests below.

d cusp type Test
13 [(8, 46), (2), (2)] Γ–Test with l = 3 for (8, 46)
17 [(75, 5, 22), X3] Γ–Test with l = 2 for (75, 5, 22)
18 [(84, 6, 27), (2), (2)] Γ–Test with l = 2 for (84, 6, 27)
18 [(84, 6, 26), X3] Γ–Test with l = 2 for (84, 6, 26)
18 [(84, 6, 25), X4] Γ–Test with l = 2 for (84, 6, 25)
18 [(84, 6, 24), . . .] Γ–Test with l = 2 for (84, 6, 24)
18 [(84, 6, 23), . . .] Γ–Test with l = 2 for (84, 6, 23)
18 [(84, 43, 3), X3] Double Covering / Spectrum–Test
18 [(84, 43, 24), (2), (2)] Double Covering / Spectrum–Test
18 [(84, 43, 23), X3] Double Covering / Spectrum–Test
18 [(84, 43, 22), X4] Double Covering / Spectrum–Test
19 [(12, 65, 33, 2), (2), (2)] Spectrum–Test
19 [(12, 65, 33), X3] Spectrum–Test
19 [(12, 65, 4, 24), (2), (2)] Γ–Test with l = 3 for (12, 65, 4, 24)
19 [(12, 65, 4, 23), X3] Γ–Test with l = 3 for (12, 65, 4, 23)
19 [(12, 65, 4, 22), X4] Γ–Test with l = 3 for (12, 65, 4, 22)
20 [(94, 5, 4), (5), (2)] Γ–Test with l = 2 for (94, 5, 4)
20 [(86), X3] Spectrum–Test

Here, X3 and X4 stand for one of the following combinations of cusps sin-
gularities:

X3 ∈ {[(22), (2)], [(2), (2), (2)]}
X4 ∈ {[(3), (2)], [(23), (2)], [(22), (22)], [(22), (2), (2)], [(2), (2), (2), (2)]}

The proof of the following simple test is based on Bezout’s Theorem:
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Proposition 5 (Γ–Test [FLMN, 3.4 Prop. 2]) Let Γi be the semi–group
rings of the r cusps pi on a cuspidal plane curve of degree d. Then for all
l < d and ni ∈ N0 with

∑
ni ≥ ld the following inequalities hold

r∑
i=1

#(Γi ∩ [0, ni]) ≥ (l + 1)(l + 2)/2.

For the combinations in the table where this method is indicated it was
enough to apply this proposition to the worst singularity alone to see that it
cannot occur on a curve of that particular degree.

Another known method to exclude some combinations of singularities is
through the cyclic covering method ([MS89, Sec. 3] or [Y1, Y2]). It works as
follows: Assume that a plane curve C with a certain combination of singularities
exists. One constructs a surface S as the minimal resolution of a cyclic covering
of P2 branched along the curve C and then shows that this surface has impossible
invariants. Even using the algorithm of Némethi to construct the resolution of
the covering [Ne, §5] this is a very laborious method and cannot deal with all
the remaining cases.

The most powerful method seems to be provided by the semi–continuity of
the spectrum ([FLMN, 3.6] or [K, 8.9]). If (C, pi) are the singularities of a plane
curve C of degree d, then the multisingularity

∑
i(C, pi) is a deformation of the

plane germ (xd + yd, 0). Therefore, the union of the spectra of the singularities
(C, pi) satisfies the semi–continuity property compared with the spectrum of
(xd + yd, 0) for any interval (α, α + 1]. The spectrum of a plane cusp can be
computed by purely combinatorial means using Saito’s formula [S]. The author
implemented this formula into Singular [GPS] as part of the library cusp.lib
which extends the built–in library gmssing.lib [P]. With the help of this
library such checks can be easily done.
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