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Abstract

We study projective varieties whose image of Gauss map has dimension

less or equal to four and which are smooth outside the hyperplane at

infinity. We describe their geometric structure, and show in particular

that they are uniruled by linear spaces which are larger than a priori

expected.
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Let X ⊂ PN be an irreducible projective variety of dimension n. Its Gauss
map is the rational map

γ : X −− → G(n,N), x 7−→ TxX,

which assigns to every smooth point of X its projective tangent space as a point
of the Grassmannian of n–planes in PN . The variety X is called developable if
the dimension of the image of the Gauss map — the Gauss rank r of X — is
less than n.

In this article we wish to study smooth affine varieties X ⊂ CN , which are
developable. However, to describe their geometric structure it will be necessary
to consider their behavior at infinity. Therefore, we view X as a projective
variety in PN which is smooth outside the hyperplane at infinity H∞. We will
call such a variety affinely smooth.

The fundamental result about developable varieties is that a general fiber of
the Gauss map is a linear space of dimension d = n− r. X is singular along a
hypersurface of a Gauss fiber F , the focal hypersurface of F . The closure of the
union of all these focal hypersurfaces is the focal variety Xf of X .

The affine smoothness of X forces the focal hypersurfaces to be the inter-
section of the Gauss fiber and the hyperplane at infinity, in particular the focal
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variety lies in H∞. For Gauss rank 1 Hartman and Nirenberg proved the fol-
lowing theorem which was reproven and extended in various geometric settings
by several authors [HN, A, NP, O].

Theorem. An affinely smooth developable variety of Gauss rank 1 is a cone
over a smooth curve whose vertex lies in the hyperplane at infinity.

Akivis and Goldberg proved that an affinely smooth developable variety
whose second fundamental form has a regular pencil of quadrics with distinct
eigenvalues is always a cone [AG3]. In contrast to this, Bourgain and Wu worked
out an example of Gauss rank 2 which is not a cone [W]. Later, Akivis and Gold-
berg showed that this example is projectively equivalent to an earlier example
of Sacksteder [AG1, S]. Vitter as well as Dajczer and Gromoll proved that an
affinely smooth developable variety of Gauss rank 2 is a union of (n− 1)–planes
if it is not a cone [DG, V]. This was refined in [P1] to the following statement.

Theorem. Let X ⊂ PN be an affinely smooth developable variety of dimen-
sion n and Gauss rank 2 which is not a cone. Then there exists a unique curve
C in the hyperplane at infinity such that X is the union of a one–dimensional
family of (n − 1)–planes that contain the (n − 2)–th osculating planes of the
curve C.

Vitter also introduced the following concept: Let F be a general Gauss fiber
and V its intersection with the hyperplane at infinity H∞. Then the closure of
the union of the linear Gauss fibers which intersect H∞ in V is the Gauss fiber
cone with vertex V . The (n − 1)–planes in the above theorem are in fact the
Gauss fiber cones. Wu and Zheng proved the existence of nontrivial Gauss fiber
cones for r = 3, 4 [WZ].

Theorem. Let X be an affinely smooth developable variety of dimension n and
Gauss rank r less or equal to four. Then X has nontrivial Gauss fiber cones,
i.e., they are of dimension greater than d = n− r.

A priori these Gauss fiber cones are only cones with a (d − 1)–dimensional
vertex. Here we want to show that very often these Gauss fiber cones are linear
spaces. Wu and Zheng gave also a criterion for this, but it applies in only a few
cases [WZ, Theorem 2]. From our structure theorems we obtain in particular
the following generalization of the theorem of Vitter and Dajczer–Gromoll.

Theorem. Let X ⊂ PN be an affinely smooth developable variety of dimen-
sion n and Gauss rank less or equal to four which is not a cone. Then X is a
union of (d+ 1)–planes, where d = n− r.

Unfortunately, the above mentioned method of Wu and Zheng for construct-
ing a counter example cannot be modified to provide also a counter example to
this theorem for r ≥ 5, since it only produces quadrics which are necessarily
uniruled by large linear subspaces. However, analyzing the 7–dimensional ex-
ample X ⊂ P8 for Gauss rank r = 5, one sees that the appearing (d+ 1)–planes
are not the union of Gauss fibers which indicates that they are artifacts of X
being a quadric and a general affinely smooth developable variety X for r ≥ 5
will not have them.

The main purpose of this article is to describe the structure of affinely smooth
developable varieties of Gauss rank 3 and 4. We need to recall three definitions:
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The dual variety X∗ of a developable variety with Gauss fiber dimension d
is degenerate if its dimension is less than the expected one, N − 1 − d.

At a general point of x ∈ X there exists a linear subspace A of nilpotent
matrices of the endomorphisms of the tangent space TxX modulo the linear
Gauss fiber Fx through x. We call A ⊂ End(TxX/Fx) the fiber movement
system at infinity. Its invariants, l = max{rankA | A ∈ A}, the rank of a
general matrix, and b = dim

∑
A∈A ImA, the dimension of the span of all images

of A ∈ A, were already used to show that the focal variety Xf has dimension
d+ l − 1 ≤ n− 2 and Gauss rank b [P1, Theorem 3].

A variety X ⊂ P
N of dimension n and Gauss rank r is a twisted (n − 1)–

plane of type (k1, . . . , kr) ∈ Nr with
∑
k̺ = n − r if it can be constructed in

the following way: There exist r curves C̺ ⊂ PN and a correspondence between
them, i.e., a curve C ⊆ C1×. . .×Cr which projects surjectively onto each factor,
such that X is the union of the one–dimensional family of (n − 1)–planes that
are the span of the k̺–th osculating spaces to the curves C̺ at corresponding
points. Hereby, we use that the zeroth osculating space is the point itself and
the first the tangent line.

Any variety that is the union of a one–dimensional family of codimension
one planes is a twisted plane of some type. Furthermore, the focal variety of a
twisted plane of type (k1, . . . , kr) is a twisted plane of type (k1 − 1, . . . , kr − 1)
over the same curves, where the possibly appearing negative numbers and the
corresponding directing curves have to be left out.

With this definition the affinely smooth developable varieties of Gauss rank 2
which are not cones are twisted (n− 1)–planes of type (0, n− 2) where the last
curve lies in H∞.

Finally, we can state our structure theorem for Gauss rank 3. An analogous
one for Gauss rank 4 can be found in Section 3.

Theorem. Let X ⊂ PN be an affinely smooth developable variety of Gauss
rank 3 which is not a cone. With the fiber movement system A belonging to a
general point of X, we define the following invariants of X:

a = dimA

l = max{rankA | A ∈ A} = rank of general matrix of A.

According to the values of these invariants, we have the following geometric
descriptions of X:

l = 1, a = 1 : The focal variety Xf of X is the (n− 4)–th osculating scroll of a
unique curve C ⊂ H∞. X is the union of the one–dimensional family of
Gauss fiber cones that are (n − 1)–dimensional cones whose vertices are
the (n− 3)–th osculating spaces to the curve C.

If X has a degenerated dual variety, then X is a twisted (n− 1)–plane of
type (0, 0, n− 3) where the last directing curve lies in H∞.

l = 1, a = 2 : X is a twisted (n − 1)–plane of type (0, k2, k3) with k2, k3 ≥ 1
where the last two directing curves lie in H∞. Its Gauss fiber cones are
the (n− 1)–planes.
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l = 2 : The focal variety of X has dimension n−2 and Gauss rank 2. Further, it
has an asymptotic (n−3)–plane in each tangent space. The variety X itself
is the union of the two–dimensional family G of the (n − 2)-dimensional
linear Gauss fiber cones, each of which contains an asymptotic plane of
Xf .

X can also be seen as the union of a one–dimensional family of Gauss
rank 1 varieties. To be precise, let Y be an integral manifold of the asymp-
totic distribution on Xf and G′ be the one-dimensional subfamily of G
which contains the asymptotic (n − 3)–planes of Xf along Y . Define the
variety Z ⊆ X to be the union of the (n − 2)–planes of G′. Then Z has
dimension n− 1 and Gauss rank 1, and its Gauss fibers are the family G′.

If a = 1, then dimX = 4, otherwise dimX ≥ 5.

A direct computation shows that the descriptions in the above Theorem can
also be read as ways how to construct a variety of the corresponding type if the
occurring objects are chosen general enough. However, while the focal variety of
the constructed variety will lie in H∞, additional singularities — even outside
H∞ — may occur. Further, if in the l = 2 case the asymptotic submanifolds of
Xf , which is supposed to become the focal variety of X , are linear, additional
technical conditions must be imposed on the family G.

1 The Setup

The structure theorems will be proven with the help of Cartan’s moving frame
method, for an introduction see the books [AG2, L]. We will use the notations
of [P1], which we will recall briefly.

LetX ⊂ PN be an irreducible variety which is smooth outside the hyperplane
at infinity H∞ ⊂ PN . Denote by n the dimension of X and by d the dimension
of a general Gauss fiber. We adapt the frame such that

{e0} is a general point of X,

{e0, . . . , ed} is the linear Gauss fiber F of X through {e0},

{e0, . . . , en} is the tangent space Te0
X of X in {e0},

{e1, . . . , eN} is the hyperplane at infinity H∞,

{e1, . . . , ed} is the Gauss fiber cone vertex.

Here we use the curly brackets to indicate the linear span of the enclosed
elements. Using the index ranges 1 ≤ δ, ε ≤ d, d + 1 ≤ i, j ≤ n, and
n+ 1 ≤ µ, ν ≤ N , the infinitesimal movement of the frame is given by

de0 = ω0e0+ ωδeδ + ωiei

deδ = ωε
δeε + ωi

δei

dei = ωδ
i eδ + ωj

i ej + ωµ
i eµ

deµ = ωδ
µeδ + ωi

µei + ων
µeν .

Note that the Gauss fiber cone vertex {e1, . . . , ed} is fixed if deδ = 0 modulo
{e1, . . . , ed}, i.e., if ωi

δ = 0 for all δ, i. This distribution is integrable, and an
integral manifold is a Gauss fiber cone.
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By differentiating ωµ = ωµ
δ = 0 and using Cartan’s lemma, one finds func-

tions ai
δj , q

µ
ij such that

ωi
δ = ai

δjω
j and ωµ

i = qµ
ijω

j .

Let Aδ = (ai
δj)

i
j , A = {Aδ}, Q

µ = (qµ
ij)ij , and Q = {Qµ}. These invariantly

defined linear subspaces, A and Q, of the endomorphisms of Te0
X/F resp. of

bilinear forms on Te0
X/F are called the fiber movement system (at infinity) resp.

the (nondegenerated part of) the second fundamental form of X in {e0}. Due to
our assumption that X is smooth outside H∞, the matrices A ∈ A are nilpotent.
Furthermore, the matrices Q and QA for A ∈ A, Q ∈ Q are symmetric. This
holds for any developable variety and follows from the symmetry of the second
fundamental form along the Gauss fiber. Such linear systems A,Q were studied
by Wu and Zheng [WZ, Proposition 2 and 3]. Their results were refined to the
following classification in [P1, Proposition 2].

Proposition. Let A be a nontrivial linear system of endomorphisms of Cr

and Q a linear system of symmetric bilinear forms of Cr with

1. every A ∈ A is nilpotent,

2. the bilinear form Q( · , A( · )) is symmetric for every A ∈ A and Q ∈ Q,

3. SingQ = {v ∈ Cr | Q(v,Cr) = 0 ∀Q ∈ Q} = 0.

Let l be the rank of a general matrix of A. Then there exists a basis of Cr such
that A is contained in the following linear systems of matrices

r \ l 1 2 3

3




0 0 s
0 0 ∗
0 0 0








0 s ∗
0 0 s
0 0 0





4





0 0 0 s
0 0 0 ∗
0 0 0 ∗
0 0 0 0









0 0 s ∗
0 0 ∗ s
0 0 0 0
0 0 0 0









0 s t ∗
0 0 0 s
0 0 0 u
0 0 0 0





†)





0 s t ∗
0 0 s+ ∗ t
0 0 0 s
0 0 0 0





†) If the system Q contains a matrix of full rank, then t = u, otherwise t = 0.

The linear system A always contains the matrix with s = 1 and all other
entries set to zero.

In particular, the linear system A has a nontrivial common kernel.

The systems Q which belong to the above systems A have also been com-
puted in [WZ] or [P1] and will be recalled when needed.

Before we treat the different cases separately, we will show that if l ≥ 2,
dimA = 1, and X is not a cone, then dimX = r+ 1. We adapt the frame such
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that rankA1 = l and Aε = 0 for 2 ≤ ε ≤ d. Then we differentiate ωi
ε = 0 to

obtain
0 = dωi

ε = −ωi
1 ∧ ω

1
ε .

Since there are l ≥ 2 linear independent 1–forms ωi
1, this implies ω1

ε = 0 and
deε = 0 mod {eε}. Therefore, {eε} is a fixed linear space and X — as the union
of the linear spaces {e1, eε} — is a cone over it. Thus if X is not a cone, we
must have d = 1 and dimX = r + 1.

2 The Proof for Gauss Rank 3

Now we treat the different cases — according to the invariants of the linear
system A at a general point — separately.

Case l = 1, a = 1. We adapt the frame such that

A1 =




0 0 1
0 0 0
0 0 0



 , Qn+1 =




0 0 1
0 qn+1

1 qn+1
2

1 qn+1
2 qn+1

3



 , Qµ =




0 0 0
0 qµ

1 qµ
2

0 qµ
2 qµ

3



 ,

and Aε = 0, where 2 ≤ ε ≤ d, n + 2 ≤ µ ≤ N . In particular, we have
ωn−2

ε = ωn−1
1 = ωn

1 = 0 and ωn−2
1 = ωn. We differentiate these equalities to

obtain some useful relations:

0 = dωn−2
ε = −ωn−2

1 ∧ ω1
ε = −ωn ∧ ω1

ε ⇒ ω1
ε = f1ω

n

0 = dωn−1
1 = −ωn−1

n−2 ∧ ωn−2
1 = ωn ∧ ωn−1

n−2 ⇒ ωn−1
n−2 = f2ω

n

0 = dωn
1 = −ωn

n−2 ∧ ω
n−2
1 = ωn ∧ ωn

n−2 ⇒ ωn
n−2 = f3ω

n

0 = d(ωn−2
1 − ωn) = −ωn−2

1 ∧ ω1
1 − ωn−2

n−2 ∧ ωn−2
1 + ωn ∧ ω0 + ωn

i ∧ ωi

= ωn−1 ∧ (−ωn
n−1) + ωn ∧ (. . .) ⇒ ωn

n−1 = f4ω
n−1 + f5ω

n

for some suitable functions f1, . . . , f5.

Now we can examine the focal variety Xf of X . Its dimension is n− 3 since
from

de1 = ωε
1eε + ωn−2

1 en−2 mod {e1}

and the fact that Xf contains the linear space {e1, . . . , ed}, we see that the
tangent space of Xf at the general point e1 is {e1, . . . , en−2}. The second
fundamental form of Xf is

IIXf ,e1
= d2e1 = ωn−2

1 (ωn−1
n−2en−1 + ωn

n−2en + ωn+1
n−2en+1)

= (ωn−2
1 )2(f2en−1 + f3en + en+1) mod {e1, . . . , en−2}.

Thus Xf has Gauss rank 1. Since X is not a cone, Xf is not a cone. Therefore
Xf has to be a (d− 1)–th osculating scroll of a unique curve C ⊂ H∞.

We turn to the one–dimensional family of Gauss fiber cones of X given by
the distribution ωi

δ = 0 for all i, δ, i.e. ωn = 0. Each of which is a priori a cone
with a (d − 1)–dimensional vertex, but we will show that it is a cone with a
d–dimensional vertex. Since

de0 = ω1e1 + ωεeε + ωn−2en−2 + ωn−1en−1 mod {e0, ω
n},
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the tangent space of the Gauss fiber cone G at e0 is {e0, . . . , en−1}. The second
fundamental form of G — using the index range n− 2 ≤ k ≤ n− 1 — is

IIG,e0
= ωkωn

k en + ωkωn+1
k en+1 + ωn−1ωµ

n−1eµ

= (ωn−1)2(f4en + qn+1
1 en+1 + qµ

1 eµ) mod {e1, . . . , en−2, ω
n}.

Thus G has only Gauss rank 1, and its Gauss fibers are {e0, . . . , en−2}. The
linear space {e1, . . . , en−2}, which is the tangent space to Xf at any of the
smooth points of {e1, . . . , ed}, is fixed on G because

de1 = deε = den−2 = 0 mod {e1, . . . , en−2, ω
n}.

Therefore, the Gauss fiber cone is the union of a one–dimensional family of
(d+ 1)–planes containing the d–th osculating space to the curve C; hence, it is
a cone with the d–th osculating space of C as vertex.

We treat the special case where X has a degenerate dual variety. This is
equivalent to the fact that the linear system Q of the second fundamental form
contains only matrices of rank less than 3 [L, 7.3], i.e., qn+1

1 = qµ
1 = 0, and due

to SingQ = 0 we may assume qn+1
2 = 0 and qµ

2 = 1. We claim that in this
case the Gauss fiber cones are (n−1)–planes. This will be implied if the second
fundamental form of each Gauss fiber cone vanishes. By our above computations
it only remains to show that f4 = 0. We get this by differentiating ωn+1

n−1 = 0:

0 = dωn+1
n−1 = −ωn+1

n−2 ∧ ω
n−2
n−1 − ωn+1

n ∧ ωn
n−1 − ωn+1

µ ∧ ωµ
n−1

= −f4ω
n−2 ∧ ωn−1 + ωn ∧ (. . .).

Summarizing the above computations, we see that X is the union of the one–
dimensional family of (n − 1)–planes, the linear Gauss fiber cones, containing
the d–th osculating space of the curve C ⊂ H∞.

Case l = 1, a = 2. Here we have ImA = kerA, and the statement follows from
[P1, Corollary 11] in view of [WZ, Theorem 2] or [P1, Theorem 6].

Case l = 2. We adapt the frame such that

A1 =




0 1 0
0 0 1
0 0 0



 , Aε =




0 0 tε
0 0 0
0 0 0



 , Qn+1 =




0 0 1
0 1 0
1 0 0



 ,

and Qµ =




0 0 0
0 0 qµ

1

0 qµ
1 qµ

2



 ,

where 2 ≤ ε ≤ d, n+ 2 ≤ µ ≤ N and tε = 0 if a = 1.

The Gauss fiber cones of X are the integral manifolds of the distribution
ωi

δ = 0 for all δ, i, i.e., of the distribution ωn−1 = ωn = 0. We claim that
a Gauss fiber cone G is a linear space. It is enough to show that the second
fundamental form of G vanishes. On G we have

de0 = ω1e1 + ωεeε + ωn−2en−2 mod {e0, ω
n−1, ωn}

IIG,e0
= d2e0 = (ω1ωn−1

1 + ωn−2ωn−1
n−2)en−1 + ωn−2ωn

n−2en + ωn−2ωn+1
n−2en+1

mod {e0, . . . , en−2, ω
n−1, ωn}.
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We know that ωn−1
1 = ωn+1

n−2 = ωn vanish on G. To compute ωn−1
n−2 and ωn

n−2,

we differentiate ωn
1 = 0, ωn−1

1 = ωn+1
n−2, and ωn−1

1 = ωn. With the index range
n− 2 ≤ k ≤ n− 1 we have

0 = dωn
1 = −ωn

k ∧ ωk
1 = ωn−1 ∧ ωn

n−2 + ωn ∧ ωn
n−1

0 = d(ωn−1
1 − ωn+1

n−2) = −ωn−1
1 ∧ ω1

1 − ωn−1
k ∧ ωk

1 + ωn+1
i ∧ ωi

n−2+ ωn+1
n+1∧ ω

n+1
n−2

= ωn−2 ∧ ωn
n−2 + ωn−1 ∧ (2ωn−1

n−2) + ωn ∧ (. . .)

0 = d(ωn−1
1 − ωn) = −ωn−1

1 ∧ ω1
1 − ωn−1

k ∧ ωk
1 + ωn ∧ ω0 + ωn

i ∧ ωi

= ωn−2 ∧ (−ωn
n−2) + ωn−1 ∧ (ωn−1

n−2 − ωn
n−1) + ωn ∧ (. . .).

From the first equation we get by Cartan’s Lemma

ωn
n−2 = f1ω

n−1 + f2ω
n and ωn

n−1 = f2ω
n−1 + f3ω

n.

From the second we obtain

2ωn−1
n−2 = f1ω

n−2 + f4ω
n−1 + f5ω

n.

Plugging this into the third equation, we find f1 = 0; hence,

ωn
n−2 = f2ω

n, ωn
n−1 = f2ω

n−1 + f3ω
n, ωn−1

n−2 =
f4
2
ωn−1 +

f5
2
ωn.

All these terms vanish on the Gauss fiber cone G and therefore also the second
fundamental form of G, i.e., G is a linear space.

Now we turn to the irreducible focal variety Xf of X . The point e1 is a
general point of Xf , and the tangent space Te1

Xf is the image of

de1 = ωε
1eε + ωn−2

1 en−2 + ωn−1
1 en−1 mod {e1}.

Since Xf is the union of the linear spaces {e1, . . . , ed}, the tangent space Te1
Xf

must contain this linear space {e1, . . . , ed}. Because ωn−2
1 and ωn−1

1 are linear
independent, the tangent space Te1

Xf is {e1, . . . , en−1}, and hence the dimen-
sion of Xf is n− 2.

We can compute the second fundamental form of Xf easily as

IIXf ,e1
= ωn−2

1 (ωn
n−2en + ωn+1

n−2en+1) + ωn−1
1 (ωn

n−1en + ωn+1
n−1en+1 + ωµ

n−1eµ)

= (2f2ω
n−2
1 ωn−1

1 + f3(ω
n−1
1 )2)en + 2ωn−2

1 ωn−1
1 en+1 + qµ

1 (ωn−1
1 )2eµ

mod {e1, . . . , en−1}.

Thus Xf is of Gauss rank 2 and has {e1, . . . , ed} as Gauss fiber. Further, it
has the asymptotic space {e1, . . . , en−2} = {ωn−1

1 }⊥. This asymptotic space
is the intersection of the linear Gauss fiber cone G = {e0, . . . , en−2} with the
hyperplane at infinity. We can consider this asymptotic distribution ωn−1

1 =
0 ⇔ ωn = 0 on Xf as well as on X . By the Theorem of Frobenius it is
completely integrable on both varieties since

dωn−1
1 = −ωn−1

1 ∧ ω1
1 − ωn−1

n−2 ∧ ωn−2
1 − ωn−1

n−1 ∧ ωn−1
1

= −( f4

2 ω
n−2
1 + f5

2 ω
n−1
1 ) ∧ ωn−2

1 = 0 mod {ωn−1
1 }.
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Now let Y and Z ⊃ Y be integral manifolds of this distribution on Xf resp.
X . Then Z is the union of the Gauss fiber cones G that contain the tangent
spaces of Y or equivalently the asymptotic planes of Xf along Y . It remains to
show that Z has Gauss rank 1 and has the Gauss fiber cones G as Gauss fibers.
We compute the second fundamental form of Z. On Z we have

de0 = ω1e1 + ωεeε + ωn−2en−2 + ωn−1en−1 mod {e0, ω
n}

IIZ,e0
= d2e0 = (ωn−2ωn

n−2 + ωn−1ωn
n−1)en + (ωn−2ωn+1

n−2 + ωn−1ωn+1
n−1)en+1

+ωn−1ωµ
n−1eµ = (ωn−1)2(f2en + en+1) mod {e0, . . . , en−1, ω

n}.

Clearly, the singular locus of IIZ,e0
is the linear space {e0, . . . , en−2}, the Gauss

fiber cone of X .

3 The Case of Gauss Rank 4

Here we prove the structure theorem for Gauss rank 4. Unfortunately, the
descriptions will not always be detailed enough to yield methods for the con-
structions of varieties of the corresponding type.

Theorem. Let X ⊂ PN be an affinely smooth developable variety of Gauss
rank 4 and Gauss fiber dimension d = n− 4 which is not a cone. With the fiber
movement system A belonging to a general point of X, we define the following
invariants of X:

a = dimA

b = dim
∑

A∈A ImA

l = max{rankA | A ∈ A} = rank of general matrix of A.

According to the values of these invariants, we have the following geometric
descriptions of X:

1. (l = 1, a = 1) The focal variety Xf of X is the (d−1)–th osculating scroll
of a unique curve C ⊂ H∞. X is the union of the one–dimensional family
of Gauss fiber cones that are (n−1)–dimensional cones whose vertices are
the d–th osculating spaces to the curve C.

2. (l = 1, a = 2) Xf is a twisted (d− 1)–plane of type (k1, k2) of two curves
at infinity. X is the union of the one–dimensional family of Gauss fiber
cones, which are (n− 1)–dimensional cones over the (d+ 1)–planes of the
twisted (d+1)–plane of type (k1 +1, k2 +1) of the same curves as the one
above.

3. (l = 1, a = 3) X is a twisted (n − 1)–plane of type (0, k2, k3, k4) with
k2, k3, k4 ≥ 1 where the last three curves lie in H∞. Its Gauss fiber cones
are the (n− 1)–planes.

4. (l = 2, A2 = 0) The focal variety Xf is an (n− 3)–dimensional variety of
Gauss rank 2. X is the union of the two–dimensional family of the linear
Gauss fiber cones, which contain the tangent spaces to Xf .
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5. (l = 2, a = 1, A2 6= 0, X∗ nondegenerate) X has dimension 5 and is the
union of the two–dimensional family of the three–dimensional Gauss fiber
cones, which are uniruled by 2–planes. The 2–planes of a Gauss fiber cone
with vertex V ⊂ H∞ intersect the tangent spaces TvX, v ∈ V , of the focal
variety Xf in codimension one.

6. (l = 2, a = b = 2, A2 6= 0, X∗ nondegenerate) X is the union of its
two–dimensional family of Gauss fiber cones, each of which is an (n− 2)–
dimensional cone over a d–plane in H∞. Such a d–plane is asymptotic in
the tangent spaces of Xf along the Gauss fiber cone vertex.

7. (l = 2, b = 3, A2 6= 0, X∗ nondegenerate) Xf is a twisted d–plane of
type (k1, k2, k3). X is the union of the three–dimensional family of linear
Gauss fiber cones, which contain a d–plane of this twisted d–plane.

8. (l = 2, A2 6= 0, X∗ degenerate) X is the union of its two–dimensional
family of linear Gauss fiber cones. Xf has dimension n − 2 and Gauss
rank b. The linear Gauss fiber cone for a general vertex V ⊂ Xf intersects
the tangent spaces TvXf , v ∈ V , in a fixed linear space of dimension n−3.

X can also be seen as the union of a one–dimensional family of Gauss
rank 1 varieties, whose Gauss fibers are the linear Gauss fiber cones of X.

9. (l = 3) X is the union of a two–dimensional family of Gauss rank 1
varieties whose Gauss fibers are the linear Gauss fiber cones of X. The
intersection of the linear Gauss fiber cone with H∞ is an asymptotic plane
in the tangent spaces of Xf .

For l ≥ 2 the condition a = 1 is equivalent to dimX = 5.

To prove this theorem, we have again to treat the different cases separately.

Case l = 1, a = 1. The proof is analogous to the one for Gauss rank 3.

Case l = 1, a = 2. We adapt the frame such that

A1 =





0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



, Ad =





0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0



, Q
µ =





0 0 0 qµ
1

0 0 0 qµ
2

0 0 qµ
3 qµ

4

qµ
1 qµ

2 qµ
4 qµ

5



,

and Aε = 0 with the index ranges 2 ≤ ε ≤ d − 1, n+ 1 ≤ µ ≤ N , in particular
ωn−1

δ = ωn
δ = 0 and ωn−3

1 = ωn−2
1 = ωn.

We start by examining a general Gauss fiber cone G of X , given by the
integrable distribution ωn = 0. Using the index range n − 3 ≤ k ≤ n − 1, its
tangent space at a general point e0 is the image of

de0 = ω1e1 + ωεeε + ωded + ωkek mod {e0, ω
n},

i.e., it is {e0, . . . , en−1}. Its second fundamental form can be computed as

IIG,e0
= d2e0 = ωkωn

k en + ωkωµ
k eµ mod {e0, . . . , en−1, ω

n}.

To determine the unknown forms ωn
k , we differentiate ωn

1 = ωn
d = 0,

0 = dωn
1 = −ωn

n−3 ∧ ω
n−3
1 = ωn ∧ ωn

n−3 ⇒ ωn
n−3 = f1ω

n

0 = dωn
d = −ωn

n−2 ∧ ω
n−2
d = ωn ∧ ωn

n−2 ⇒ ωn
n−2 = f2ω

n,
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and further ωn−3
1 = ωn,

0 = d(ωn−3
1 − ωn) = −ωn−3

1 ∧ ω1
1 − ωn−3

n−3 ∧ ωn−3
1 + ωn ∧ ω0 + ωn

i ∧ ωi

= −ωn−1 ∧ ωn
n−1 − ωn ∧ (. . .) ⇒ ωn

n−1 = f3ω
n−1 + f4ω

n.

Therefore,

IIG,e0
= (ωn−1)2(f3en + qµ

3 eµ) mod {e0, . . . , en−1, ω
n}.

We see that G is either of Gauss rank 1 with Gauss fibers {e0, . . . , en−2} or
even linear. We claim that in any case G is a cone over {e1, . . . , en−2}. This
is equivalent to the fact that {e1, . . . , en−2} is a fixed linear space on G, which
follows from

de1 = deε = ded = 0 mod {e1, . . . , en−2, ω
n}

den−3 = ωn−1
n−3en−1 + ωn

n−3en + ωµ
n−3eµ = 0 mod {e1, . . . , en−2, ω

n}

den−2 = ωn−1
n−2en−1 + ωn

n−2en + ωµ
n−2eµ = 0 mod {e1, . . . , en−2, ω

n}.

Here we used ωn−1
n−3 = ωn−1

n−2 = 0 mod {ωn}, which can be derived analogously
to ωn

n−3 = ωn
n−2 = 0 mod {ωn}.

From [P1, Theorem 9] we know that Xf is the union of the one–dimensional
family of (d−1)–planes {e1, . . . , ed} and has Gauss rank 2. By the classification
of Gauss rank 2 varieties [P2] it is therefore a twisted (d−1)–plane of type (k1, k2)
of two curves C1, C2 ⊂ H∞. The movement of the (d− 1)–planes {e1, . . . , ed} is
characterized by the span of {e1, . . . , ed} and the image of de1, . . . , ded. (This is
the associated curve Φ(1) of Φ = {e1, . . . , ed} in the notation of [P1, Section 4].)
We have

de1 = ωnen−3 mod {e1, . . . , ed}

deε = 0 mod {e1, . . . , ed}

ded = ωnen−2 mod {e1, . . . , ed},

hence the common image is the (d+1)–plane {e1, . . . , en−2}. This (d+1)–plane
is on the one hand by the above computation a (d + 1)–plane of the twisted
(d+1)-plane of type (k1 +1, k2+1) of the curves C1, C2 ⊂ H∞ and on the other
hand a vertex of the Gauss fiber cone G.

Case l = 1, a = 3. Here we have ImA = kerA, and the statement follows from
[P1, Corollary 11] in view of [WZ, Theorem 2] or [P1, Theorem 6].

Case l = 2, A2 = 0. Here we are again in the situation that ImA = kerA;
hence, the Gauss fiber cones are linear. By [P1, Theorem 9] Xf has Gauss
rank 2, and one easily checks that every Gauss fiber cone contains a tangent
space of Xf .

Case l = 2, A2 6= 0, X∗ nondegenerate. It was shown in [P1, Appendix] that
the linear system Q belonging to this linear system A has the form





0 0 0 q1
0 q1 0 q3
0 0 q2 q4
q1 q3 q4 q5



 .
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By the assumption that X∗ is nondegenerate, Q contains a matrix of full rank
[L, 7.3], i.e., one with q1q2 6= 0. By scaling this matrix we may assume q1 = 1.
Then the transformation

T =





1 − 1
2q3 −q4

3
8q

2
3 − 1

2q5

0 1 0 − 1
2q3

0 0 1 0

0 0 0 1





takes Q to a matrix with q3 = q4 = q5 = 0 and maps A to itself. Hence, we can
adapt the frame such that

A1 =





0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0



, Aε =





0 0 sε tε
0 0 0 0
0 0 0 sε

0 0 0 0



, Q
n+1 =





0 0 0 1
0 1 0 0
0 0 qn+1

2 0
1 0 0 0



,

and Qµ =





0 0 0 0
0 0 0 qµ

3

0 0 qµ
2 qµ

4

0 qµ
3 qµ

4 qµ
5





with qn+1
2 6= 0 and the index ranges 2 ≤ ε ≤ d and n+ 2 ≤ µ ≤ N . Again, to

prove our geometric statements, we need to express several 1–forms in terms of
the semi–basic forms. We use the index range n − 3 ≤ k ≤ n− 2 and start by
differentiating ωn−1

1 = ωn
1 = 0,

0 = dωn
1 = −ωn

k ∧ ωk
1 = ωn−2 ∧ ωn

n−3 + ωn ∧ ωn
n−2

0 = dωn−1
1 = −ωn−1

ε ∧ ωε
1 − ωn−1

k ∧ ωk
1 = ωn−2∧ ωn−1

n−3 + ωn∧ (ωn−1
n−2 − sεω

ε
1),

and obtain
ωn

n−3 = f1ω
n−2 + f2ω

n

ωn
n−2 = f2ω

n−2 + f3ω
n

ωn−1
n−3 = f4ω

n−2 + f5ω
n

ωn−1
n−2 = sεω

ε
1 + f5ω

n−2 + f6ω
n.

Next from ωn−2
1 = ωn+1

n−3 we get

0 = d(ωn−2
1 − ωn+1

n−3) = −ωn−2
1 ∧ ω1

1 − ωn−2
k ∧ ωk

1 + ωn+1
i ∧ ωi

n−3+ ωn+1
n+1∧ ω

n+1
n−3

= ωn−2 ∧ (2ωn−2
n−3 − f1ω

n−3 − f4q
n+1
2 ωn−1) + ωn ∧ (. . .)

and further

ωn−2
n−3 =

f1
2
ωn−3 + f7ω

n−2 +
f4q

n+1
2

2
ωn−1 + f8ω

n.

Finally, by differentiating ωn−2
1 = ωn,

0 = d(ωn−2
1 − ωn) = −ωn−2

1 ∧ ω1
1 − ωn−2

k ∧ ωk
1 + ωn ∧ ω0 + ωn

i ∧ ωi

= − 3
2f1ω

n−3 ∧ ωn−2 + ωn−1 ∧ (−ωn
n−1 −

1
2f4q

n+1
2 ωn−2) + ωn ∧ (. . .),
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we find f1 = 0 and

ωn
n−1 = −

f4q
n+1
2

2
ωn−2 + f9ω

n−1 + f10ω
n.

Now we consider the distribution ωn−2 = ωn−1 = ωn = 0. For b = 3 this is
the integrable distribution whose integral manifolds are the Gauss fiber cones.
For b = 2 this distribution is only a subdistribution of that distribution, which is
given this time by ωn−2 = ωn = 0. However, this distribution ωn−2 = ωn−1 =
ωn = 0 is also integrable for b = 2 by the Theorem of Frobenius, since we
already know that dωn−2 = dωn = 0 mod {ωn−2, ωn} and

dωn−1 = −ωn−1 ∧ ω0 − ωn−1
ε ∧ ωε − ωn−1

i ∧ ωi = 0 mod {ωn−2, ωn−1, ωn}

by ωn−1
n−3 = 0 mod {ωn−2, ωn}.

Let L be an integrable manifold of this distribution. We want to prove that
L is linear. Its tangent space at a general point e0 is {e0, . . . , en−3} as the image
of

de0 = ω1e1 + ωεeε + ωn−3en−3 mod {e0, ω
n−2, ωn−1, ωn}.

Its second fundamental form,

IIL,e0
= d2e0 = (ω1ωn−2

1 + ωn−3ωn−2
n−3)en−2 + (ωεωn−1

ε + ωn−3ωn−1
n−3)en−1

+ωn−3ωn
n−3en + ωn−3ωn+1

n−3en+1 = 0 mod {e0, . . . , en−3, ω
n−2, ωn−1, ωn}

vanishes by ωn−2
n−3 = ωn−1

n−3 = ωn
n−3 = 0 mod {ωn−2, ωn−1, ωn}; hence, L is linear.

Unfortunately, we cannot prove much more about the structure of X in case
of a = 1. We can only note that the linear spaces L = {e0, . . . , en−3} of the
Gauss fiber cone G intersect the tangent space to Xf at the point e1, which
is {e1, . . . , en−2}, in codimension one. It seems possible that this intersection
moves, while L moves in G. However, if it does not, which will be a special case,
then X has an analogous geometric description as the one which will be given
for the case a = b = 2.

For this case a = b = 2, where sε = 0 and some tε 6= 0, we will now show
that the Gauss fiber cone G is a cone over the d–plane {e1, . . . , en−3}, i.e., all
linear spaces L inside G contain this d–plane. We show that this d–plane is fixed
on the Gauss fiber cone, which was given by the distribution ωn−2 = ωn = 0.
Because of

de1 = ωn−2
1 en−2 = 0 mod {e1, . . . , en−3, ω

n−2, ωn}

deε = 0 mod {e1, . . . , en−3, ω
n−2, ωn}

den−3 = ωn−2
n−3en−2 + ωn−1

n−3en−1 + ωn
n−3en + ωn+1

n−3en+1

= 1
2f4q

n+1
2 ωn−1en−2 mod {e1, . . . , en−3, ω

n−2, ωn},

it remains to show that f4 = 0. This follows from differentiating ωn−1
ε = 0:

0 = dωn−1
ε = −ωn−1

n−3 ∧ ωn−3
ε = −f4tεq

n+1
2 ωn−2 ∧ ωn.
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We turn to the focal variety Xf . Its tangent space at the general point e1 is
{e1, . . . , en−2} as the image of

de1 = ωε
1eε + ωn−3

1 en−3 + ωn−2
1 en−2 mod {e1}.

Since its second fundamental form is

IIXf ,e1
= d2e1 = (ωn−3

1 ωn−1
n−3 + ωn−2

1 ωn−1
n−2)en−1 + (ωn−3

1 ωn
n−3 + ωn−2

1 ωn
n−2)en

+(ωn−3
1 ωn+1

n−3 + ωn−2
1 ωn+1

n−2)en+1 + ωn−2
1 ωµ

n−2eµ

= ωn−3
1 ωn−2

1 (2f5en−1 + 2f2en + 2en+1)

+(ωn−2
1 )2(f6en−1 + f3en + qµ

3 eµ) mod {e1, . . . , en−2},

the vertex of the Gauss fiber cone, {e1, . . . , en−3}, is an asymptotic space of Xf

at the general point e1 — and hence all points — of the a priori Gauss fiber
cone vertex {e1, . . . , ed}.

At last, we treat the case of b = 3, i.e., some sε 6= 0. Here we want to show
that in addition to f1 = 0 one has f4 = f7 = 0 and f9 = f2. We get this by
differentiating ωn

ε = ωn−2
ε = 0:

0 = dωn
ε = −ωn

n−3 ∧ ω
n−3
ε − ωn

n−1 ∧ ω
n−1
ε

= 1
2f4q

n+1
2 sεω

n−2 ∧ ωn + (f2 − f9)sεω
n−1 ∧ ωn

0 = dωn−2
ε = −ωn−2

1 ∧ ω1
ε − ωn−2

n−3 ∧ ωn−3
ε − ωn−2

n−1 ∧ ωn−1
ε

= −sεf7ω
n−2 ∧ ωn−1 + ωn ∧ (. . .).

The key observation for this case is that the distribution ωn = 0 is integrable
by the Theorem of Frobenius since

dωn = −ωn ∧ ω0 − ωn
i ∧ ωi = 0 mod {ωn}

using what we just proved. With the index range n− 3 ≤ k ≤ n− 1 we have on
an integral manifold Y

de0 = ω1e1 + ωεeε + ωkek mod {e0, ω
n},

IIY,e0
= d2e0 = ωkωn

k en + ωkωn+1
k en+1 + ωkωµ

k eµ

= (ωn−2)2(f2en + en+1) + (ωn−1)2(f2en + qn+1
2 en+1 + qµ

2 eµ)

mod {e0, . . . , en−1, ω
n}.

Therefore, Y has Gauss rank 2, its Gauss fibers are the linear Gauss fiber cones
L of X , and possesses a pair of conjugate (n − 2)–planes. We claim that Y is
in fact a cone over {e1, . . . , en−3} ⊂ L. We must show that this space is fixed
on Y . This follows from

de1 = ωn−2
1 en−2 = 0 mod {e1, . . . , en−3, ω

n}

deε = 0 mod {e1, . . . , en−3, ω
n}

den−3 = ωk+1
n−3ek+1 + ωn+1

n−3en+1 = 0 mod {e1, . . . , en−3, ω
n}.

(This distribution, ωn = 0, is also integrable in the case of a = b = 2. There
one can also show that Y is a variety of Gauss rank 2 whose Gauss fibers are
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the linear Gauss fiber cones of X and has a pair of conjugate (n− 2)–planes in
general tangent space. However, it seems that Y does not have to be a cone
with an d–dimensional vertex.)

One can also consider the distribution ωn = 0 on the focal variety Xf . Its
integral manifold Z has the tangent space {e1, . . . , en−3} and must be linear
by the above consideration. Hence, Xf is uniruled by codimension one planes.
Since it has Gauss rank 3 by [P1, Theorem 9], it is a twisted d–plane of type
(k1, k2, k3) of three curves in H∞ [P1, Section 4].

Case l = 2, A2 6= 0, X∗ degenerate. Since X∗ is degenerate, the linear system
Q cannot contain a matrix of full rank [L, 7.3]. From [P1, Appendix] we know
that elements of Q are of the form





0 0 0 q1
0 q1 0 q3
0 0 0 q4
q1 q3 q4 q5



.

Due to SingQ = 0, the linear system Q must contain the matrices

Q =





0 0 0 1
0 1 0 q3
0 0 0 0
1 q3 0 q5



 and Q′ =





0 0 0 0
0 0 0 q′3
0 0 0 1
0 q′3 1 q′5



 .

A transformation of the basis of C4 with

T =





1 − 1
2q3 0 3

8q
2
3 − 1

2q5
0 1 0 − 1

2q3
0 0 1 0
0 0 0 1





takes the entries q3, q5 to zero while leaving the elements of A fixed. Therefore
we may adapt the frame such that

A1 =





0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0



, Aε =




0 0 0 sε

0 0 0 0
0 0 0 tε
0 0 0 0



, Qn+1 =




0 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0



,

and Qµ =





0 0 0 0
0 0 0 qµ

1

0 0 0 qµ
2

0 qµ
1 qµ

2 qµ
3





with the index ranges 2 ≤ ε ≤ d and n+ 2 ≤ µ ≤ N , in addition we will use the
index range n− 3 ≤ k ≤ n− 2. To prove our statements about the structure of
X we will need the following relations

ωn
n−3, ω

n
n−1 = 0 mod {ωn}

ωn−2
n−3 , ω

n−2
n−1, ω

n−1
n−3 , ω

n
n−2 = 0 mod {ωn−2, ωn},

(∗)
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which we derive now. Differentiating ωn−1
1 = ωn

1 = 0,

0= dωn−1
1 = −ωn−1

ε ∧ ωε
1 − ωn−1

k ∧ ωk
1= ωn−2 ∧ ωn−1

n−3 + ωn ∧ (. . .)

0= dωn
1 = −ωn

k ∧ ωk
1 = ωn−2 ∧ ωn

n−3 + ωn ∧ ωn
n−2,

we find ωn
n−3 = f1ω

n−2 + f2ω
n and ωn−1

n−3 , ω
n
n−2 = 0 mod {ωn−2, ωn}. Now we

compare the differentials of ωn−2
1 = ωn and ωn−2

1 = ωn+1
n−3:

0 = d(ωn−2
1 − ωn) = −ωn−2

1 ∧ ω1
1 − ωn−2

k ∧ ωk
1 + ωn ∧ ω0 + ωn

i ∧ ωi

= ωn−2 ∧ (ωn−2
n−3 + f1ω

n−3) + ωn−1 ∧ (−ωn
n−1) + ωn ∧ (. . .)

0 = d(ωn−2
1 − ωn+1

n−3) = −ωn−2
1 ∧ ω1

1 − ωn−2
k ∧ ωk

1 + ωn+1
i ∧ ωi

n−3+ ωn+1
n+1 ∧ ωn+1

n−3

= ωn−2 ∧ (2ωn−2
n−3 − f1ω

n−3) + ωn ∧ (. . .).

From ωn−2
n−3 + f1ω

n−3 = 0 mod {ωn−2, ωn−1, ωn} and 2ωn−2
n−3 − f1ω

n−3 = 0 mod

{ωn−2, ωn} we conclude f1 = 0 and ωn−2
n−3 = 0 mod {ωn−2, ωn}. In addition we

now realize that ωn
n−1 = 0 mod {ωn−1, ωn}. Finally, differentiating ωn+1

n−1 = 0,

0 = dωn+1
n−1 = −ωn+1

n−3 ∧ ω
n−3
n−1 − ωn+1

n−2 ∧ ω
n−2
n−1 − ωn+1

n ∧ ωn
n−1 − ωn+1

µ ∧ ωµ
n−1

= −ωn−3 ∧ ωn
n−1 − ωn−2 ∧ ωn−2

n−1 − ωn ∧ (. . .)

yields ωn
n−1 = 0 mod {ωn−3, ωn−2, ωn}, hence ωn

n−1 = 0 mod {ωn}. We also see

now that ωn−2
n−1 = 0 mod {ωn−2, ωn}.

A Gauss fiber cone G of X is given by the integrable distribution ωn−2 =
ωn = 0. Its tangent space at e0 is the image of

de0 = ω1e1 + ωεeε + ωn−3en−3 + ωn−1en−1 mod {e0, ω
n−2, ωn},

i.e., it is {e0, . . . , en−3, en−1}. Its second fundamental form

IIG,e0
= d2e0 = (ωn−3ωn−2

n−3 + ωn−1ωn−2
n−1)en−2 + (ωn−3ωn

n−3 + ωn−1ωn
n−1)en

+ωn−3ωn+1
n−3en+1 + ωn−1ωµ

n−1eµ = 0 mod {e0, . . . , en−3, en−1, ω
n−2, ωn}

vanishes by (∗). Therefore G is the linear space {e0, . . . , en−3, en−1}. From [P1,
Theorem 9] we know that Xf has Gauss rank b, and its tangent space at the
general point e1 is {e1, . . . , en−2}. The linear Gauss fiber cone intersects this
tangent space Te1

Xf in the linear space {e1, . . . , en−3}, which is a fixed d–plane
along the Gauss fiber cone vertex V = {e1, . . . , ed} ⊂ Xf since

de1 = deε = den−3 = 0 mod {e1, . . . , en−3, ω
n−2, ωn}.

Now we note that the distribution ωn = 0 is integrable by the theorem of
Frobenius, since

dωn = −ωn ∧ ω0 − ωn
i ∧ ωi = 0 mod {ωn}

by (∗). An integral manifold Y has in a general point e0 the tangent space
{e0, . . . , en−1} because — using the index range n− 3 ≤ k ≤ n− 1 — one has

de0 = ω1e1 + ωεeε + ωkek mod {e0, ω
n}.
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Its second fundamental form is by (∗)

IIY,e0
= d2e0 = ωk(ωn

k en + ωn+1
k en+1 + ωµ

k eµ)

= (ωn−2)2(fen + en+1) mod {e0, . . . , en−1, ω
n}.

Thus it has Gauss rank 1, and its Gauss fibers, {e0, . . . , en−3, en−1}, are the
linear Gauss fiber cones of X .

Case l = 3. We start with adapting the frame such that

A1 =





0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



, Aε =





0 0 tε uε

0 0 sε tε
0 0 0 0
0 0 0 0



, Q
n+1 =





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



,

and Qµ =





0 0 0 0
0 0 0 qµ

1

0 0 qµ
1 qµ

2

0 qµ
1 qµ

2 qµ
3





with the index ranges 2 ≤ ε ≤ d and n + 2 ≤ µ ≤ N . In addition, we will use
the index range n− 3 ≤ k ≤ n− 1. Our first task is to express ωi

j for i > j in

terms of the forms {ωn−3, . . . , ωn} for later uses. Differentiating ωn
1 = 0 yields

0 = dωn
1 = −ωn

k ∧ ωk
1 = ωn−2 ∧ ωn

n−3 + ωn−1 ∧ ωn
n−2 + ωn ∧ ωn

n−1,

thus
ωn

n−3 = f1ω
n−2 + f2ω

n−1 + f3ω
n

ωn
n−2 = f2ω

n−2 + f4ω
n−1 + f5ω

n

ωn
n−1 = f3ω

n−2 + f5ω
n−1 + f6ω

n.

Using the relation ωn−1
1 = ωn, we obtain modulo omegan

0 = d(ωn−1
1 − ωn) = −ωn−1

1 ∧ ω1
1 − ωn−1

k ∧ ωk
1 + ωn ∧ ω0 + ωn

i ∧ ωi

= ωn−3 ∧ (−ωn
n−3) + ωn−2 ∧ (ωn−1

n−3 − ωn
n−2) + ωn−1 ∧ (ωn−1

n−2 − ωn
n−1)

and therefore

ωn−1
n−3 = −f1ω

n−3+ g1ω
n−2 + g2ω

n−1 + g3ω
n

ωn−1
n−2 = −f2ω

n−3+ (g2 − f4 + f3)ω
n−2 + g4ω

n−1 + g5ω
n.

Next we consider ωn+1
n−3 = ωn and its differential modulo ωn

0 = d(ωn − ωn+1
n−3) = −ωn ∧ ω0 − ωn

i ∧ ωi + ωn+1
i ∧ ωi

n−3 + ωn+1
n+1 ∧ ωn+1

n−3

= ωn−3 ∧ (2ωn
n−3) + ωn−2 ∧ (ωn−1

n−3 + ωn
n−2) + ωn−1 ∧ (ωn−2

n−3 + ωn
n−1)

Plugging in the terms from above, we find f1 = 0 by looking at the coefficient
of ωn−3 ∧ ωn−2 and further

ωn−2
n−3 = 2f2ω

n−3 + (g2 + f4 − f3)ω
n−2 + h1ω

n−1 + h2ω
n.
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Finally, we show that g1 = f2 = 0 in addition to f1 = 0. The differentials of
ωn−2

1 = ωn−1 and ωn
n−3 = f2ω

n−1 + f3ω
n modulo {ωn−1, ωn} are

0 = d(ωn−2
1 − ωn−1) = −ωn−2

n−3 ∧ ωn−3
1 + ωn−1

n−3 ∧ ωn−3 + ωn−1
n−2 ∧ ωn−2

= (3f2 + g1)ω
n−2 ∧ ωn−3 mod {ωn−1, ωn}

0 = d(ωn
n−3 − f2ω

n−1 − f3ω
n) = −ωn

n−2 ∧ ω
n−2
n−3 + f2ω

n−1
n−3 ∧ ωn−3

+f2ω
n−1
n−2 ∧ ωn−2 = f2(g1 − f2)ω

n−2 ∧ ωn−3 mod {ωn−1, ωn}.

From 0 = 3f2 + g1 = f2(g1 − f2), we conclude g1 = f2 = 0.

Now we can examine X . We start by showing that a general Gauss fiber
cone G, which is given by the integrable distribution ωn−2 = ωn−1 = ωn = 0,
is linear. The tangent space of G at e0 is the image of

de0 = ω1e1 + ωεeε + ωn−3en−3 mod {e0, ω
n−2, ωn−1, ωn},

i.e., it is {e0, . . . , en−3}. The second fundamental form of G,

IIG,e0
= ωn−3ωk+1

n−3ek+1 + ωn−3ωn+1
n−3en+1 mod {e0, . . . , en−3, ω

n−2, ωn−1, ωn},

vanishes, because ωk+1
n−3 = 0 mod {ωn−2, ωn−1, ωn} by our computations above.

Thus G is the linear space {e0, . . . , en−3}.

Next we note that the distribution ωn−1 = ωn = 0 ⇔ ωn−2
1 = ωn−1

1 = 0 is
integrable by the Theorem of Frobenius, since

dωn−2
1 = −ωn−2

1 ∧ ω1
1 − ωn−2

ε ∧ ωε
1 − ωn−2

k ∧ ωk
1 = 0 mod {ωn−1, ωn}

dωn−1
1 = −ωn−1

1 ∧ ω1
1 − ωn−1

k ∧ ωk
1 = 0 mod {ωn−1, ωn},

where we used again that ωn−2
n−3 , ω

n−1
n−3 = 0 mod {ωn−2, ωn−1, ωn}.

Let Y be an integral manifold of this distribution. Its tangent space at the
point e0 is {e0, . . . , en−2} as the image of

de0 = ω1e1 + ωεeε + ωn−3en−3 + ωn−2en−2 mod {e0, ω
n−1, ωn}.

Its second fundamental form is

IIY,e0
= d2e0 = (ωn−3ωn−1

n−3 + ωn−2ωn−1
n−2)en−1 + (ωn−3ωn

n−3 + ωn−2ωn
n−2)en

+(ωn−3ωn+1
n−3 + ωn−2ωn+1

n−2)en+1 + ωn−2ωµ
n−2eµ

= (g2 − f4 + f3)(ω
n−2)2en−1 mod {e0, . . . , en−2, ω

n−1, ωn}.

Therefore, Y has Gauss rank 1 and has {e0, . . . , en−3} — the linear Gauss
fiber cones of X — as Gauss fibers.

Finally, we want to make a remark about how the linear Gauss fiber cones
relate to the focal variety Xf . The second fundamental form of Xf can be easily
computed to be

IIXf ,e1
= (2f3ω

n−3
1 ωn−1

1 + f4(ω
n−2
1 )2 + 2f5ω

n−2
1 ωn−1

1 + f6(ω
n−1
1 )2)en

+(2ωn−3
1 ωn−1

1 + (ωn−2
1 )2)en+1 + (2qµ

1ω
n−2
1 ωn−1

1 + qµ
2 (ωn−1

1 )2)eµ

mod {e1, . . . , en−1}.

We see that the intersection of the linear Gauss fiber cones with the hyperplane
H∞, the linear space {e1, . . . , en−3}, is an asymptotic space of IIXf ,e1

, which is
in fact fixed along the Gauss fiber cone vertex {e1, . . . , ed}.
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4 Constructions for Gauss Rank 3

In this final section we will show that the descriptions in the structure theorem
for Gauss rank 3 can be read as ways how to construct developable varieties
with a prescribed focal variety. Since the twisted planes are well understood,
only the following remains to be proved for the l = 1 case.

Proposition 1 Let C be a curve and G a two–dimensional family of (n − 2)–
planes such that every (n − 3)-th osculating plane of C is contained in a one–
dimensional subfamily of G. Let X be the union of the planes of G. If G is
chosen general enough, then X is a developable variety whose focal variety is
the (n− 4)-th osculating scroll of C.

Proof. We will use the language of [FP] for the local computations, which is very
convenient for constructions. Let ϕ(s) be a local lifting of a parameterization
of C. Then the (n− 3)-th osculating planes of C are

{
ϕ, . . . , ϕ(n−3)

}
.

We choose the family G by choosing a parameterized surface ψ(s, t) and setting

G(s,t) :=
{
ϕ, . . . , ϕ(n−3), ψ

}
.

Then X is locally the image of

Φ : (C2, 0) × Cn−2 × C −→ X̂

(s, t, λ, µ) 7−→
∑n−3

i=0 λiϕ
(i)(s) + µψ(s, t).

Its tangent space is

Tϕ(s,t,λ,µ)X̂ =

{
ϕ, . . . , ϕ(n−3), ψ, λn−3ϕ

(n−2) + µ
∂ψ

∂s
, µ
∂ψ

∂t

}
;

hence, it depends precisely on s, t, and the ratio (λn−3 : µ) if ψ was chosen
general enough. Therefore, X has Gauss rank 3. An adapted parameteriza-
tion of X is given by Φ(s, t, u, λ, λn−3u), whose images for fixed (s, t, u) are

the Gauss fibers of X . For general (s, t, u) the dimension of TΦ(s,t,u,λ,λn−3u)X̂
will drop only for λn−3 = 0; hence, the focal variety of X is the image of
Φ(s, t, u, λ0, . . . , λn−4, 0, 0), i.e., the (n− 4)-th osculating scroll of C. 2

As already mentioned in the introduction the l = 2 case gets very technically
if the prescribed focal variety is ruled by codimension one planes. Therefore, we
restrict ourselves to show the following:

Proposition 2 Let Y be a variety of dimension n− 2 and Gauss rank 2 which
has an asymptotic (n−3)–plane in each tangent space, but such that the integral
submanifolds of this distribution are not linear. Choose a 2–dimensional family
G containing the asymptotic (n − 2)–planes of Y which has also the additional
property described in the Theorem. Let X be the union of these planes. If the
family G was chosen sufficiently general, X will be developable of Gauss rank 3
and l = 2, and its focal variety will lie inside H∞.

19



Proof. Let

Φ : (C2, 0) × Cn−3 −→ Ŷ

(s, t, λ) 7−→
∑n−4

i=0 λi̺i(s, t)

be an adapted parameterization of Ŷ , i.e., the Gauss fibers of Ŷ are spanned by
the vectors {̺i}i and the asymptotic submanifolds are the images of Φ for fixed
t. The asymptotic spaces and the tangent spaces, which depend only on s and
t, are — assuming ̺0 is general —

A(s,t) :=
{
̺i,

∂̺0

∂s

}
=

{
̺i,

∂̺i

∂s

}

T(s,t)Ŷ :=
{
̺i,

∂̺0

∂s
, ∂̺0

∂t

}
=

{
̺i,

∂̺i

∂s
, ∂̺i

∂t

}
.

Since ∂
∂s

is an asymptotic direction, we have ∂2̺i

(∂s)2 ∈ T(s,t)Ŷ . We claim that
∂2̺i

(∂s)2 6∈ A(s,t) for some i, w.l.o.g. i = 0. Otherwise, arbitrary high derivatives of

̺i with respect to s lie in A(s,t) by induction; hence arbitrary high derivatives
of Φ with respect to s and λ lie in A(s,t), and we conclude that the image of Φ
with fixed t is the linear space A(s,t), contradicting our assumptions. Therefore,

∂2̺0

(∂s)2
6= 0 mod A(s,t) and T(s,t)Ŷ = A(s,t) +

{
∂2̺0

(∂s)2

}
= A(s,t) +

{
∂2̺i

(∂s)2

}
,

and we find functions ζi(s, t) with

∂̺i

∂t
= ζi

∂2̺0

(∂s)2
.

Next we choose the family G by choosing a parameterized surface ϕ(s, t) not
contained in H∞ and setting

G(s,t) := A(s,t) + {ϕ(s, t)} =

{
̺i,

∂̺0

∂s
, ϕ

}
=

{
̺i,

∂̺i

∂s
, ϕ

}
.

Now the family s 7→ G(s,t) is supposed to swept out a Gauss rank 1 variety,
hence ({

∂̺i

∂s
,
∂2̺0

(∂s)2
,
∂ϕ

∂s

}
+ G

)
/G =

({
∂2̺0

(∂s)2
,
∂ϕ

∂s

}
+ G

)
/G

is one–dimensional [FP, 2.3.5], i.e., using ∂2̺0

(∂s)2 6∈ G there exists a function ξ(s, t)

with
∂ϕ

∂s
= ξ

∂2̺0

(∂s)2
mod G.

The variety X is locally the image of

Ψ : (C2, 0) × Cn−1 −→ X̂

(s, t, λ, µ, ν) 7−→
∑n−4

i=0 λi̺i(s, t) + µ∂̺0

∂s
+ νϕ.

Its tangent space is

TΨ(s,t,λ,µ,ν)X̂ =
{
̺i,

∂̺0

∂s
, ϕ, µ ∂2̺0

(∂s)2 + ν ∂ϕ
∂s
,
∑
λi

∂̺i

∂t
+ µ∂2̺0

∂s∂t
+ ν ∂ϕ

∂t

}

=
{
̺i,

∂̺0

∂s
, ϕ, (µ+ νξ) ∂2̺0

(∂s)2 , (
∑
λiζi)

∂2̺0

(∂s)2 + µ∂2̺0

∂s∂t
+ ν ∂ϕ

∂t

}
.
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Note that for a sufficient general choice of ϕ the ∂ϕ
∂t

will not be contained in
the span of the other occurring vectors. Therefore, the tangent space of X is
precisely constant along the image of Ψ with fixed s, t and fixed ratio of µ and
ν. This shows that X has Gauss rank 3. Further, an adapted parameterization
of X is given by Ψ(s, t, λ, µ, µu) whose image for fixed (s, t, u) are the Gauss

fibers of X . For general (s, t, u) the dimension of TΨ(s,t,λ,µ,µu)X̂ will drop only
at µ = 0, i.e., the focal variety of X is given by the image of Ψ(s, t, λ, 0, 0),
which is Y ⊂ H∞. 2
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