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Abstract

We examine the yearly claim size distribution in dependence of age

group and sex. Named distributions are fitted to the data. Special at-

tention is given to the heaviness of the tails due to its importance for

the assessment of risks inherent in health insurance. Finally, we caution

against using the normal approximation without an error estimate be-

cause simulations show a bad fit of the Gaussian distribution to claim

distributions of groups thousand or even ten thousand strong.

Key words. claim size distribution, distribution fitting, health insur-

ance, normal approximation, tail index.

German private health insurance is health insurance with guaranteed re-
newal. A contract of an adult is intended to be lifelong and the premiums are
calculated in such a way that they remain constant for life if no medical infla-
tion occurs. The main basis of premium calculation are the expected claims in
the entire future of the insured. These together with the expected lapse and
mortality rates yield an expected cash flow. The net premium is the present
value of this cash flow converted into a lifelong constant annual premium.

By German law [KalV, §6] the estimation of the expected claims must be
based on previous experience taking into account the sex and the age of the
insured. (In order to ensure gender equality costs for pregnancy and birth
are distributed over both sexes, but we will ignore this for the purpose of this
article.) In practice, the insured persons are split into cohorts depending on the
sex and the age group, where the groups cover five consecutive ages, e.g., 20–24,
25–29, 30–34, etc. The mean value of the claims in a cohort is taken as a raw
estimate for the expected claim. For premium calculation these raw estimates
are smoothed over the ages for each of the sexes.

Already for a moderate number of observations the mean is in general a
good estimator for the expected value. Due to this and a security margin of
at least 5% in the premium calculation prescribed by law [KalV, §7], there was
no pressing need to investigate the claim size distribution for the purpose of
premium calculation. However, there are several areas where the knowledge of
claim size distributions is useful:

• For pricing high–excess loss layers in reinsurance the tail of the distribution
must be known.
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• Recognition of an atypical number of high claims in a cohort which may
have a large impact on the mean and hence impair the premium calcula-
tion. In practice, this is dealt with in an ad hoc manner.

• For the calculation of risk adjusted premiums more information about the
claim size distribution besides the expected value is needed. In general,
it is assumed that the mean of a cohort is normally distributed. This
assumption must be justified — in particular, if there is only a moderate
number of observations and the claim size distribution is highly skewed, as
it is the case for medical insurance covering specifically hospital expenses.

• In recent years German health insurance companies are evaluated by ana-
lysts based on a stochastic simulation, called market consistent embedded
value. So far only the income from capital investments is modeled stochas-
tically, while the claims are modeled deterministically by their expected
value. An understanding of claim size distributions enables an improved
modeling of the liabilities.

• Academic interest in distributions which occur in practice.

In the first section we will discuss the data and describe the portion of the
claim–free insured. In the second section we examine the conditional distribu-
tion of the non–zero claim sizes. We will show that after normalization these
distributions are similar over the age groups. Then we describe these empirical
distributions by named theoretical distributions. Finally, we study their tail.
In the third and final section we warn against using the central limit theorem
without an error estimation by giving unexpected examples.

The author is indebted to Deutsche Krankenversicherung AG (DKV) for
providing the data. Further, the author thanks Rasmus Schlömer for several
discussions.

1 The data set and general considerations

The examination is based on the claims in the year 2005 of a modern full cover
insurance as well as a classical inpatient, outpatient, and dental insurance which
are usually sold together. The data are grouped by the cohorts, i.e., by sex and
age groups spanning five years each. In order to ensure that each group contains
at least about one thousand members (more precisely at least 900), we consider
in the case of the full cover insurance only the ages from 25 to 54 for both sexes,
in the case of inpatient insurance the ages from 25 to 64 for men and from 30 to
59 for women, in the remaining cases the ages from 25 to 84 for both sexes. In
full cover insurance the strongest age group is 35–39 with more than 4500 men
and 2500 women. In the classical inpatient, outpatient, and dental insurance
the strongest age groups are 40–44 with more than 9500, 27000 resp. 30000 men
and 3500, 6500 resp. 8500 women. The fewer members in inpatient insurance
are due to the fact that the insurance company offers several popular inpatient
insurances, and we restrict our examination only to the most popular one.

In practice the members of a cohort are considered as a homogeneous risk
group. As mentioned in the introduction, it is required by the German law that
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the cohorts should not be split any further for the purpose of claim estimation
in premium calculation. We follow this practice in the article. However, there
are two well–known reasons why a cohort is not a homogeneous risk group:

• Before the signing of a health insurance contract the insurance company
requires a health risk assessment. High risks are rejected, medium risks
are charged an additional premium. The risk assessment leads to lower
than average claims during the first three to seven years of a contract.

• The insurance company offers a premium refund to the insured if neither
outpatient or dental treatments are reimbursed during a year. Thus, in-
sureds with small expenses will appear claim–free because they will prefer
the refund to the reimbursement. The premium refund increases if the
insured is claim–free for several years in a row. Hence, there are several
different thresholds at which the insured will ask for reimbursement.

Resulting from this we cannot expect that the cohorts are really homoge-
neous. However, one might hope that a cohort has a stable mixture of risks
after several years. Finally, we want to mention that the dental insurance has
a 25 percentage deductible for dental prosthesis and the full cover insurance
has a small fixed deductible. The latter increases the loss of information about
the possible small claims which already occurs because of the offered premium
refund for being claim–free.

How do we model the distribution of the claim sizes? Because of the claim–
free insureds the distribution will have a large mass at zero. So it is natural to
split the description of the claim size distribution into two parts: a distribution
describing the occurrence of zero claims and the conditional distribution of non–
zero claims. While examining the conditional distribution we will pay special
attention to the high claims, i.e., to the tail of the distribution, because of
its importance for the estimation of high quantiles, risk measures, pricing of
reinsurance etc.

In non–life insurance the small and medium size claims are modeled for each
cohort separately, while the extremely high claims are modeled by a Pareto
distribution neglecting the grouping into cohorts. Here, this does not seem to
be necessary as the distributions that we will fit to the claim size distributions
in the cohorts possess sufficiently heavy tails to cover the extremely high claims
appropriately. In addition, while in non–life insurance the extremely high claims
are due to random accidents, in health insurance a large portion of the extremely
high claims can be foreseen on the basis of the insureds’ health states. Thus
the claims are only partly random, and one should deal with the excepted high
claims on a case by case basis.

Let us start our examination with the description of the number of claim–
free insureds. The graph below shows the dependence of the percentage of the
claim–free insureds on insurance type, sex, and age based on data of the year
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Naturally, the highest percentage of claim–free insured are in inpatient in-
surance. For men the number of claim–free decrease with age, for women this
appears to be only true in inpatient insurance — the other types of insurances
are roughly constant. The obvious model for the number of claim–free is a Bi-
nomial distribution B(n, λ) whose parameter λ can be read off the above graph.

To validate this model we compare the data of 2005 to the data of 2004 in
the next two graphs. The first shows the relative change of λ in the year 2004
compared to the year 2005. For the second we fit a logistic regression model to
each cohort with the observation year as the only independent variable and plot
the p–value of the hypothesis test whether the observation year is relevant.
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The small probabilities for the moderate relative changes are due to the high
number of observations, which should have produced a very reliable estimate
for the parameter λ. In general, the influence of the observation year does not
seem to be significant — with the notable exception in outpatient insurance in
the younger ages. This may be due to an epidemic of a minor illness. Here, the
Binomial model should be used with caution.
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2 The conditional distributions

Having dealt with the portion of claim–free insureds in the previous section
we turn to the conditional distribution of non–zero claim sizes. Unfortunately,
because of the large proportion of claim–free in inpatient insurance the data
basis for our examination is greatly reduced. In the age group of 20–24 we
have only about 100 observations for women and 200 for men, in the other age
groups we have between 450 and 2100. For the other insurance types we have at
least 950 observations with the exception of dental insurance men 80–84, women
25–29, 75–84 and full cover men 25–29, 50–54, women 25–29, 45–54, which still
have at least 500 observations.

2.1 Comparison over the age groups

We start by plotting the means of the cohorts relative to the cohorts of age
40–44. This is called the profile:
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We note that none of the graphs has a big jump and the development with
increasing age has a clear trend. With the exception of dental insurance the
profiles increase with age. For dental insurance the graphs are slightly concave
with maximum at the age 62–67. We can observe this smooth behavior of the
profiles despite the fact that we included the extremely high claims, which are
usually ignored for premium calculation.

Next we plot the variance coefficient for the cohorts, i.e., the quotient of the
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standard deviation by the mean:

variation coefficient
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The graphs are jumpy, but the overall tendency is that the variation coefficient
is mainly independent of the age. The huge jump in the cohort of 40–44 year
old men in inpatient insurance is due to two extremely high claims of 83 and 59
times the mean of this cohort, while for the other ages the maximum is nearly
always below 25. The more prominent volatility of the graphs for women results
from the fact that there are fewer observations for women and hence we have a
larger error in the estimation of the standard deviation.

For all the following examinations we normalize the conditional distributions
in the cohorts by their means. Thus we will have a mean of 1 in each cohort
and our observation about the variation coefficients means that the standard
deviation depends on the insurance type and the sex, but is roughly independent
of the age group. Below we plot the pdfs of the cohorts using the R defaults. A
reduction of the default bandwidth in the kernel estimator leads to small bumps
in the graphs, thus the default value of R seems optimal.
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inpatient: pdf of normalized claim size
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dental: pdf of normalized claim size
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full cover: pdf of normalized claim size
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To our surprise we have very similar pdfs over the age groups with the
exception of inpatient insurance. Looking back at the huge change in the portion
of not claim–free polices over the ages in inpatient insurance compared to the
other insurance types a different behavior of inpatient insurance is unsurprising.

To give further evidence to the fact that the pdfs of the normalized claims
are roughly independent of the age — even at the right tails — we plot some
empirical quantiles of the distributions.
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inpatient: quantils of normalized claim size
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dental: quantils of normalized claim size
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full cover: quantils of normalized claim size
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Again we note the quantiles are nearly constant — with the exception of
the very high quantiles above 99%. The latter is caused by the fact that in
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that range are at most 50, sometimes less than 10 observations. With these few
observations volatility is to be excepted. To compute these quantiles one should
use the advanced methods described in Subsection 2.3.

2.2 Description through a probability distribution func-

tion

Classically claim size distributions are modeled by a lognormal or gamma dis-
tribution in combination with a Pareto distribution for large claims. Let us
fit a lognormal and gamma distribution with ML–estimation to the claim size
distribution of 40–44 year old men in full cover insurance. The resulting qq–
and pp–plots are:
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full cover gamma: qq−plot
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Obviously, the gamma distribution fits very badly. This is also the case for
other cohorts and insurance types, and we want to discourage its use in health
insurance. The fit of the lognormal distribution is not good either, there are
cohorts where the fit is worse. We see that the tail of the lognormal distribution
is not thick enough in the range from 2.5 to 12.5. In practice, one models
additional high claims with a Pareto distribution to compensate for this gap.
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Instead of trying to fix the bad fit of the lognormal distribution by adding a
Pareto distribution, we attempt to fit the following distributions to the claim size
distribution in hope of getting a better fit: scaled Burr Type XII, generalized
extreme value, gamma, generalized beta, generalized Birnbaum–Saunders with
Laplace, logistic, normal, and Student–t kernel (see Appendix B), inverse Gauss
type with Laplace, logistic, normal, and Student–t kernel (see Appendix A),
lognormal, Pareto, transformed beta and transformed gamma.

As a measure for the quality of the fitting we looked at the histograms,
qq–plots, pp–plots, and plot of the empirical cdfs together with the fitted cdfs.
However, we can present here only the results of the Kolmogorov–Smirnov test.
To reduce the amount of data we split the data by insurance type and sex
and give only the mean and quantiles of the statistics and p–values over the
age groups. The best fitting distributions as well as the lognormal and gamma
distribution can be found in the following table:
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type distribution sex d–statistic p–value

mean min q.25 q.5 q.75 max mean min q.25 q.5 q.75 max

outpatient Burr M .014 .007 .010 .013 .016 .022 .391 .087 .206 .286 .607 .895

outpatient Burr W .017 .012 .014 .015 .017 .027 .704 .236 .677 .768 .835 .947

outpatient Burr adj. M .013 .007 .009 .013 .016 .020 .449 .067 .334 .401 .611 .859

outpatient Burr adj. W .017 .013 .015 .016 .016 .026 .660 .262 .578 .654 .814 .967

outpatient gamma M .057 .047 .052 .056 .060 .066 0 0 0 0 0 0

outpatient gamma W .054 .038 .049 .054 .061 .068 .005 0 0 0 .001 .027

outpatient IGT–St M .011 .007 .009 .010 .011 .018 .647 .19 .589 .662 .756 .967

outpatient IGT–St W .016 .012 .014 .016 .017 .019 .708 .434 .586 .665 .883 .971

outpatient IGT–St adj. M .017 .010 .012 .015 .023 .025 .326 0 .014 .203 .618 .911

outpatient IGT–St adj. W .026 .016 .019 .022 .027 .047 .348 .003 .106 .400 .454 .805

outpatient lognorm M .058 .049 .054 .055 .062 .070 0 0 0 0 0 0

outpatient lognorm W .049 .037 .047 .050 .054 .057 .006 0 0 .001 .002 .031

outpatient trbeta M .010 .005 .007 .010 .010 .019 .757 .583 .650 .743 .869 .968

outpatient trbeta W .016 .013 .014 .014 .016 .024 .719 .359 .657 .706 .887 .955

inpatient Burr M .049 .034 .040 .049 .054 .062 .094 0 0 .003 .034 .908

inpatient Burr W .059 .035 .047 .052 .063 .118 .097 .003 .016 .069 .111 .332

inpatient Burr adj. M .048 .036 .041 .049 .053 .059 .092 0 0 .003 .037 .891

inpatient Burr adj. W .058 .035 .046 .052 .060 .122 .104 .005 .017 .069 .124 .353

inpatient EVT M .037 .023 .029 .036 .043 .064 .168 .001 .016 .068 .288 .527

inpatient EVT W .046 .028 .032 .041 .048 .110 .315 .063 .092 .229 .477 .799

inpatient gamma M .087 .057 .070 .092 .098 .116 .024 0 0 0 .001 .285

inpatient gamma W .096 .066 .073 .091 .104 .198 .001 0 0 0 .001 .003

inpatient GBS–St M .034 .019 .024 .029 .042 .056 .248 .008 .043 .182 .432 .648

inpatient GBS–St W .039 .029 .035 .038 .042 .050 .382 .161 .200 .294 .537 .953

inpatient IGT–St M .037 .023 .035 .038 .044 .045 .191 0 .002 .063 .12 .935

inpatient IGT–St W .042 .028 .035 .038 .044 .080 .361 .027 .168 .406 .511 .862

inpatient IGT–St adj. M .047 .027 .039 .048 .052 .067 .133 0 0 .005 .058 .726

inpatient IGT–St adj. W .051 .033 .037 .044 .046 .152 .211 .014 .095 .171 .294 .511

inpatient lognorm M .096 .069 .082 .096 .106 .120 .011 0 0 0 0 .128

inpatient lognorm W .111 .065 .086 .106 .129 .176 0 0 0 0 0 .003

inpatient trbeta M .035 .030 .033 .035 .037 .046 .172 .003 .035 .039 .104 .948

inpatient trbeta W .044 .034 .037 .039 .045 .087 .279 .044 .138 .293 .408 .558

inpatient trgamma M .064 .047 .054 .065 .074 .082 .063 0 0 0 .003 .742

inpatient trgamma W .076 .049 .058 .072 .079 .150 .018 0 .001 .007 .030 .068

dental Burr M .043 .034 .041 .043 .045 .052 .048 0 0 0 .004 .53

dental Burr W .047 .040 .045 .047 .050 .052 .028 0 0 0 .027 .169

dental Burr adj. M .052 .040 .047 .050 .054 .070 .008 0 0 0 0 .068

dental Burr adj. W .058 .050 .054 .057 .062 .068 .013 0 0 0 .001 .130

dental EVT M .047 .030 .043 .047 .054 .060 .064 0 0 0 .006 .720

dental EVT W .051 .044 .049 .050 .053 .057 .026 0 0 0 .030 .129

dental gamma M .105 .085 .094 .103 .114 .133 0 0 0 0 0 0

dental gamma W .114 .106 .107 .111 .117 .132 0 0 0 0 0 0

dental GBS–logistic M .032 .016 .025 .030 .037 .047 .091 0 0 0 .009 .882

dental GBS–logistic W .040 .031 .035 .037 .039 .068 .063 0 0 .003 .025 .451

dental BS M .033 .018 .022 .030 .037 .062 .054 0 0 0 .023 .567

dental BS W .040 .027 .034 .038 .041 .066 .053 0 0 .004 .016 .330

dental GBS–St M .031 .014 .021 .030 .036 .050 .104 0 0 0 .031 .964

dental GBS–St W .040 .032 .035 .036 .041 .070 .068 0 0 .003 .012 .508

dental IGT–laplace M .050 .040 .046 .047 .053 .066 .005 0 0 0 0 .033

dental IGT–laplace W .058 .051 .053 .055 .061 .083 .010 0 0 0 .001 .110

dental IGT–logistic M .040 .031 .035 .039 .044 .052 .061 0 0 0 .019 .643

dental IGT–logistic W .042 .032 .038 .040 .044 .052 .086 0 0 .001 .068 .394

dental IGT–St M .038 .023 .036 .038 .042 .047 .091 0 0 0 .046 .938

dental IGT–St W .043 .033 .040 .042 .046 .052 .077 0 0 0 .048 .407

dental IGT–St adj. M .045 .026 .044 .046 .050 .057 .073 0 0 0 .007 .854

dental IGT–St adj. W .050 .039 .045 .049 .053 .061 .046 0 0 0 .018 .245

dental lognorm M .037 .029 .035 .038 .038 .045 .058 0 0 0 .018 .409

dental lognorm W .044 .032 .042 .042 .044 .067 .039 0 0 .001 .022 .235

dental lognorm adj. M .039 .032 .037 .038 .040 .050 .046 0 0 0 .010 .498

dental lognorm adj. W .046 .037 .041 .043 .049 .065 .028 0 0 0 .008 .252

dental Pareto M .044 .040 .042 .044 .045 .048 .024 0 0 0 .009 .214

dental Pareto W .049 .038 .046 .047 .049 .068 .017 0 0 0 .012 .104

dental trbeta M .037 .031 .034 .037 .038 .043 .057 0 0 0 .033 .430

dental trbeta W .042 .036 .040 .041 .043 .054 .052 0 0 .001 .058 .339

dental trgamma M .059 .050 .054 .058 .065 .072 .001 0 0 0 0 .014

dental trgamma W .065 .054 .063 .064 .066 .091 .007 0 0 0 0 .082

full cover Burr M .018 .011 .014 .016 .019 .031 .849 .658 .789 .844 .946 .999

full cover Burr W .022 .014 .021 .022 .023 .029 .725 .285 .668 .736 .913 .975

full cover Burr adj. M .020 .012 .014 .017 .022 .035 .797 .524 .687 .865 .898 .993

full cover Burr adj. W .023 .015 .021 .022 .025 .031 .685 .200 .612 .723 .883 .951

full cover gamma M .080 .074 .075 .078 .082 .093 0 0 0 0 0 0

full cover gamma W .064 .039 .055 .065 .077 .081 .011 0 0 .001 .001 .061

full cover IGT–St M .017 .012 .012 .016 .019 .029 .838 .511 .754 .901 .987 .997

full cover IGT–St W .022 .013 .023 .024 .025 .025 .693 .261 .513 .765 .918 .972

full cover IGT–St adj. M .022 .013 .019 .021 .022 .036 .634 .318 .418 .584 .874 .986

full cover IGT–St adj. W .035 .019 .024 .033 .041 .059 .427 .001 .098 .451 .687 .910

full cover lognorm M .042 .033 .037 .043 .047 .048 .104 .001 .011 .103 .168 .247

full cover lognorm W .048 .040 .041 .045 .051 .064 .081 .002 .004 .009 .139 .281

full cover trbeta M .019 .012 .014 .016 .019 .037 .784 .441 .593 .884 .973 .996

full cover trbeta W .020 .014 .016 .021 .024 .025 .812 .505 .733 .883 .946 .954

While considering this table we should keep in mind that we cannot hope
that our claim size distributions are amongst the known named distributions.
We want to find only a good approximation. Here, a comparison of the p–
values only can be misleading because it is heavily influenced by the number of
observations. In some cohorts we have a huge number of observations, hence a
small deviation of the claim size distribution from the fitted one will lead to a
small p–value. Therefore, it is important to look at the statistic of the KS–test
as well, which is the maximum distance of the cdfs of the two distributions.
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The first glimpse at the table confirms that the gamma distribution is un-
suitable for approximating any of the claim size distributions. The lognormal
distribution can only be useful in dental insurance. However, a closer look
reveals that it overestimates the tail in this case.

The Burr, IGT–St, and transformed beta distributions are the most suit-
able distributions for the modeling of outpatient and full cover insurance whose
claims are dominated by the outpatient claims. (Ignore the “adj.” lines in the
table for the time being.) The transformed beta distribution is the only four
parameter distribution among them. It does not fit the claim size distribution
notably better than the two other three parameter distributions. Under such
circumstances the model with the least parameters should be chosen, following
general principles. In addition, sometimes numerical difficulties arise during the
ML–estimation of the four parameters. Thus we will consider only the Burr and
IGT–St distribution further.

In inpatient insurance we are unable to get a fit of similar quality as in
outpatient and full cover insurance. However, the same distributions still give
a good fit and even the comparison of their fits is as above. The table shows
that the EVT, GBS–St, and transformed gamma distributions provide a fit of
the same quality. However, the qq– and pp–plots indicate an inferior fit: The
GBS–St distribution fits the tail very badly and the the graph of the pp–plot of
the transformed gamma distribution shows an S–shape. The EVT distribution
provides a good fit in the younger ages, but has problems with the tail for the
older ages. While from the quality of the fit it might be worthwhile to examine
the EVT distribution further for the inpatient claim size distribution, we will
neglect it because it fits the other insurance type badly.

We estimate the parameters for the Burr and IGT–St distribution by the
maximum likelihood method and plot the resulting estimated means. Due to
our scaling they should be 1.
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IGT−St: estimated mean
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The IGT–St distribution obviously fits the cohorts of 25–29 year old women
in inpatient insurance badly. This cohort is different from the other because it
contains many claims due to pregnancy. In addition, it is the smallest one, thus
we have the largest estimation error here. However, even apart from this the
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estimated mean deviates often by more than 5% for both distributions. As this
effect varies slowly with age, we have to assume that it is not random, but that
there is a systematic difference between the empirical claim size distributions
and the theoretical ones. A systematic deviation of the expected mean from
the true one is not acceptable for many applications, for example premium
calculation. Therefore, we force the mean to be one and estimate only the
remaining parameters by ML–estimation. For the IGT–St distribution we set
µ = 1; for the Burr distribution we estimate the parameters α, β by maximum
likelihood while simultaneously choosing the scale parameter such that the mean
is one. The resulting KS–test results are the “adjusted” lines in above table.

To get an impression of the fit we draw the qq– and pp–plot of the cohorts
of the 40–44 year old men. We cut off the qq–plots at 20 because we have a
detailed discussion about the tails in the next subsection.
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The pp–plots confirm the impression we got from the table about the KS–
test: both distributions fit the claim size distributions of outpatient and full
cover insurance very well, but the inpatient insurance less well. The qq–plot
shows that beyond six the empirical distributions deviate somewhat from the
theoretical ones. However, this is already an area where there are only few
observations and random effects will be noticeable. In the next subsection we
will show that we have a good fit in the tail overall.

We plot the estimated parameters after the adjustment to mean one:
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Burr adj.: estimated scale
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IGT−St adj.: estimated λ

age

1.0

1.5

2.0

2.5

3.0

3.5

30 40 50 60 70 80

men

1.0

1.5

2.0

2.5

3.0

3.5

women

outpatient inpatient full cover

IGT−St adj.: estimated ν
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In general, the graphs are well–behaved, not too volatile, and mainly con-
stant with the exception of impatient insurance, which shows a clear trend. Let
us discuss the obvious exceptions first. We already noted above that the 25–29
year old women in inpatient insurance are exceptional, and we see that the IGT–
St distribution has also exceptional parameters for the men of this age group.
Since no obvious outliers were visible in the data, we can only speculate about
the reasons: One possibility is that due to few observations in those cohorts
an estimation of a distribution function is too unreliable, another is that this
age group contains many newly insureds, which have thus recently passed a risk
assessment and therefore distort the distribution.

The other prominent exception are the parameters for the Burr distribu-
tion for the 30–34 year old women in full cover insurance. Clearly, claims
due to pregnancy will play an important role here. However, here we see
also a disadvantage of the Burr distribution, namely that the interpreta-
tion of its parameters is difficult. The parameters of the exceptional cohort
are (a, b, scale) = (5.93, 1.10, 4.44) and the ones of a neighboring cohort are
(2.43, 1.10, 1.48). While the values are very different, the following plot shows
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that the resulting pdfs and cdfs are similar:
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Apart from these exceptions the graphs are well–behaved. To get a better
intuitive understanding and to be able to compare both distributions we plot
the mode, i.e., the point of maximum of the pdf:
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Most prominent are the decrease in inpatient insurance as well as the increase
in outpatient insurance for men. Looking back at the plots of the empirical pdfs
in Subsection 2.1 we see that these cases are in fact the ones where the profiles
and the pdfs vary at most with age. We also note that the modes for the
Burr and the IGT–St distribution fits differ somewhat, especially in inpatient
insurance where the fit of both distributions is not as good as in inpatient and
full cover insurance.

The claim size distribution in dental insurance behaves very differently from
the remainder. This is due to fact that very high claims are nearly impossible,
and thus the distribution has at most a slightly heavy tail, see also the discussion
in the next subsection. The best fit is achieved by the generalized Birnbaum–
Saunders distribution with normal, logistic, and Student–t kernel. As the fits
with normal and logistic kernel are very similar, we will focus on the classical
Birnbaum–Saunders distribution with normal kernel. The GBS distribution
with Student–t kernel usually has a slightly better fit in the tail, but it comes at
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the disadvantage of an additional parameter. The parameters by ML–estimation
and the resulting expected mean are as follows:
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GBS−St: estimated ν
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The graphs are in general well–behaved and in addition the resulting ex-
pected mean is very close to 1, thus we do not make any correction of the
parameters this time. The only problem is that the ML–estimation the ν pa-
rameter for the GBS–St distribution is not robust for ν in the above range, see
Appendix B. In the cohort of 75–79 year old women we have ν > 100. How-
ever, this is acceptable because the changes of ν in this range have only a minor
impact on the shape of the pdf. To get a better impression of the quality of the
fit, we show again the qq– and pp–plots for the 40–44 year old men:
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We compare the fits of the distributions by their modes:
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The graphs are similar and both reveal a slight shift of the mode to the left with
increasing age. In fact, we can see this trend in the plot of empirical distribution
functions in Subsection 2.1.

If only the traditional distributions are available for modeling the claim size
distributions one should choose the lognormal distribution. All other distri-
butions except the gamma distribution fit the tail very badly — as qq–plots
show — and the above table shows that the lognormal distribution provides a
much better fit than the gamma distribution. We estimate the parameters by
applying the maximum likelihood method and plot the resulting means:
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lognorm: estimated mean
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As the mean is often off by more than 5% we adjust the parameters such that
the mean is 1. This is done by a ML–estimation of σ while simultaneously
choosing µ such that the mean is one. For comparison we give again the qq–
and pp–plots:
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The resulting parameters and modes are:
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lognorm adj.: estimated σ
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The graphs are again well–behaved. Like the other two distributions the fit
reveals a slight shift of the mode to the left with increasing age.

2.3 Examination of the Tail

The tail of a claim size distribution is essential for pricing high–excess loss
layers in reinsurance or estimating the risk borne by the insurance company.
To examine the tails of our distribution we apply Extreme Value Theory in the
form of the excess over threshold approach. We will recall briefly the facts of
interest to us, see [MFE, Sec. 7] for an extensive introduction and [CDL] for an
application to large claims in American health insurance.

The excess distribution of a random variable X with cdf F over threshold u
has cdf

Fu(x) = P(X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)

for x ≤ xF − u where xF ≤ ∞ is the right endpoint of F .
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Under reasonable assumptions which hold generally in practice the theorem
of Pickands, Balkema, and de Haan states that for u → xF the excess distribu-
tion converges to a generalized Pareto distribution (GPD), whose cdf is given
by

Gξ,β(x) =

{

1− (1 + ξx/β)−1/ξ for ξ 6= 0,
1− exp(−x/β) for ξ = 0,

where ξ is called the shape and β > 0 the scale parameter. The x–value must
be in the range [0,∞[ for ξ ≥ 0 and [0,−β/ξ] for ξ < 0. Note that for ξ = 0 the
GPD is the scaled exponential distribution and that this is the limit of Gξ,β for
ξ → 0. The GDP has the property that its excess distribution over threshold u is
again a GPD of the same shape. More precisely, if F = Gξ,β then Fu = Gξ,β(u)

with β(u) = β + ξu.

An important consequence is that the GPDs approximating the excess distri-
butions of some distribution F over a sufficient high threshold will have similar
shapes, and we can define the limit of α = 1/ξ for u → xF to be the tail index
of the distribution F . For ξ > 0 the distribution is called heavy tailed. In this
case the higher moments E(Xk) for k ≥ 1/ξ = α are infinite.

If F is given analytically the easiest way to compute the tail index it to use
a theorem of Gnedenko, which says for a heavy tail distribution

F (x) := 1− F (x) = x−αL(x)

with L a slowly varying function at ∞, i.e., limx→∞ L(tx)/L(x) = 1 for all t > 0.
By Karamata’s Theorem this is equivalent to

f(x) = x−α−1L̃(x)

for the pdf f with another slowly varying function L̃ if f is finally monotonically
decreasing.

The main practical application of Extreme Value Theory is to improve the
estimates related to the tail of a distribution. If the excess distribution of F
over the threshold u is Gξ,β we obtain the tail probability

F (x) = P(X > u)P(X > x|X > u) = F (u)Fu(x−u) = F (u)

(

1 + ξ
x− u

β

)

−1/ξ

.

The value at risk is for z ≥ F (u)

Varz = u+
β

ξ

(

(

1− z

F (u)

)

−ξ

− 1

)

.

For ξ < 1 the expected shortfall exists as well and can be calculated as

ESz =
Varz
1− ξ

+
β − ξu

1− ξ
.

In practice, one uses for F (u) the estimator nu/n where nu is the number of
observations above u and n is the total number of observations. Such an estima-
tor becomes unreliable if there are only few observations above the threshold.
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This is the reason why one does not use such an estimator for F (x) with x > u,
but instead the above formula where the estimator for F (u) is still reasonably
reliable.

Now we apply the theory to our distributions. A major difficulty is to choose
the threshold u because we have two conflicting goals: The higher u the better
will be the GPD approximation to Fu; the lower u the more data are available
to fit the GPD to Fu. There is no canonical way for this choice. The best known
methods are graphical, like the Hill plot, the sample mean excess plot, or simply
plotting the ML–estimator for ξ in dependence of u.

In the sample mean plot one plots an empirical estimate for e(u) = E(X −
u|X > u). In case of a GPD one finds

e(u) =
β(u)

1− ξ
=

β + ξu

1− ξ
,

i.e., a straight line with ascending slope for a heavy tailed distribution. In the
plots our distributions clearly exhibit this tail behavior with the exception of
dental insurance. There one finds that in the middle age groups the graph of
e(u) becomes flat beyond 6 and for older ages the flat part starts already at 2–3.
This indicates that in contrast to the other insurance types dental insurance is
not heavy tailed — at least in the middle and older ages.

Of course, in practice it is well–known that extremely high claims in dental
insurance are impossible and thus the distribution should not be heavy tailed.

Because we have so many claim size distributions we cannot choose our
threshold based on plots. We will use thresholds based on the empirical 75%,
80%, 90%, 95%, 98%, 99% quantile of the distributions. We fit the GPD by
a ML–estimation to the tail, which is well–behaved for ξ > −0.5. The table
below gives the statistics and the p–values of the Kolmogorov–Smirnov tests of
the GPD fits to the distribution tails. To reduce the amount of data we group
the data by insurance type, sex, and threshold quantile and give the mean and
quantiles of the statistics and the p–values over the age groups.
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type sex thres. d-statistic p–value
quant. mean min q.25 q.5 q.75 max mean min q.25 q.5 q.75 max

outpatient M 75 .02 .01 .02 .02 .03 .04 .51 .11 .39 .60 .67 .79
outpatient M 80 .03 .01 .02 .03 .04 .05 .49 .05 .31 .58 .70 .82
outpatient M 90 .03 .02 .02 .03 .04 .05 .68 .30 .57 .72 .86 .93
outpatient M 95 .05 .02 .04 .04 .05 .07 .67 .16 .56 .77 .88 .99
outpatient M 98 .06 .03 .05 .06 .07 .12 .71 .34 .55 .67 .99 1
outpatient M 99 .09 .05 .07 .10 .12 .13 .72 .23 .50 .84 .96 .98
outpatient F 75 .03 .02 .02 .03 .03 .04 .86 .53 .85 .91 .96 .99
outpatient F 80 .03 .02 .02 .03 .03 .04 .89 .69 .78 .98 .99 1
outpatient F 90 .05 .03 .04 .04 .05 .06 .82 .71 .76 .81 .89 .95
outpatient F 95 .05 .04 .05 .06 .06 .07 .92 .76 .91 .96 .98 .98
outpatient F 98 .09 .07 .08 .08 .09 .15 .85 .70 .75 .87 .92 .99
outpatient F 99 .15 .09 .13 .14 .18 .22 .68 .56 .58 .65 .68 1
inpatient M 75 .04 .02 .03 .03 .05 .07 .76 .43 .59 .77 .94 .95
inpatient M 80 .04 .02 .03 .04 .05 .08 .73 .26 .58 .82 .93 1
inpatient M 90 .06 .03 .04 .05 .06 .14 .82 .57 .73 .80 .96 1
inpatient M 95 .09 .04 .06 .07 .09 .26 .78 .37 .70 .86 .88 1
inpatient M 98 .11 .07 .08 .10 .14 .15 .82 .60 .67 .88 .96 .99
inpatient M 99 .15 .10 .12 .13 .17 .24 .80 .26 .73 .90 .97 .99
inpatient F 75 .06 .04 .05 .05 .07 .14 .70 .10 .61 .76 .90 .96
inpatient F 80 .06 .04 .05 .06 .07 .13 .73 .18 .57 .78 .92 1
inpatient F 90 .09 .05 .06 .08 .11 .14 .72 .27 .47 .80 .96 .98
inpatient F 95 .11 .07 .09 .11 .13 .16 .74 .36 .58 .66 .95 .98
inpatient F 98 .17 .09 .14 .17 .21 .26 .73 .38 .60 .72 .93 1
dental M 75 .03 .01 .02 .02 .03 .07 .59 .14 .35 .61 .82 .98
dental M 80 .03 .01 .02 .02 .03 .08 .60 .09 .39 .63 .80 1
dental M 90 .04 .02 .03 .03 .05 .09 .57 .03 .35 .61 .80 1
dental M 95 .05 .02 .03 .04 .06 .15 .74 .21 .54 .90 .95 .99
dental M 98 .08 .03 .04 .06 .10 .17 .77 .10 .65 .95 .97 .99
dental M 99 .09 .05 .06 .08 .10 .17 .79 .41 .61 .87 .96 .99
dental F 75 .03 .01 .02 .03 .04 .06 .77 .08 .77 .85 .93 .98
dental F 80 .04 .02 .02 .03 .06 .06 .74 .15 .67 .77 .90 .99
dental F 90 .05 .03 .04 .05 .07 .09 .70 .24 .64 .71 .89 .99
dental F 95 .07 .03 .04 .06 .10 .15 .78 .33 .71 .84 .91 .98
dental F 98 .11 .04 .07 .09 .14 .25 .76 .15 .65 .85 .97 1
dental F 99 .12 .07 .09 .10 .13 .26 .74 .28 .48 .88 .95 .98

full cover M 75 .04 .02 .03 .03 .04 .06 .85 .52 .82 .93 .96 .99
full cover M 80 .04 .03 .04 .04 .04 .06 .88 .75 .86 .89 .93 .94
full cover M 90 .07 .05 .06 .06 .07 .09 .70 .51 .69 .71 .78 .81
full cover M 95 .10 .04 .09 .10 .12 .15 .60 .39 .53 .55 .58 .99
full cover M 98 .13 .08 .10 .12 .14 .25 .74 .40 .53 .82 .92 .99
full cover M 99 .17 .14 .16 .17 .18 .18 .73 .54 .67 .76 .82 .85
full cover F 75 .05 .02 .04 .05 .05 .08 .66 .24 .43 .76 .85 1
full cover F 80 .05 .03 .03 .05 .07 .09 .72 .27 .61 .75 .92 .99
full cover F 90 .07 .05 .06 .06 .07 .09 .76 .40 .71 .80 .90 .97
full cover F 95 .09 .08 .08 .09 .10 .11 .75 .40 .67 .79 .88 .99
full cover F 98 .15 .11 .13 .14 .17 .20 .70 .50 .58 .64 .83 .95
full cover F 99 .12 .11 .11 .12 .12 .12 .98 .96 .97 .97 .98 .99

Clearly, the p–values are all very good. However, the statistics for the quan-
tiles 99% and 98% are notably larger than for lower quantiles. This suggests
that one should base the estimation of ξ on a quantile threshold below or equal
to 95%.

The resulting ξ are plotted below. The figures also contain the estimation
of ξ based on the Burr and IGT–St fit to the entire distribution as thick lines.
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We note that the estimates based on the 99% and 98% quantiles are very
erratic over the age groups and therefore are not trustworthy. The remaining
estimates are very close together and define the interval where the true ξ should
be. We see that the two extremely high claims for the 40–44 year old males
in inpatient insurance, which already disturbed the estimate of the variance
coefficient, lead to very different estimates for ξ based on the 99%, 98%, and
95% quantile threshold.

The most remarkable fact is that our estimation for ξ based on the ML–
estimation of the Burr and IGT–St distribution adjusted to mean one fits very
well into our empirically estimated ξ. The estimated ξ is smoothed over age
groups compared to the empirically estimated; this effect is even more prominent
in case of the IGT–St distribution. Note in particular the very welcome effect
that the two extremely high claims for the 40–44 year old males in inpatient
insurance do not seem to disturb the estimation of ξ by this method. Further,
the IGT–St distribution leads to a slightly larger ξ than the one based on the
Burr distribution. Summing up we see that both distributions approximate even
the tails of the claim size distributions very well.
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For dental insurance we fitted the BS, GBS–St, and lognormal distribution
to the claim size data. The BS distribution has an exponential tail, thus ξ = 0.
The lognormal distribution has ξ = 0 as well. For the GBS–St distribution we
found mostly ν > 10, i.e., 0.2 ≥ ξ ≥ 0. These distribution based estimates
match the small values of ξ that we find empirically. This mostly confirms the
a priori expectation that dental insurances should not have a heavy tail. Note
however that the data indicate a slightly heavy tail — in particular for the
younger ages — and thus suggest the use of the GBS–St distribution.

3 The quality of the normal approximation

This final section only wants to caution about the use of the central limit the-
orem without any error estimation. While we know from textbook examples
that the mean of ten uniform random variables yields a nearly perfect Gaussian
distribution, this will not be the case for the unconditional claim size distribu-
tions. The best known estimate about the speed of convergence in the central
limit theorem is the theorem of Berry–Essen: Let Xn be i.i.d. random variables
with µ = E(Xn) and σ2 = Var(Xn). Define Zn =

∑n
i=1(Xi − µ)/σ

√
n as the

standardized mean of the first n variables. Then we have for the cdf Fn of Zn

|Fn(x) − Φ(x)| ≤ C%

σ3
√
n

for all x ∈ R,

where Φ is the cdf of the standard Gaussian, C the universal Berry–Essen con-
stant with a value between 0.39 and 0.77 and % = E(|Xn−µ|3) the third absolute
moment. The speed of convergence 1/

√
n cannot be improved as the example

of the Bernoulli distribution with mean 1/2 shows. Note that the unconditional
claim size distribution has a high weight at 0 and therefore the characteristic of a
Bernoulli distribution. Hence we expect to have a similar speed of convergence.
In addition, with the exception of dental insurance the claim size distributions
have a heavy tail and hence possess a large third absolute moment. Thus we
have two reasons to expect a slow convergence in the central limit theorem.

We confirm this with a simulation study on the claims of the 40–44 year old
men. We standardize the claims by their empirical mean and variance. Then
we examine the distribution of 50000 means of k randomly chosen values of this
standardized claim size distribution.

In case of full cover insurance a sample size of k = 100 still leads to a clearly
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skewed distribution.

full cover: sample size = 100
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For a sample size of 1000 the resulting distribution looks Gaussian in the range
of [−2, 2], while the tail clearly diverges from Gaussian behavior.

The claims of inpatient insurance exhibit the slowest convergence to the
Gaussian distribution due to the highest weight at 0 and the very heavy tail.
For a sample size of k = 1000 the distribution bears nearly no resemblance to
the Gaussian distribution:

inpatient: sample size = 1000
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For a sample size of 10000 the Gaussian distribution can be recognized in the
interval [−1, 2], but the tails are clearly not Gaussian:
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inpatient: sample size = 10000
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In praxis the claims of an entire group of policy holders are approximated by
a Gaussian distribution. Usually a risk margin for a premium or a risk capital
requirement for solvency purposes are based on high quantiles. In case of Sol-
vency II the 99.5% quantile is used. For the Gaussian distribution this is 2.576;
however, our simulation study for inpatient insurance of 1000 and 10000 policy
holders yields the higher values of 4.246 and 3.218, respectively. This shows
again that the normal approximation should be used with caution.

The following table gives an overview of the simulation study. Beside the
95%, 99%, and 99.5% quantiles it contains the statistic and p–value of the
Kolmogorov–Smirnov test against the Gaussian and the Anderson–Darling nor-
mality test. For comparison the textbook examples of the uniform and expo-
nential distribution are included.

Kolmogorov–Smirnov Anderson–Darling
type k q.95 q.99 q.995 statistic p–value statistic p–value
normal theo. — 1.645 2.326 2.576 0 1 0 1
uniform 10 1.632 2.279 2.517 0.004 0.537 1.02 0.011
exp 10 1.800 2.784 3.188 0.041 0 208.4 0
exp 102 1.695 2.478 2.778 0.015 0 21.6 0
exp 103 1.652 2.362 2.635 0.005 0.106 2.36 0
exp 104 1.636 2.325 2.563 0.006 0.096 0.929 0.018
full cover 10 1.716 4.444 5.282 0.163 0 Inf 0
full cover 102 1.863 2.937 3.418 0.070 0 530.3 0
full cover 103 1.723 2.521 2.856 0.0176 0 42.3 0
full cover 104 1.681 2.419 2.688 0.009 0.001 9.03 0
full cover 105 1.645 2.335 2.612 0.0038 0.455 0.597 0.119
outpatient 10 1.808 3.744 4.778 0.1262 0 Inf 0
outpatient 102 1.808 3.081 3.593 0.057 0 392.5 0
outpatient 103 1.708 2.553 2.879 0.0208 0 43.1 0
outpatient 104 1.677 2.402 2.683 0.0075 0.007 7.40 0
outpatient 105 1.639 2.342 2.607 0.0038 0.462 0.597 0.119
inpatient 10 0.818 2.250 2.978 0.3829 0 Inf 0
inpatient 102 0.960 4.095 6.920 0.198 0 Inf 0
inpatient 103 2.183 3.706 4.246 0.1612 0 Inf 0
inpatient 104 1.820 2.848 3.218 0.0499 0 297.3 0
inpatient 105 1.698 2.439 2.746 0.0153 0 26.1 0
inpatient 106 1.662 2.372 2.655 0.0039 0.433 1.42 0.001
dental 10 1.953 3.608 4.332 0.1285 0 Inf 0
dental 102 1.795 2.788 3.200 0.0425 0 204.5 0
dental 103 1.705 2.482 2.787 0.0115 0 22.3 0
dental 104 1.670 2.375 2.621 0.0075 0.007 3.40 0
dental 105 1.653 2.343 2.600 0.0027 0.862 0.468 0.249
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A The IGT–St Distribution

Sanhueza, Leiva, and Balakrishnan invented a new class of distributions by
generalizing the Inverse Gaussian distribution in the following way [SLB]: Let
Z be a random variable with standard symmetrical distribution, i.e., E(Z) = 0,
Var(Z) = 1, and its pdf can be written as h(t) = g(t2), t ∈ R. Then the random
variable X with pdf

f(t) = h

(√
λ(t− µ)

µ
√
t

) √
λ√
t3

for t > 0

is called an inverse Gauss type (IGT) distribution with parameters µ, λ > 0
and kernel g. We abbreviate this as X ∼ IGT(µ, λ; g). If g is the kernel of
the standard normal distribution then we obtain the well–known inverse Gauss
distribution. The most important properties of the IGT distribution are

1. E(X) = µ

2. If X ∼ IGT(µ, λ; g) then cX ∼ IGT(cµ, cλ; g) for c > 0, i.e., a IGT
distribution belongs to a scale family.

For details and additional properties we refer to the original article [SLB].

We are interested in the IGT distribution with Student–t kernel because
it fits several of our claim size distributions particularly well. The pdf of the
Student–t distribution is

h(t) =
Γ(ν+1

2 )√
νπΓ(ν2 )

(

1 +
t2

ν

)−
ν+1
2

.

Thus the pdf of the IGT–St distribution is

f(t) =
Γ(ν+1

2 )√
νπΓ(ν2 )

(

1 +
λ

νµ

(

t

µ
+

µ

t
− 2

))

−
ν+1
2

√
λ√
t3
.

We will allow any positive real number for ν and not only integers. For t → 0
the pdf behaves like the power function

Γ(ν+1
2 )√

πΓ(ν2 )

(ν

λ

)
ν

2 · t ν

2
−1.

In particular, for v < 2 it tends to infinity, while for v > 2 it tends to 0. For
t → ∞ the pdf behaves like the power function

Γ(ν+1
2 )√

πΓ(ν2 )
µν+1

(ν

λ

)
ν

2 · t− ν

2
−2.

Thus the distribution is asymptotically a Pareto distribution and has a heavy
tail with tail index α = ν/2 + 1, see Subsection 2.3.

The IGT distributions with normal, logistic, Laplace, and Student–t kernel
have been implemented by Leiva, Hernández, and Sanhuezain in R as the ig

29



package [LHS]. Thus we can plot some graphs to get a better intuitive under-
standing of the IGT–St distribution. As a IGT–St distribution belongs to a
scale family we may restrict ourselves to the case µ = 1.
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The graphs confirm that the parameter ν controls the head and tail behavior of
the distribution. The shape parameter λ can be used to move and flatten the
peak of the pdf.

Finally, we note that in the case of the IGT–St distribution the ML–
estimation of the parameters µ, λ is robust, i.e., exceptional high or low ob-
servations influence the estimation only moderately [LHS, SLB]. The picture
shows that the pdfs for large ν are very similar, thus the estimation of a high ν
will not be robust. Luckily, in our applications we encounter only ν up to 3.5.

B The GBS Distributions

Dı́az–Graćıa and Leiva–Sánchez generalized the Birnbaum–Saunders distribu-
tion in the following way [DL]: Let Z be a random variable with a standard
symmetrical distribution, i.e., E(Z) = 0, Var(Z) = 1, and its pdf can be written
as h(t) = g(t2), t ∈ R. Then the generalized Birnbaum–Saunders distribution
with parameters α, β > 0 and kernel g is the random variable X with pdf

f(t) = h

(

1

α

(

√

t

β
−
√

β

t

))

· 1

2αβ

(
√

β

t
+

√

β3

t3

)

for t > 0.

We use the notation X ∼ GBS(α, β; g). If Z is the standard normal distribution
we obtain the original Birnbaum–Saunders distribution. The most interesting
properties of the GBS distributions are

1. β is the median.

2. If X ∼ GBS(α, β; g) then cX ∼ GBS(α, cβ; g) for c > 0 and 1/X ∼
GBS(α, 1/β; g), i.e., a GBS distribution belongs to a scale family, which
is closed under reciprocation.

3. The cdf and quantiles of X can easily be computed in terms of the cdf
and quantiles of Z.
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For details and additional properties we refer to [DL, SLB2].

For our examination we are interested in the original BS distribution and
the GBS with Student–t kernel. Their pdfs are

f(t) =
1√

8παβ
exp

(

− 1

2α2

(

t

β
+

β

t
− 2

))

(
√

β

t
+

√

β3

t3

)

[BS]

f(t) =
Γ(ν+1

2 )

2
√
πνΓ(ν2 )αβ



1 +

(

t
β + β

t − 2
)

α2ν





−
ν+1
2 (

√

β

t
+

√

β3

t3

)

[BS–St]

and their means are

β

2

(

2 + α2
)

resp.
β

2

(

2 +
ν

ν − 2
α2

)

.

We will allow any positive real number for ν and not only integers.

The behavior of the BS pdf for t → 0 as well as for t → ∞ is dominated by
the exponential part, which converges to 0. In particular, the BS distribution
has no heavy tail. The pdf of the GBS–St distribution behaves for t → 0 like
the power function

Γ(ν+1
2 )

2
√
πΓ(ν2 )

ν
ν

2 αν

β
ν

2

· t ν

2
−1.

Hence, like the IGT–St distribution it tends to infinity for v < 2, while for v > 2
it tends to 0. For t → ∞ the pdf behaves like the power function

Γ(ν+1
2 )

2
√
πΓ(ν2 )

ανβ
ν

2 ν
ν

2 · t− ν

2
−1.

Thus the distribution is asymptotically a Pareto distribution and has a heavy
tail with tail index α = ν/2.

Barros, Paula, and Leiva implemented the GBS distributions with normal,
logistic, Laplace, and Student–t kernel in R as the gbs package [BPL]. We
plot some graphs of the original BS and the GBS–St distribution. As a GBS
distribution belongs to a scale family we may restrict ourselves to the case scale
parameter β = 1.
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In the case of the BS distribution the shape parameter can be used to move
and flatten the peak of the pdf. We note that for α < 1 the pdf has a very flat
head. This is atypical for a claim size distribution, thus we expect α > 1 in
applications.
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For the GBS–St distribution the graphs confirm that the parameter ν con-
trols the head and tail behavior of the distribution. We note that the pdfs for
v = 10 and ν = 50 are very similar. This indicates that that ML–estimation of
a large parameter ν is not robust. The shape parameter α can be used to move
and flatten the peak of the pdf. We note the flat head of the pdf for α � 1
and ν � 1 due to the term αν in the pdf. As remarked in the case of the BS
distribution, this is atypical for a claim size distribution, and we will not see
this combination of parameters in applications.

Finally, we note that the ML–estimation of the parameters α, β is robuster
for the GBS–St than for the GB distribution [BPL, SLB2].
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