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Abstract

A projective variety is called developable if the image of its Gauss map

has a smaller dimension than the variety itself. Developable varieties are

always singular, and requiring that all singularities lie in a hyperplane

puts a severe restriction on them. Here we refine a theorem of Wu and

Zheng stating that such varieties are the union of cones if the dimension

of the Gauss image is less than or equal to four. Afterwards we study

their singular locus. Finally, we describe the geometry of such varieties

whose Gauss image has dimension two.

1 Introduction

For an n-dimensional projective variety X ⊂ PN we consider its rational Gauss
map

γ : X 99K G(n,N), x 7→ TxX,

which assigns to every smooth point x of X its embedded tangent space TxX
as a point of the respective Grassmannian. The variety X is called developable
if the dimension of the image of the Gauss map, the Gauss rank r, is less than
the dimension of X . It is classically known that the general fiber of the Gauss
map is a linear space of dimension d = n − r. Further, one knows that every
developable variety is singular. In fact, on every Gauss fiber there exists a
hypersurface of degree r, called the focal hypersurface, that lies in the singular
locus of X .

Now one can ask if there exist developable varieties such that their singular
locus lies on a hyperplane H∞. We will call such a variety affinely smooth.
Trivial examples for such varieties are cones over smooth varieties with vertices
in H∞. All affinely smooth developable varieties of Gauss rank 1 are such
cones. This was originally proven by Hartman and Nirenberg in the euclidian
case [10], and later by Abe in the complex [1], and by Nomizu and Pinkall as
well as Opozda in the real affine case [12, 13]. After a suggestion of Bourgain,
Wu worked out an example of an affinely smooth developable hypersurface of
Gauss rank 2, which is not a cone. Later, Akivis and Goldberg showed that
this example is locally equivalent to an earlier example of Sacksteder [4, 15,
17]. They also found new examples of affinely smooth developable varieties
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[6]. In addition, Akivis and Goldberg proved that affinely smooth developable
varieties of arbitrary rank, but with a certain genericity condition on the second
fundamental form, are always cones[7].

Wu and Zheng examined the affinely smooth developable varieties in the
context of euclidian geometry and obtained the following result, which we will
describe in terms of projective geometry.

We group the d-dimensional Gauss fibers into sets, in which the fibers inter-
sect the hyperplaneH∞ transversely in the same linear space. The closure of the
union of the Gauss fibers in one of these sets is a cone, whose (d−1)-dimensional
vertex lies in H∞. We call such a cone a Gauss fiber cone. In general, the Gauss
fiber cone is just the d-dimensional Gauss fiber itself. However, Wu and Zheng
proved [18, Theorem 1]

Theorem (Wu, Zheng). Let X ⊂ PN be an affinely smooth developable
variety of Gauss rank r ≤ 4 or of Gauss fiber dimension d = 1. Then the Gauss
fiber cones have dimension greater than d.

Wu and Zheng also showed that under a special condition each Gauss fiber
cone is the union of linear spaces of dimension greater than d or may even be
a linear space itself [18, Theorem 2]. In particular, the latter will be the case if
X has Gauss rank 2, which is an unpublished Theorem of Vitter [16].

Theorem (Vitter). Let X ⊂ PN be an affinely smooth developable variety
of dimension n and Gauss rank 2. If X is not a cone then it is the union of a
one-dimensional family of (n− 1)-planes.

For an affinely smooth developable variety of Gauss rank 3 or 4, it will be
seldom the case that the above mentioned special condition holds. Here, we
will extend [18, Theorem 2] to Theorem 6. As a special case it implies that the
Gauss fiber cones are in many cases contained in a rather small linear space,
more precisely:

Theorem. Let X ⊂ PN be a general affinely smooth developable variety of
Gauss rank ≤ 4. Then its Gauss fiber cones are of dimension d+ 1 and each of
them is contained in a linear space of dimension d+ r − 1.

If X is of Gauss rank 2 and not a cone, then this theorem also specializes
to Vitter’s Theorem, since all such X are general in the sense of the theorem.
In Section 1 these theorems are proved in the projective case by using standard
arguments of Cartan’s moving frame method.

One advantage of working in the projective space instead of the euclidian
space is that one can consider the vertices of the Gauss fiber cones at infinity.
The vertex of a Gauss fiber cone is the focal hypersurface of its fibers. Thus
the union of their vertices is the focal variety of X . The focal variety together
with the focal hypercone variety, which is the focal variety of the dual variety
of X , govern the geometry of a developable variety [3, 5, 8]. We will study the
focal variety of an affinely smooth variety in Section 2. We will compute its
dimension, Gauss rank, and the type of its focal hypersurfaces (Theorem 9).

Finally, in Section 4 we examine the special case where X is uniruled by (n−
1)-planes. As a special case of Corollary 11 we obtain the following strengthening
of Vitter’s Theorem.
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Theorem. Let X ⊂ PN be an affinely smooth developable variety of dimension
n and Gauss rank 2 which is not a cone. Then there exists a unique curve C in
the hyperplane at infinity such that X is the union of a one-dimensional family
of (n− 1)-planes that contain the (n− 2)-th osculating planes of the curve C.

As a concrete example we get the construction of the Sacksteder-Bourgain
hypersurface back, as it was discovered by Akivis and Goldberg [4]: In P

4

take a plane conic in H∞ and a line. Further, choose a projective one-to-one
correspondence between them. Then the Sacksteder-Bourgain hypersurface is
the union of those planes that are spanned by a point of the line and the tangent
line to the conic at the corresponding point. Its Gauss fiber cones are plane
pencils of straight lines in those planes. The locus of the centers of these pencils
is the conic. This geometric description complements the analytic description
of affinely smooth hypersurfaces of Gauss rank 2 in [18].

2 The Setup and the Gauss Fiber Cone Theo-

rems

We will examine the developable varieties by using Cartan’s moving frame
method. Here we recall some facts, in order to fix the notations. For a complete
introduction see [8] or [11]. On the projective space PN , we have the bundle of
projective frames, consisting of bases (e0, . . . , eN ) of C

N+1. The infinitesimal
motion of the frame is described by

deA = ω0
Ae0 + . . .+ ωN

A eN for 0 ≤ A ≤ N,

where the ωB
A are the Maurer-Cartan 1-forms on GL(CN+1), which fulfill the

Maurer-Cartan equation
dωA

B = −ωA
C ∧ ωC

B .

To study the geometry of a developable variety, we work only on the subman-
ifold of the projective frame bundle where the general frame has the following
properties:

{e0} is a point of X,

{e0, . . . , ed} is the Gauss fiber F of X through {e0},

{e0, . . . , en} is the tangent space of X in {e0},

{e1, . . . , eN} is the hyperplane H∞.

Our adaptions to the geometry of X have the effect that

de0 = ω0e0+ωδeδ + ωiei

deδ = ωε
δeε + ωi

δei

dei = ωδ
i eδ + ωj

i ej + ωµ
i eµ

deµ = ωδ
µeδ + ωj

µej + ων
µeν

with ωA := ωA
0 and the index ranges 1 ≤ δ, ε ≤ d, d + 1 ≤ i, j ≤ n, and

n+ 1 ≤ µ, ν ≤ N .

Differentiating ωµ = 0 resp. ωµ
δ = 0 and using the Cartan lemma, we find

functions qµ
ij , a

i
δj such that

ωµ
i = qµ

ijω
j, ωi

δ = ai
δjω

j
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and qµ
ij as well as qµ

ika
k
δj are symmetric in i, j. Setting Qµ = (qµ

ij), Aδ = (ai
δj),

Q = span {Qµ}, and A = span {Aδ}, this means that QA is symmetric for
Q ∈ Q and A ∈ A [8, 4.1]. From the above expression for deδ we see that
A describes the infinitesimal movement of F ∩ H∞, thus we call it the fiber
movement system (at infinity).

The second fundamental form of X in x = {e0} is the second differential of
e0 modulo the tangent space

IIx = d2e0 = ωµ
i ω

ieµ = qµ
ijω

iωjeµ mod {e0, . . . , en}.

Thus the linear system Q describes the quadrics of the second fundamental
form. Since the second fundamental form is essentially the differential of the
Gauss map, the singular locus of IIx is the Gauss fiber F = {e0, . . . , ed}.

Now we recall that X is singular along a hypersurface in a Gauss fiber F .
Let e = λ0e0 +λδeδ ∈ F ⊂ X be a point of the fiber. We determine the tangent
space of X at e. Since F ⊂ X , we have F ⊂ TeX ; thus, we may compute
modulo F

de = (λ0ωi + λδωi
δ)ei = (λ0δi

j + λδai
δjω

j)ei mod {e0, . . . , ed}.

The point e ∈ X is smooth iff TeX = TxX . This will be the case if the matrix
λ0Er + λδAδ is invertible. Note that this is a local computation; hence, the
point e may in fact be a singular point if it is a point of selfintersection of X .
On the other hand, points e = λ0e0 + λδeδ ∈ F with det(λ0Er + λδAδ) = 0
will always be singular in X . They form the degree r focal hypersurface of the
Gauss fiber F . The closure of the union of the focal hypersurfaces is the focal
variety Xf ⊆ SingX of X .

The linear system A has the following invariant description. Let F ⊂
G(d,N) be the Gauss fiber variety, i.e. the closure of the set of all d-dimensional
Gauss fibers of X . At a smooth point F ∈ F we have

TFF ⊂ TF G(d,N) = Hom(F,CN+1/F ).

For a smooth x ∈ F ⊂ X , there is a canonical isomorphism TFF ∼= TxX/F .
Further, we use the fact that the images of all maps TFF ⊂ Hom(F,CN+1/F )
lie in TxX to rewrite our above inclusion as

F −→ Hom(TFF ,C
N+1/F ) = End(TxX/F ).

The image of F ∩H∞ under this map is the liner system A.

The linear system A corresponds to the conullity operators of [18]. In par-
ticular, they have the same properties, which we summarize in the following
proposition.

Proposition 1 Let X ⊆ PN be an affinely smooth developable variety. Then X
and the linear systems A and Q have the following properties:

1. A ∈ A is nilpotent.

2. QA is symmetric for all Q ∈ Q and A ∈ A.

3. SingQ = {v ∈ Cr | Q(v,Cr)} = 0.
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Proof. The properties 2 and 3 were mentioned above. Due to our adaptions
of the frame, the point e = λ0e0 + λδeδ can only be singular for λ0 = 0.
We conclude that the focal hypersurface of the Gauss fiber is the linear space
{e1, . . . , ed} = F ∩H∞; therefore, det

(

λ0Er + λδAδ

)

= (λ0)r. This shows that
0 is the only eigenvalue of the matrix A = λδAδ, i.e. A is nilpotent. 2

While properties 2 and 3 hold for any developable variety, property 1 is
equivalent to the fact that for an affinely smooth developable variety the focal
hypersurface of a Gauss fiber F is the linear space F ∩H∞.

Analogous linear systems A and Q with the same properties were already
encountered by Wu and Zheng in their euclidian setting [18, Section 1]. (The
elements of A correspond to the conullity operators there.) The properties 2
and 3 are local properties, hence they appear in the euclidian as well as in the
projective case. Property 1 is Abel’s Nilpotency Theorem for complete manifolds
in the euclidian setting [2]. The computations in [18, Prop. 1] indicate that a
proof of it can be based on the smoothness of the manifold along a complete
Gauss fiber. Such a proof would be similar to the above argument.

Now we fix a point x ∈ X and study the linear systems A and Q with the
help of linear algebra. We denote the common kernel of a linear system of
endomorphisms A by kerA and the span of the image of all endomorphisms,
the image space, by ImA.

If dimA = 1 and an A ∈ A\{0} is nilpotent, then we have kerA = kerA 6= 0.
In addition to that, Wu and Zheng showed in [18, Proposition 2] that for r ≤ 4
a linear system A with the above properties always has a nontrivial common
kernel. In their Proposition 3 they give without a proof a list of linear subspaces
of End(Cr) for r ≤ 4 with the property that with respect to a suitable chosen
basis the above linear system A is contained in one of those. However, not for
all linear subspaces A of their list one can find a linear system Q such that A
and Q have the properties of Proposition 1. Therefore, we will here refine their
list in such way that such a Q can always be found. This improvement will be
needed in the proof of Theorem 9. The proof of the following proposition is
contained in the appendix.

Proposition 2 Let A be a nontrivial linear system of endomorphisms of Cr

and Q a linear system of symmetric bilinear forms of Cr with

1. every A ∈ A is nilpotent,

2. the bilinear form Q( · , A( · )) is symmetric for every A ∈ A and Q ∈ Q,

3. SingQ = {v ∈ C
r | Q(v,Cr) = 0 ∀Q ∈ Q} = 0.

Let l be the rank of a generic matrix of A. Then there exists a basis of Cr such
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that A is contained in the following linear systems of matrices

r \ l 1 2 3

2

(

0 ∗
0 0

)

3

(

0 0 ∗
0 0 ∗
0 0 0

) (

0 x ∗
0 0 x
0 0 0

)

4







0 0 0 ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 0













0 0 x ∗
0 0 ∗ x
0 0 0 0
0 0 0 0













0 x y ∗
0 0 0 x
0 0 0 z
0 0 0 0







∗)







0 x y ∗
0 0 ∗ y
0 0 0 x
0 0 0 0







∗) If the system Q contains a matrix of full rank, y = z, otherwise y = 0.

For l = 1 the inequality dimQ ≥ dimA holds.

In particular, the linear system A always has a nontrivial common kernel.

For r ≥ 5 there are examples of linear systems A with the above properties
which have only a trivial common kernel.

All of the above linear systems can appear for affinely smooth developable
varieties. This was shown in [18, 3, Lemma 2] for linear systems A, Q with
dimQ = 1, but one can simply add more equations of the same type to extend
the lemma to arbitrary dimensional linear systems Q.

Now we turn these technical results into geometric statements. The Gauss
fiber cones of X are defined as follows: Let F ∈ F ⊂ G(d,N) be one of the
d-dimensional linear Gauss fibers of X that intersects H∞ transversely in a
(d − 1)-plane V . The Gauss fiber cone with vertex V is the closure of the
union of all Gauss fibers that intersect the hyperplane transversely in V . The
dimension of the Gauss fiber cones was computed by Wu and Zheng in Euclidian
context. Reproving their theorem in projective context, we get the chance to
study the cone vertices at infinity which are the focal hypersurfaces of the fibers.

Theorem 3 Let X ⊆ PN be an affinely smooth developable variety of Gauss
fiber dimension d. Let c be the dimension of the common kernel of the fiber
movement system A of X at a general point and l be the rank of a general
matrix of A.

Then the Gauss fiber cones of X have dimension d + c. The closure of the
union of their vertices is the focal variety. It has dimension l+d−1 ≤ dimX−2.

This shows again how special affinely smooth developable varieties are, since
the focal variety of a general developable variety has only codimension one in
X . Further, from the description of the focal varieties as the union of vertices
we would expect the focal variety to have dimension r − c + d − 1, but this is
not always the same as l + d − 1; consider for example the case r = 4, l = 2,
A2 6= 0 in Proposition 2.
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If the Gauss fiber cones are nontrivial, i.e. for c > 0, X is called a twisted
cone. From Theorem 3 and the fact that kerA 6= 0 for r ≤ 4, we immediately
reobtain the following statement, which was the main result of Wu and Zheng
[18].

Corollary 4 Let X ⊆ PN be an affinely smooth developable variety of Gauss
fiber dimension 1 or of the Gauss rank ≤ 4. Then the variety X is a twisted
cone.

In the extreme case of A = {0}, the variety X is itself a cone with a (d− 1)-
dimensional vertex at infinity. If the Gauss rank is one, we are always in this
extreme case; hence, we rediscovered the following theorem of Hartman and
Nirenberg in algebraic context [10].

Corollary 5 Let X be an affinely smooth developable variety of Gauss rank 1.
Then X is a cone over a smooth curve.

Proof of the Theorem. By a change in {ed+1, . . . , en} we can adapt the frame
further such that the common kernel of ωi

δ = ai
δjω

j is {ed+1, . . . , ed+c}, i.e.

ai
δs = 0 for d+ 1 ≤ s ≤ d+ c. We claim that

{e0, . . . , ed+c} = {ωd+c+1, . . . , ωn}⊥ ⊂ TX

is an integral subbundle, whose integral manifolds are the Gauss fiber cones.
For the integrability we have to show by the Theorem of Frobenius that

dωt = 0 mod {ωd+c+1, . . . , ωn} for d+ c+ 1 ≤ t ≤ n.

We differentiate ωi
δ = ai

δtω
t and get

dωi
δ = ai

δtdω
t mod {ωd+c+1, . . . , ωn}.

Since the matrices (ai
δt)it have no common kernel, dωt = 0 is equivalent to

dωi
δ = 0, both modulo {ωd+c+1, . . . , ωn}. Using the Maurer-Cartan-equations

we have

dωi
δ = −ωi

ε ∧ ω
ε
δ − ωi

j ∧ ω
j
δ

= −ai
εtω

t ∧ ωε
δ − ωi

j ∧ a
j
δtω

t = 0 mod {ωd+c+1, . . . , ωn}.

Now on an integral manifold C of the distribution we have

deδ = ωε
δeε + ωi

δei = ωε
δeε + ai

δtω
tei = ωε

δeε.

This shows that the subspace V = {e1, . . . , ed} is fixed on C. Hence, C is a
union of Gauss fibers {e0, . . . , ed} that contain the subspace V ; thus C is a
subcone of the Gauss fiber cone with vertex V . Since the tangent space to the
Gauss fiber cone must lie in the common kernel of ωi

δ = ai
δjω

j and since the
cone C is maximal with this property, the cone C is equal to the Gauss fiber
cone.

By Proposition 1 the union of the Gauss fiber cone vertices form a dense
subset of the focal variety Xf . We compute the dimension of Xf by determining
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the dimension of the tangent space at a general point e = λδeδ ∈ V ⊂ Xf . The
tangent space, which contains the linear space V , is the image of

de = λδ(ωε
δeε + ωi

δei) = λδai
δjω

jei mod {e1, . . . , ed}.

Thus it has dimension d− 1 + rankλδAδ = l + d− 1. 2

In general, the Gauss fiber cones are uniruled by d-planes, namely by the
Gauss fibers, but sometimes they are uniruled by higher dimensional planes
or are even linear spaces themselves. Further, they have the tendency to be
contained in small linear spaces. The precise statement is the following theorem,
which for special cases ImA ⊆ kerA and ImA = kerA was already discovered
by Wu and Zheng [18, Theorem 2].

Theorem 6 In the situation of Theorem 3 let

b = dim ImA ∩ kerA and f = dim ImA.

Then the (d + c)-dimensional Gauss fiber cones are the union of (d + b)-
dimensional subcones, each of which is contained in a (d+f)-dimensional linear
space L.

More precisely, if S is such a subcone for a Gauss fiber cone with vertex
V ⊂ H∞, the linear space L contains the (d + f − 1)-dimensional span of the
tangent spaces to Xf along V and is contained in the tangent space to X at any
point of S.

There are the three special cases:

• If ImA ⊆ kerA, then the Gauss fiber cones are uniruled by (d+f)-planes.

• If ImA ⊇ kerA, then the Gauss fiber cones are contained in a (d + f)-
plane.

• If ImA = kerA, then the Gauss fiber cones are linear spaces themselves.

As said above, the special cases ImA ⊆ kerA and ImA = kerA were dis-
covered by Wu and Zheng. They imply the following unpublished theorem of
Vitter [16], which we now obtain as a corollary.

Corollary 7 Let X ⊂ P
N be an affinely smooth developable variety of dimen-

sion n and Gauss rank 2. If X is not a cone then it is the union of a one-
dimensional family of (n− 1)-planes.

Proof of the Corollary. Since X is not a cone, the linear system A has a positive
dimension. By Proposition 2 we have ImA = kerA, so the Gauss fiber cones
themselves are linear space of dimension d+ 1 = n− 1. 2

Further, we find the following second corollary.

Corollary 8 Let X ⊂ PN be a general affinely smooth developable variety of
Gauss rank ≤ 4 and of Gauss fiber dimension d. Then its Gauss fiber cones are
of dimension d+1, and each of them is contained in a linear space of dimension
d+ r − 1.
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Proof of the Corollary. For a general affinely smooth developable variety a
general matrix of A will have rank r − 1. For r ≤ 4 we obtain with the help of
Proposition 2 that kerA ⊆ ImA and f = r − 1. 2

Proof of the Theorem. We adapt the frame further such that the image space
of the maps

ωi
δei = ai

δjω
jei : {ed+1, . . . , en} → {ed+1, . . . , en}

is {ed+1, . . . , ed+b, ed+c+1, . . . , ed+c+f−b}. We split the above index ranges s and
t into σ, s resp. τ, t, such that

d+ 1 ≤ σ ≤ d+ b < s ≤ d+ c < τ ≤ d+ c+ f − b < t ≤ n,

so
{eσ, es} is the common kernel of ωi

δei

{eσ, eτ} is the image space of ωi
δei

This has the consequence that ωσ
δ = ωτ

δ = 0 modulo {ωd+c+1, . . . , ωn} and
ωs

δ = ωt
δ = 0.

We claim that

{e0, . . . , ed+b} = {ωd+b+1, . . . , ωn}⊥ ⊆ TX

is an integral subbundle. By the Theorem of Frobenius this is equivalent to

dωs = dωt = dωτ = 0 mod {ωd+b+1, . . . , ωn}.

This was shown for dωt and dωτ in the proof of Theorem 3. It remains to treat

dωs = −ωs
σ ∧ ωσ mod {ωd+b+1, . . . , ωn}.

We differentiate ωs
δ = 0 and obtain

0 = dωs
δ = −ωs

σ ∧ ωσ
δ − ωs

τ ∧ ωτ
δ

= −ωs
σ ∧ (aσ

δτω
τ + aσ

δtω
t) − ωs

τ ∧ (aτ
δτ ′ωτ ′

+ aτ
δtω

t)

= −(aσ
δτ ′ωs

σ + aτ
δτ ′ωs

τ ) ∧ ωτ ′

− (aσ
δtω

s
σ + aτ

δtω
s
τ ) ∧ ωt.

By Cartan’s Lemma this implies

aσ
δτ ′ωs

σ + aτ
δτ ′ωs

τ = aσ
δtω

s
σ + aτ

δtω
s
τ = 0 mod {ωd+c+1, . . . , ωn}.

Since f = dim ImA, these are f linear independent linear combinations of the
f forms ωs

σ, ωs
τ , thus

ωs
σ = ωs

τ = 0 mod {ωd+c+1, . . . , ωn}.

Hence, dωs vanishes modulo {ωd+b+1, . . . , ωn}, and the Theorem of Frobenius
applies.

Let S be an integral manifold of this distribution. We claim that on S the
(d+ f)-plane

L = {e0, eδ, eσ, eτ}
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is fixed, and hence S is contained in L. It will be enough to show that the
differentials of e0, eδ, eσ, and eτ lie in L. On S we have

de0 = deδ = 0 mod L
deσ = ωs

σes + ωt
σet + ωµ

σeµ mod L
deτ = ωs

τes + ωt
τet + ωµ

τ eµ mod L.

From above we know that ωs
σ = ωs

τ = 0 on S. Analogously, we also get ωt
σ =

ωt
τ = 0 on S. It remains to discuss ωµ

σ = qµ
σiω

i and ωµ
τ = qµ

τiω
i. Because of the

symmetry of QAδ we have

0 = QAδ(kerA) = t(kerA) ·QAδ ⇒ t(kerA) ·Q · ImA = 0,

hence
qµ
σσ′ = qµ

στ = qµ
sσ = qµ

sτ = 0.

Therefore, ωµ
σ = qµ

σtω
t and ωµ

τ = qµ
ττ ′ωτ ′

+ qµ
τtω

t vanish also on S.

Finally, we show that L contains the tangent space to the focal variety Xf

along V . Since the tangent space at the e = λδeδ ∈ V ⊂ Xf is

V + Im (λδai
δjeiω

j),

the span of all these will be {eδ, eσ, eτ} ⊂ L. 2

3 The Focal Variety

The geometry of any developable variety X is determined or at least strongly
restricted by its focal variety and its focal hypercone variety, see [3, 5, 8] and
Corollary 11 in Section 4. Since we know the fiber movement system A for
an affinely smooth variety very well by Proposition 2, we can determine the
geometry of their focal varieties. Because the focal variety lies in the hyperplane
at infinity, it could not be studied by Wu and Zheng or Vitter in the euclidian
context. This shows the advantage of working in the projective space, as a large
part of the geometric information of X is coded in its focal variety.

Theorem 9 Let X be an affinely smooth developable variety of Gauss rank
2 ≤ r ≤ 4 which is not a cone. The Gauss fiber dimension of X is denoted by
d. For the fiber movement system A belonging to X at a general point, we have
the following invariants

l = rank of a general matrix A ∈ A
b = dimension of the image space ImA.

They are restricted by 1 ≤ l ≤ b ≤ r − 1.

Then the focal variety Xf has dimension d+ l − 1 ≤ n− 2, and therefore it
is a proper subvariety of X ∩H∞.

The Gauss rank of Xf is b. Its Gauss uniruling is a subuniruling of the
uniruling of Xf given by the vertices of the Gauss fiber cones.
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If Xf is developable, i.e. for d− 1 > b− l, its focal hypersurfaces are of the
following type

r subcase focal hypersurface

2 hyperplane

3 b− fold hyperplane

4 l = 1 b− fold hyperplane
l = 2, A2 = 0 quadric of rank ≤ 3
l = 2, A2 6= 0 b− fold hyperplane
l = 3 double hyperplane + hyperplane

Proof. Let e = λδeδ ∈ V ⊂ Xf be a point of the focal variety. Recall from
Theorem 6 that the tangent space of Xf at e is the image of

de = λδai
δjω

jei mod {e1, . . . , ed}.

Thus the dimension of the tangent space, and hence the dimension of Xf , is
d − 1 + rankλδAδ = d − 1 + l. Further, the tangent spaces of Xf will be
constant along the smooth points of the vertex V iff nearly all matrices λδAδ

have the same image, i.e. if l = b. Otherwise, the form of the matrix systems
in Proposition 2 shows that the tangent spaces will vary in a b− l dimensional
family along the vertex V . We see that the expected Gauss rank of Xf is
(r − c) + (b − l), but this will not always be the actual Gauss rank.

To determine the actual Gauss rank of Xf , we compute the second fun-
damental form of Xf at z = {e1}. Our strategy is to adjust the frame such
that

{e1, . . . , ed+l} is tangent space of Xf at z and
{e1, . . . , ed+b} is span of V and the image space of ai

δjω
jei.

Then with the index ranges 2 ≤ η ≤ d, d+1 ≤ σ ≤ d+ l, and d+ l+1 ≤ τ ≤ n,
we have

de1 = ωη
1eη + ωσ

1 eσ mod {e1}

IIXf ,z = d2e1 = ωη
1ω

τ
ηeτ + ωσ

1ω
τ
σeτ + ωσ

1ω
µ
σeµ

= aτ
ηiω

iωη
1eτ + ωσ

1ω
τ
σeτ + qµ

σiω
iωσ

1 eµ mod {e1, . . . , ed+l}.

To express ωi and ωτ
σ in terms of the {ω1

1 , . . . , ω
d+l
1 } forms, we have to use

Proposition 2 for the fiber movement system A and treat several cases separately.
But it will always turn out that the Gauss fiber ofXf through z, i.e. the singular
locus of IIXf ,z, lies in the vertex V .

Case l = r − 1, r = 2, 3, 4.

We prove this case only for r = 4; the cases r = 2, 3 are analogous and
simpler. We adapt our frame such that the linear systems A and Q have the
form of Proposition 2 and its proof. Further, we assume that A1 is general, i.e.

A ⊆







0 x y t
0 0 z y
0 0 0 x
0 0 0 0






, A1 =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






and Q ⊆









0 0 0 q1
0 0 q1 q2
0 q1 q2 q3
q1 q2 q3 q4









.
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This has the effect that ωσ
1 = ωσ+1 and ωn

1 = 0. So, we get for the second
fundamental form of the focal variety Xf

IIXf ,z = ωσ
1ω

n
σen + qµ

σσ′+1ω
σ
1ω

σ′

1 eµ

= ωσ
1ω

n
σen + q̃µ

σσ′ωσ
1ω

σ′

1 eµ mod {e1, . . . , en−1}

where the matrices Q̃µ are such that

Q̃ ⊆





0 0 q1
0 q1 q2
q1 q2 q3



 .

Since 0 = singlocQ = singloc Q̃, we can conclude from the normal directions
{en+1, . . . , eN} that the singular locus of IIXf ,z is contained in V = {e1, . . . , ed}.
On the other hand, because nearly all matrices of the system A have the same
image, the tangent spaces to Xf are constant along the smooth points of V by
the argument above. Hence, the Gauss fiber of Xf through z is the whole linear
space V .

To determine the structure of the focal hypersurfaces we compute the fiber
movement system Ã for Xf . From

ωσ
η = aσ

ηiω
i = aσ

ησ′+1ω
σ′+1 = aσ

ησ′+1ω
σ′

1

we see that the system Ã is of the type

Ã ⊆

(

x y t
0 z y
0 0 x

)

,

and the focal hypersurface will be a double hyperplane plus a hyperplane or
possibly a triple hyperplane if we always had z = x in the initial system A.

Case r = 4, l = 2, A2 = 0.

This case is analogous to the one above. By Proposition 2 we can adapt the
frame such that

A ⊆







0 0 x z
0 0 y x
0 0 0 0
0 0 0 0






, A1 =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






and Q ⊆









0 0 q1 q2
0 0 q2 q3
q1 q2 ∗ ∗
q2 q3 ∗ ∗









,

thus ωσ
1 = ωσ+2 and ωτ

1 = 0. Then we have for the second fundamental form of
Xf

IIXf ,z = ωσ
1ω

τ
σeτ +

(

qµ
2 (ωd+1

1 )2 + 2qµ
1ω

d+1
1 ωd+2

1 + qµ
2 (ωd+2

1 )2
)

eµ

mod {e1, . . . , ed+2}

and with the same arguments as in the above case, we see that the Gauss fiber
of Xf through z is V = {e1, . . . , ed}.

To compute the fiber movement system Ã for Xf we look at

ωσ
η = aσ

ηiω
i = aσ

ητω
τ = aσ

ησ′+2ω
σ′

1

12



and see that Ã is of the form

Ã ⊆

(

x z
y x

)

;

thus the focal hypersurface is a quadric of rank ≤ 3.

Case l = 1, r arbitrary.

This case is different from the two cases above because for b > l the Gauss
fiber will be smaller than the vertex V . We will treat here the case where r = 3
and b = 2; the general case is only notationally more difficult. By Proposition
2 we can adapt the frame such that the matrices Aδ are of the following form

A1 =

(

0 0 1
0 0 0
0 0 0

)

A2 = . . . = Ad−1 = 0, Ad =

(

0 0 0
0 0 1
0 0 0

)

.

We conclude that ωd+1
1 = ωd+2

d = ωd+3 and ωi
δ = 0 for all other indices.

From the proof of Proposition 2 we know qµ
d+1,d+1 = qµ

d+1,d+2 = 0. To com-
pute the second fundamental form of Xf we must express ωτ

d+1 in terms of

{ω1
1, . . . , ω

d+1
1 }. Differentiating ωτ

1 = 0 gives

0 = dωd+2
1 = −ωd+2

d ∧ ωd
1 − ωd+2

d+1 ∧ ωd+1
1 = −ωd+1

1 ∧ ωd
1 − ωd+2

d+1 ∧ ωd+1
1

0 = dωd+3
1 = −ωd+3

d+1 ∧ ωd+1
1

⇒ ωd+2
d+1 = ωd

1 + fωd+1
1 and ωd+3

d+1 = gωd+1
1 .

Thus the second fundamental form is

IIXf ,z = (2ωd
1ω

d+1
1 + f(ωd+1

1 )2)ed+2 + g(ωd+1
1 )2ed+3 + qµ

d+1,d+3(ω
d+1
1 )2eµ

mod {e1, . . . , ed+1},

and we see that its singular locus, and hence the Gauss fiber of Xf through z,
is {e1, . . . , ed−1}.

Now we compute the fiber movement system Ã and the focal hyperfaces of
Xf . We must express ωd

ζ and ωd+1
ζ for the index range 2 ≤ ζ ≤ d− 1 in terms

of {ωd
1 , ω

d+1
1 }. We know ωd+1

ζ = 0. Differentiating ωd+2
ζ = 0 we get

0 = dωd+2
ζ = −ωd+2

d ∧ ωd
ζ = −ωd+1

1 ∧ ωd
ζ ⇒ ωd

ζ ∼ ωd+1
1

Therefore the fiber movement system Ã has the form

Ã ⊆

(

0 ∗
0 0

)

,

and the focal hypersurfaces are double hyperplanes.

Case r = 4, l = 2, A2 6= 0.

By Proposition 2 the matrix system A has the form

A ⊆









0 x y t
0 0 0 x
0 0 0 z
0 0 0 0









with y = 0 or y = z.

13



We have to divide this case into two subcases depending on whether b = 2 or
b = 3. In the case of b = 2, we have y = z = 0, and the computations are
analogous to the case r = 4, l = 2, A2 = 0. Thus we will skip this case and
assume b = 3. Here the tangent spaces to Xf are not constant along the vertex
V ; so this case is similar to the case l = 1, b ≥ 2. This time we adapt the frame
such that with the index range 2 ≤ ζ ≤ d− 1

A1 =







0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0






, Aζ =







0 0 0 tζ
0 0 0 0
0 0 0 0
0 0 0 0






, Ad =







0 0 1 t
0 0 0 0
0 0 0 1
0 0 0 0






,

and for the second fundamental form

Q ⊆









0 0 0 q1
0 q1 0 q3
0 0 q2 q4
q1 q3 q4 q5









.

In particular, we have the following equalities

ωd+1
1 = ωd+2, ωd+2

1 = ωd+4, ωτ
1 = 0,

ωd+1
ζ = tζω

d+4 = tζω
d+2
1 , ωd+2

ζ = ωτ
ζ = 0,

ωd+3
d = ωd+4 = ωd+2

1 , ωd+4
d = 0.

Therefore, as an intermediate result for the second fundamental form of Xf , we
get

IIXf ,z = ωd
1ω

d+2
1 ed+3 + ωσ

1ω
τ
σeτ

+(2qµ
1ω

d+1
1 ωd+2

1 + qµ
3 (ωd+2

1 )2)eµ mod {e1, . . . , ed+2}.

To compute ωτ
σ, we differentiate ωτ

1 = 0 and obtain

0 = dωd+3
1 =−ωd+3

d ∧ ωd
1 − ωd+3

σ ∧ ωσ
1 =−ωd+3

d+1 ∧ ω
d+1
1 −(ωd+3

d+2 − ωd
1) ∧ ωd+2

1

0 = dωd+4
1 = −ωd+4

σ ∧ ωσ
1

⇒ ωd+3
d+1 = ωd+3

d+2 − ωd
1 = ωd+4

σ = 0 mod {ωd+1
1 , ωd+2

1 }.

Thus {e1, . . . , ed−1} lies in the singular locus of IIXf ,z and expressed in the basis

{ωd
1 , ω

d+1
1 , ωd+2

1 } the second fundamental form is

Qd+3 =

(

0 0 1
0 ∗ ∗
1 ∗ ∗

)

Qd+4 =

(

0 0 0
0 ∗ ∗
0 ∗ ∗

)

Qµ =





0 0 0
0 0 qµ

1

0 qµ
1 qµ

3



 .

Hence {e1, . . . , ed−1} is the whole singular locus of Xf and the Gauss fiber of
Xf through z.

Finally, we compute the fiber movement system Ã for Xf , i.e. we need to
express ωd

ζ , ω
d+1
ζ , ωd+2

ζ in terms of {ωd
1 , ω

d+1
1 , ωd+2

1 }. We already know that

ωd+1
ζ = tζω

d+2
1 and ωd+2

ζ = 0.
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Differentiating ωd+3
ζ = 0, we get

0 = dωd+3
ζ = −ωd+3

d ∧ ωd
ζ − ωd+3

d+1 ∧ ωd+1
ζ = −ωd+2

1 ∧ ωd
ζ − ωd+3

d+1 ∧ tζω
d+2
1 .

Since ωd+3
d+1 lies in {ωd+1

1 , ωd+2
1 }, ωd

ξ must lie in {ωd+1
1 , ωd+2

1 }, too. Hence, the

system Ã is of the type

Ã ⊆

(

0 ∗ ∗
0 0 ∗
0 0 0

)

,

and the focal hypersurface is a triple hyperplane. 2

4 Varieties with a Codimension One Ruling

We have seen in Section 2 how a codimension one uniruling occurs on an affinely
developable variety of Gauss rank 2 which is not a cone. Therefore, we examine
now varieties with a codimension one uniruling in general. We will show how to
construct such a variety with a given Gauss rank; in particular, we will discuss
the Sacksteder-Bourgain hypersurface.

Let X be a variety with a codimension one uniruling, i.e. there exists an
irreducible curve B ⊂ G(n− 1, N) with

X =
⋃

L∈B

L ⊂ P
N .

Such a variety X will be called a twisted plane. We take a desingularisation
Φ : S → B of B with a Riemannian surface S and recall some facts about
curves in the Grassmannians from [9] and [14]. Consider the differential of Φ at
a point s ∈ S

dsΦ : TsS −→ TΦ(s)G(n− 1, N) ∼= Hom(Φ(s),CN+1/Φ(s)).

The rank of the linear map dsΦ(v) at a general point s ∈ S, which is independent
of the choice of the v ∈ TsS \ {0}, is the differential rank r of Φ. The points
s ∈ S with rank dsΦ(v) = r are called the regular points of Φ. From Φ we obtain
two maps

Φ(1) : S −→ G(n− 1 + r,N), s 7−→ I(dsΦ(TsS)) + Φ(s)

Φ(1) : S −→ G(n− 1 − r,N), s 7−→ N(dsΦ(TsS))

which are a priori defined only on an open subset of S, but can be extended to
the whole S. Obviously, this construction can be iterated by setting Φ(a+1) :=
(Φ(a))(1) resp. Φ(a+1) := (Φ(a))(1).

Now let us return to our variety X .

Proposition 10 Let Φ : S → G(n− 1, N) be a curve of differential rank r ≥ 1.
If r = 1, we assume in addition that Φ(1) is nonconstant. Define

X :=
⋃

s∈S

Φ(s) and X(1) :=
⋃

s∈S

Φ(1)(s).

Then X is of dimension n and Gauss rank r. Its focal variety is X(1). If
x ∈ X \X(1) lies on a unique Φ(s), where s ∈ S is a regular point of Φ, then x
is a smooth point of X.
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Note that the codimension of X is always greater then the differential rank
by definition of the differential rank.

Proof. By [14] there exists for a general point s ∈ S a neighborhood U ⊂ S and
functions ϕ1, . . . , ϕn : U → CN+1 such that with d = n− r

Φ = {ϕ1, . . . , ϕn}, Φ(1) = {ϕ1, . . . , ϕn, ϕ
′
d+1, . . . , ϕ

′
n},

Φ(1) = {ϕ1, . . . , ϕd}, i.e. ϕ
′
1, . . . , ϕ

′
d ∈ Φ on U.

The affine cone of the variety X is locally the image of

Ψ : U × C
n −→ X̂, (s, µ) 7−→

n
∑

i=1

µiϕi ;

hence, the tangent space of X at a smooth point x = {Ψ(s, µ)} is

{

n
∑

i=1

µiϕ′
i, ϕ1, . . . , ϕn

}

=

{

n
∑

i=d+1

µiϕ′
i, ϕ1, . . . , ϕn

}

. (∗)

We find that the tangent spaces of X are constant on the smooth points of the
linear space

L = {Ψ(s,Cd × C(µd+1, . . . , µn))} = {Ψ, ϕ1, . . . , ϕd}

and that L is the largest linear space with this property using that Φ(1) is
nonconstant for r = 1. Therefore, the Gauss rank of X is r.

The linear space in (∗), which is the candidate for the tangent space ofX in x,
will be of dimension less than n+1 iff µd+1 = . . . = µn = 0. Therefore, the focal
hypersurface on L is given by {Ψ(s,Cd × 0)} = Φ(1)(s) and x ∈ Φ(s) \ Φ(1)(s)
is a smooth point of x if x lies on a unique Φ(s). 2

To examine X further, we determine the normal form of the curve Φ. We
recall the necessary definitions.

For a curve ϕ : S → PN , we consider the curves ϕ(a). If ϕ is locally given
by ϕ̃ : U → C

N+1, i.e. ϕ = {ϕ̃}, then ϕ(a) is given by {ϕ̃, ϕ̃′, . . . , ϕ̃(a)}. We
expect that ϕ(a) is a curve inside G(a,N). If that is the case, ϕ(a) is called the
osculating curve of ϕ.

Given two curves ϕ : S → G(k,N) and ψ : S → G(l, N) with ϕ(s)∩ψ(s) = ∅
for the points s of an open set U ⊆ S, their direct sum ϕ⊕ψ : S → G(k+l−1, N)
is defined by ϕ⊕ ψ(s) := ϕ(s) ⊕ ψ(s) for s ∈ U and extended to the whole S.

Now the normal form of the curve Φ expresses Φ as the sum of r osculating
curves and a linear space L, i.e.

Φ = ϕ
(a1)
1 ⊕ ϕ

(a2)
2 ⊕ . . .⊕ ϕ(ar)

r ⊕ L with

r
∑

j=1

aj + dimL = n− 1 − r;

thereby the linear space L is unique. If L = ∅ and ar is the unique maximum
of the ai, then ϕr is also unique.
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Corollary 11 Let X ⊂ PN be an affinely smooth twisted plane. If the Gauss
rank of X is r, then the desingularisation of the ruling Φ : S → G(n−1, N) has
a normal form

Φ = ϕ1 ⊕ ϕ
(a2)
2 ⊕ . . .⊕ ϕ(ar)

r ⊕ L with

r
∑

j=2

aj + dimL = n− 1 − r,

where L and the ϕi with ai > 0 lie in H∞.

In particular, if X is of Gauss rank 2 and not a cone, this means

Φ = ψ ⊕ ϕ(n−2).

Hence, X is the union of the joins of the osculating spaces of a curve in H∞

to the corresponding points of another curve. The uniquely determined curve ϕ
in H∞ is called the critical curve of X. Thus X is the union of (n− 1)-planes
that contain the (n− 2)-th osculating planes of the critical curve.

Note that the particular case of Gauss rank 2 strengthens Vitter’s Theorem
by restricting the possible one-dimensional families of (n−1)-planes whose union
yield affinely smooth varieties of Gauss rank 2.

Proof. This is an immediate consequence of the Proposition and the fact that
Φ(1) of the curve Φ in the above normal form is

Φ(1) = ϕ
(a2−1)
2 ⊕ . . .⊕ ϕ(ar−1)

r ⊕ L,

where we use the convention ϕ(−1) = ∅. 2

The Corollary also shows how one can attempt to construct affinely smooth
twisted planes. Choose numbers a2, . . . , ar and a linear space L ⊂ H∞ with
∑

aj+dimL = n−1 ≤ N−r. Next choose general curves ϕ1, . . . , ϕr in PN under

the restriction that ϕi ⊂ H∞ if ai > 0. Then Φ = ϕ1⊕ϕ
(a2)
2 ⊕ . . .⊕ϕ

(ar)
r ⊕L will

be of differential rank r, and the focal variety of X =
⋃

s∈S Φ(s) will lie in H∞.
To ensure that X is affinely smooth, the curve must not have points s, t ∈ S,
s 6= t, such that Φ(s) and Φ(t) intersect outside H∞, because Φ(s) ∩ Φ(t) will
be singular points of selfintersection of X . In addition, X might have singular
points due to nonregular points s ∈ S of Φ with Φ(s) 6⊂ H∞.

The easiest way to ensure all this is to choose linear spaces Pb1 , . . . ,Pbr , L
in PN with

P
N = P

b1 ⊕ . . .⊕ P
br ⊕ L

and take the ϕi as rational normal curves in Pbi . Then Φ(s) ∩ Φ(t) = L for
s 6= t, and since the osculating curves of rational normal curves have only
regular points, the same holds for Φ. Further, the focal variety of the resulting
X will lie in Pb2 ⊕ . . .⊕ Pbr ⊕ L.

For a concrete example let

ψ : P
1 −→ P

4, (s0 : s1) 7−→ (s0 : 0 : 0 : 0 : s1)

ϕ : P1 −→ P4, (s0 : s1) 7−→ (0 : s20 : −2s0s1 : s21 : 0),
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and Φ = ψ⊕ϕ(1). We obtain an affinely smooth hypersurface X of Gauss rank
2. Its Gauss fiber cones Φ(s) are plane pencils of lines through ϕ(s). The locus
of the centers is the critical conic ϕ. This hypersurface is in fact the Sacksteder-
Bourgain hypersurface mentioned in the introduction, which we now recognize
as the union of the joins of points of a line to the tangent lines of the conic at
corresponding points. For more details on this example see [4, 15, 17].

We close this section with a statement about the singularities of affinely
smooth developable hyperfaces of Gauss rank 2.

Proposition 12 Let X ⊂ PN be an affinely smooth hypersurface with a codi-
mension one ruling. Assume that X is not a cone. Then X has Gauss rank 2,
and its critical curve is contained in a (N−2)-dimensional linear space L ⊂ H∞.
Further, the linear space L is a component of the singular locus of X.

Proof. By Corollary 5, the desingularisation Φ : S → G(N − 2, n) of the ruling
base B has the normal form Φ = ψ ⊕ ϕ(N−3), where the critical curve ϕ lies in
H∞, but ψ does not. For dimension reasons any two (N − 2)-planes Φ(s) and
Φ(t) intersect in a linear space of dimension ≥ N − 4. Their intersections will
be points of selfintersection of X , and therefore singular points of X . Thus for
s 6= t, the linear space Φ(s) ∩ Φ(s) lies in the hyperplane H∞ and

Φ(s) ∩ Φ(s) ∩H∞ = ϕ(N−3)(s) ∩ ϕ(N−3)(t) for s 6= t with Φ(s),Φ(t) 6⊂ H∞.

Therefore, the ϕ(N−3)(s) intersect each other in codimension one. Three general
of these spaces cannot contain a common (N−4)-plane, since otherwise all would
contain this plane and X would be a cone. Hence, fixing two general t1, t2 ∈ S,
we have

ϕ(N−3)(s) =
(

ϕ(N−3)(s) ∩ ϕ(N−3)(t1)
)

+
(

ϕ(N−3)(s) ∩ ϕ(N−3)(t2)
)

for general s ∈ S. Thus all the ϕ(N−3)(s) and the whole curve ϕ lie in the
(N − 2)-plane L = ϕ(N−3)(t1) + ϕ(N−3)(t2) ⊂ H∞. Counting dimensions, we
get

L =
⋃

s,t∈S

s 6=t

ϕ(N−3)(s) ∩ ϕ(N−3)(t).

Further, the points of L are points of selfintersection of X , thus L ⊆ SingX . In
fact, it must be a component of SingX because dimL = dimX − 1. 2

A Proof of Proposition 2

The proof is based on the Proposition [18, 2. Proposition 2] and its proof.
There it was shown that kerA 6= 0, here we give here only the additionally
needed arguments.

The case of l = r − 1 and r = 2, 3, 4 was treated there completely. Besides
the structure of the matrix system A, it was shown there that the matrices of
Q are of the form

Q =

(

0 q1
q1 q2

)

, Q =





0 0 q1
0 q1 q2
q1 q2 q3



 resp. Q =









0 0 0 q1
0 0 q1 q2
0 q1 q2 q3
q1 q2 q3 q4









.
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Case l = 1, r arbitrary.

For notational convenience, we assume r = 4, the other cases being similar.
Let A1 ∈ A \ {0}. Because of rankA1 = 1, there exists a basis of C

r such that

A1 =







0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0






.

Since all matrices of A\{0} have rank 1 and are nilpotent, A must be contained
in







0 0 0 ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 0






or







0 ∗ ∗ ∗
0 0 0 0
0 0 0 0
0 0 0 0






.

Assume there exists an A2 ∈ A\CA1. With a coordinate change in the first three
coordinates and subtracting a multiple of A1, the matrix A2 can be brought into
the form

A2 =







0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0






resp. A′

2 =







0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0






.

Now we take an arbitrary Q = (qij) ∈ Q with qij = qji. Then the symmetry of

QA1 =







0 0 0 q11
0 0 0 q12
0 0 0 q13
0 0 0 q14







and

QA2 =







0 0 0 q12
0 0 0 q22
0 0 0 q23
0 0 0 q24






resp. QA′

2 =









0 0 q11 0
0 0 q12 0
0 0 q13 0
0 0 q14 0









implies

Q =









0 0 0 q14
0 0 0 q24
0 0 q33 q34
q14 q24 q34 q44









resp. Q′ =









0 0 0 0
0 q22 q23 q24
0 q23 q33 q34
0 q24 q34 q44









.

Since Q was an arbitrary matrix of Q, the second case is impossible in view of
condition 3. Thus the linear system A is always of the first type. In that case
condition 3 implies that dimQ ≥ 2 if dimA ≥ 2.

Finally, if dimA = 3, by the same arguments as above the matrix

A3 =







0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0






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exists in A. The symmetry of QA3 implies

Q =









0 0 0 q14
0 0 0 q24
0 0 0 q34
q14 q24 q34 q44









,

and we must have dimQ ≥ 3, in order not to violate condition 3.

Case r = 4, l = 2, subcase A2 = 0 for all A ∈ A.

Let A1 ∈ A be a matrix of rank 2. By the results of Wu and Zheng, there
exists a basis of C4 such that

A ⊆







0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 0
0 0 0 0






and A1 =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






.

From QA1 symmetric for a Q ∈ Q, we conclude that Q is of the form

Q =









0 0 q13 q14
0 0 q14 q24
q13 q14 q33 q34
q14 q24 q34 q44









=

(

0 Q12

Q12 Q22

)

with symmetric 2 × 2-matrix Q12.

We claim that this implies the existence of an Q ∈ Q with full rank. Assume
the contrary. Then the Q12 part of every Q ∈ Q is singular. The singular matri-
ces form a quadric cone inside the space of symmetric matrices Sym(2,C) ∼= C3,
given by the determinant. The largest linear spaces in this cone are the ruling
lines. This implies that all Q12 parts of the Q ∈ Q are linearly dependent;
hence, they will have a common kernel. This common kernel gives rise to a
common kernel of the matrices Q ∈ Q itself, contradicting condition 3.

Now let Q ∈ Q be a fixed matrix of full rank. A coordinate change by
(

T 0
0 T

)

leaves A1 and the above general form of the linear system fix. Further, it
transforms Q to

(

0 tTQ12T
tTQ12T

tTQ22T

)

;

hence, there is a coordinate change that transforms Q to

Q =









0 0 0 1
0 0 1 0
0 1 q33 q34
1 0 q34 q44









.

Now we take any

A =







0 0 a b
0 0 c d
0 0 0 0
0 0 0 0






∈ A,
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then the symmetry of QA implies a = d.

Case r = 4, l = 2, subcase A2 6= 0 for a general A ∈ A.

By [18, 2. Proposition 2] we know that kerA 6= 0, we choose coordinates
such that the first coordinate is contained in kerA. Pick a general A1 ∈ A.
Then ImA1 ∩ kerA1 is a one-dimensional space. If ImA1 ∩ kerA1 is contained
in kerA, then by a coordinate change A1 can be brought into the form

A1 =







0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0






otherwise into A′

1 =







0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0






.

We start with the first case. The statement (∗) of the proof of [18, 2. Propo-
sition 2] says that

A(kerA1) ⊆ ImA1 for all A ∈ A.

Hence an arbitrary A ∈ A has the form

A =







0 a b c
0 d e f
0 g 0 h
0 i 0 j






.

On the other hand, since QA1 is symmetric for Q ∈ Q, Q looks like

Q =









0 0 0 q1
0 q1 0 q3
0 0 q2 q4
q1 q3 q4 q5









.

Because of condition 3 there exists an Q ∈ Q with q1 6= 0. Now the symmetry
of

QA =









0 q1i 0 q1j
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗









implies i = j = 0, thus

A =







0 a b c
0 d e f
0 g 0 h
0 0 0 0






.

The characteristic polynomial of A is x4 +dx3− egx2. Since A is nilpotent, this
implies d = 0 and eg = 0. At this point the symmetry of QA is equivalent to

0 = q1e− q2g = q1(f − a) − q4g = q1b+ q3e− q2h. (∗)

If Q contains a matrix of full rank, i.e. with q1q2 6= 0, then this together
with eg = 0 shows e = g = 0, f = a, and q1b = q2h. By a scaling of the third
coordinate, we can achieve that q1 = q2. Assuming that this was the case from
the beginning, we get b = h, thus A looks like

A =







0 a b c
0 0 0 a
0 0 0 b
0 0 0 0






.
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If Q does not contain a matrix of full rank, then q2 = 0 for all Q ∈ Q,
because Q is a linear system and there exists a matrix with q1 6= 0. Hence, a
Q ∈ Q contains the vector (−q4 0 q1 0) in its kernel. In order to fulfill condition
3 there must be two Q ∈ Q with linear independent (−q4 0 q1 0). Then we
conclude from (∗) that e = g = b = 0 and a = f , thus A looks like

A =







0 a 0 c
0 0 0 a
0 0 0 h
0 0 0 0






.

We turn to the second case with the matrix A′
1. Here the statement (∗) of

the proof of [18, 2. Proposition 2] implies that all A ∈ A can be written as

A =







0 0 a b
0 c d e
0 f g h
0 0 i j






.

Since A + tA′
1 is nilpotent, its characteristic polynomial is x4 for all t. This

yields the following equations

f + i = 0, c+ g + j = 0, ci+ fj = 0,

cg − fd+ gj + cj − hi = 0, dfj − efi+ chi− cgj = 0.
(∗∗)

From the first row we get i = −f , c = −g − j, and f(g + 2j) = 0. Assume
that f 6= 0 then g = −2j. We neglect the remaining equations and continue
with

A =









0 0 a b
0 j d e
0 f −2j h
0 0 −f j









.

We start using condition 2. From the symmetry of QA′
1 we conclude

Q =









q1 0 0 q2
0 0 0 q3
0 0 q3 q4
q2 q3 q4 q5









.

Now the symmetry of QA implies q3f = 0, thus q3 = 0. But this contradicts
condition 3; hence, matrices with f 6= 0 do not exit in the linear system A.

For f = 0 the remaining equations of (∗∗) imply g = j = 0, hence

A =







0 0 a b
0 0 d e
0 0 0 h
0 0 0 0






,

and we are back in the above case, since ImA′
1 ∩ kerA′

1 ⊂ kerA. 2
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