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The purpose of this paper is to give an elementary proof of Griffiths’ and
Harris’ normal form theorem [4, p.385].

1 Introduction

Our topic is a variety V in P which is the trace of an (n— 1)-dimensional lin-
ear subspace moving with one complex parameter. More precisely, we consider a
curve in a Grassmannian, i.e. a holomorphic mapping ® : S - G(n—1, N — 1),
where S is a Riemann surface and G(n — 1, N — 1) denotes the Grassmannian,
the set of (n—1)-planes in Py _1. If V is not linear, then one can get such a map
® as the desingularisation of the Fano variety F,,_1 (V') of V| that is the variety
in G(n—1, N —1) consisting of the (n — 1)-planes contained in V. For technical
reasons we prefer to view ® as a map ® : S — G(n, N) into the Grassmannian
G(n, N), the set of n-dimensional subspaces in C".

The structure theorem we want to prove is

Theorem. Let ® : S — G(n, N) be a curve, then there exists a uniquer € N,
as well as unique a1 > as > ... > a, > 0 and a unique linear subspace V C cN
with Y_._, a; +dimV = n and (in general not unique) curves ¢1,...,¢p S —
G(1,N) such that

o=p" Vg.. 0 VoV

and
M =l g @) gV

Hereby, goga’;fl), resp. cpz(-ai), denotes the (a; —1)—th, resp. (a;)—th, osculating

curve of ¢; : S — G(1,N) =Py_; and &) is the natural generalisation of the
first osculating curve to the case of a curve in G(n, V), where n is arbitrary.

Applying the theorem to the classical case of ruled surfaces in P3, we obtain
that the developable surfaces (that is the case r = 1) are either tangent surfaces
or cones. This was already proved in [1] and [3].

*The author thanks Gerd Fischer for his encouragement and support.



2 Addition and decomposition of curves

The main tool in this examination and the reason why we work with a one
dimensional complex manifold S is the following ([5, p.263])

Lemma 1 If 0 # U = (Y1,...,¢%N) : U C C — CN, U connected, is a holo-
morphic map, then there is a unique continuation U of P(V) : U\ {z € U |
U(z)=0} >Pn_q1 to U :U — Pn_;.

Now it is easy to define the direct sum ® @ ¥ of two curves ® : S — G(n, N)
and ¥ : S — G(m, N) for which there exists a point ¢t € S with ®(¢t)N¥(t) =0,
so that (& @ ¥)(s) = ®(s) ® ¥(s) for s € S up to isolated points.

We think of the Grassmannian G(n, N) as a submanifold of the projective
space P(A\" CV) by the Pliicker-embedding V' = span{vi,...,v,} — P(vi A...A
vp). So for any point of S we can take local liftings of ® and W, i.e. curves
®:U — A"C¥\{0}and ¥ : U — A™ CN\{0} with P(®) = ®, resp. P(V) = U,
and define ® ® ¥ on U to be the continuation of IE”(% A Ef) A short calculation
shows that these local definitions are the same in their overlapping areas, so we
get the desired global curve ® @ ¥ : S — G(n + m, N).

It is also possible to define the sum ® + ¥ and the intersection ® N ¥ of two
curves ® : S — G(n,N) and ¥ : S — G(m, N), such that up to isolated points
we have (@ + U)(s) = ®(s) + ¥(s) and (P NT)(s) = P(s) N T(s).

Introducing the notation dim ® =n for ® : S — G(n, N), we have
Remark 2 dim(® N ¥) + dim(® + ¥) = dim @ 4 dim .

Using the well-known holomorphic duality D between the Grassmannians
G(n,N) and G(N —n, N):

D: G(n,N) — G(N —n,N)
Vv — {weCV|VveV: wl -v=0},

we see that both constructions are connected similar to the sum and inter-
section of ordinary subspaces of C¥

®N T =DMDP+DY) and &+ ¥ =D(DdNDY).

Likewise, it is possible to decompose a curve into the sum of smaller ones.

Proposition 3 Given ® : S — G(n,N) and ¥ : S — G(m,N) with ¥ C ®
(i.e. Vs € S: ¥(s) C B(s)), then there exist v1,...,Pm—n:S — G(1,N), such
that b=V B 1 B ... B Om—n-

Proof. First choose t € S and vectors v1,...,v,_m € CV such that ®(t) =
span{¥(t),v1,...,n_m}. Now choose (N — n + 1)-dimensional subspaces V;
with V; N ®(t) = C - v;, finally define @, := &NV, := D(D® ¢ DV;) C . Then
we have 01 B ... B pp—m DY C & and comparing dimensions we see, that both
sides must be equal. O



3 The curves ®1) and D)

Next we want to study the infinitesimal behavior of a curve ®, which we think
of as a moving n—plane. We make the following auxiliary

Definition 4 A moving point p in ® near t € S is a holomorphic mapping
p: U — CN\ {0} defined in a neighbourhood U of S so that p(s) € ®(s) for all
seU.

As a measure of the movement of ® we define a new curve, ().

Definition of &%),
An illustrative description of ®1) is given by

(@(1))(3) = {p'(s) | p a moving point of ® near s} 2 ®(s),

where p’ denotes the derivative, as usual. Unfortunately, this description is
only valid up to isolated points, so we choose a different approach, which also
shows that ®(1) is holomorphic.

First we define () locally. For any point of S choose a neighbourhood U and
n moving points p1, ..., p, on it, such that ®(s) = span{p1(s),...,pn(s)} on U.
Let Vi := span{p1(s),...,pn(s),01(s),...,ph(s)} and r := maxsey dim Vs — n
and finally 5 € U such that dim Vz = n 4+ r. After renumbering we can assume
Vs = span{p1(3), .. pa(3), (), .-, p(5)}: then we define

(@) (s) =P(p1(s) A ... Apa(s) APL(S) A ... ApL(s))

on U, where we again continue into the exceptional set X := {s € U | p1(s) A
o ADR(S) ADPL(S) AL ADL(s)) = 0}

In order to show that these local pieces of ®1) are the same at the intersec-
tions, we simply show that the new definition agrees with the old one on U\ X,
which was free of any choices. Therefore we can claim that for t € U \ X is

(@MY (t) = {p'(t) | p a moving point of ® near t}.

For the “C 7 inclusion we note that p;(t) and ¢;(s) := (s — t)p;(s) are moving
points of @, and ¢;(¢t) = (t — t)p;(t) + pi(t) = pi(t). For the opposite inclusion
we have p € ® = span{p1,...,pn}, so we can find holomorphic functions «,
such that p = Y7 | a;p;. It follows that

Pt) =D ailt)pi(t) + Y ai(t)pi(t),

Le. p'(t) € span{pi(t),....pa(t),P1(1),- - pu (D)} = span{pi(t),...pa(t),
pi(t),...,p.(t)}. The last two terms are equal, because t ¢ X.

Lemma 5 &) =& < & constant.

Proof. This is a reformulation of lemma 1 in [2]. O
We define ®© := & and d*+1 .= (@®)" for k > 0.

Let us apply these constructions to the lowest dimensional curves ¢ : S —
G(1,N) = Py_;. Locally we have ¢*) = span{p,p’,p",...,p*}, where p is a



moving point of . If dim ¢*) = k + 1, then these curves are called osculating
curves and (M (s) is the tangent to ¢ : S — Py_1 at ¢(s), p(s) is the
osculating plane and so on.

Now we come to the next construction, @), which consists of the traces
of moving points of ®, for which p’ is also a moving point of ®. This might
have less geometrical interpretations, but it is important, because it sometimes
reverses the previous construction, e.g. (cp(l))(l) = .

Definition of ®(y).
Again there is an illustrative description of ® ;)

(®1y)(s) = {p(s) | p a moving point of ® near s with p'(s) € ®(s)} C P(s),
which is only valid up to isolated points. So let us take another approach.

Lemma 6 Let ®:S — G(n,N),5€ S and r := dim(®")) — dim ®, then there
exists a neighbourhood U of s and moving points p1,...,pn of ® on U, such that

1. ® =span{pi,...,pn} on U\ {3}
2. Phyiy- D €D

3. W =span{pi,...,pn, 0}, ..., p.} on U\ {5}.
In particular p1,...,pn, 0}, ..,pl. are linear independent on U \ {5}.

Proof. Looking at the definition of ®!) we can assume that ® =
span{qi,...,qn} and @ =span{q,... qn.q},...,q.} on U\ {5}.

We define p; :==¢q; fori =1,...,r and for ¢t = r + 1,...,n in the following
way:

Because ¢} € span{qi,...,qn,q},...,q.} on U\ {5} there are holomorphic
functions of,...,al, B}, ..., 80, v, 7i(s) # 0 for s € U\ {3} (shrink U, if
necessary), such that

n K
Y adaj+) B4y +vid =0.
j=1 j=1

Define p; := Y77, B! q; + i, then we have

T
> (8705 + B4 ) +vigs + e

J=1

P

ks T
S Bldy+wd | +> 8 +via
j=1

Jj=1

= =Y alg+ > Bl'g+a €.

Jj=1 Jj=1

Because ; # 0 on U \ {s}, 1. and 3. also follow. O



Now we define ®(;) locally to be the continuation of P(p,41 A ... Apy,). In
order to show that these pieces of ®(;) patch together, we show that the new
and the old descriptions are the same on on U \ {5}

(@1))(t) = {p(t) | p a moving point of ® near t with p'(t) € ®(t)}.

The “C” inclusion is trivial. So take a moving point p with p/(t) € ®(¢).
Since p € ® we have p=>""" | a;p;. Therefore,

n

P(t) =Y aipilt) + 3 as(tpi(h)

=1

We know p'(t) € ®(t), so, because of the choices of p; in the lemma, we get
a;(t)=0fori=1,...,r, ie.

n

p(t) = Y ailt)pilt) € (2)(D).

1=r+1

Further we define ® gy := ® and ®(;11) := (@(k))(l) for k> 0.

Remark 7 dim(®W) + dim(®(;)) = 2dim ®.

Now we can prove that these two constructions are dual.
Proposition 8 ®(;) =D ((P®)V) and ) =D ((D®) 1))

Proof. The second assertion follows from the first by replacing ® by D®
and applying D. In order to prove the first we calculate on all points except
for isolated points with the choice free description of the constructions. By
definition

D ((D2)W) (s) = {v € CN | for all moving points p of D is v’ - p/(s) = 0}.

Since (D®)) D D = D ((P®)M)) C @, we can assume that v € ®(s) and
that ®(s) can be written as ®(s) = {q(s) | ¢ a moving point of ® near s}, so
we get

D ((D®)V) (s) = {q(s) | ¢ a moving point of ® near s such that for all
moving points p of D® near s,q(s)T - p'(s) = 0}.

Since ¢ € ® and p € D® we know ¢*-p = 0,50 (¢')T -p+¢*-p’ = 0. Applying
this at the point s and D®(s) = {p(s) | p a moving point of DP® near s}, we
get

D ((D2)Y) (s) = {q(s) | ¢ a moving point of ® near s with for all w € DP(s)
is ¢'(s)T -w =0}
= {q(s) | ¢ a moving point of ® near s with ¢'(s) € DDP(s)
= ®(s)}
= fIJ(l)(s).



4 The normal form

Now we can prove the theorem about the normal form.

Theorem. Let ® : S — G(n, N) be a curve and r := dim(®M)) — n, then
there exist unique a1 > as > ... > ar > 0 and a unique subspace V. C cN
with Y_;_, a; + dimV = n and (in general not unique) curves 1, ..., : S —
G(1,N), such that

d=0p" Vg  @peNgy

and
oW =™ g ool V.

Proof. We proceed by induction. The case n = 0 is trivial. Assume n > 0.
If r = 0, then @) = & = const. =: V by the lemma, so let r > 0. Now we can
apply the induction hypothesis to ®(;) and get

(I)(l) = (pgﬁl_l) b...D QD(FE?_l) eV

and 3 3
@)V =™ @...ee™ oV,

where 7 := dim ((®(1)))) — dim(®(;)) and ST, @ +1=n—r. Obviously we
have (®(1))) C @, so 7 := dim((®(1)) V) — dim(® (1)) < dim @ — dim(® (1)) = 7.
Using the proposition we find @ry1,..., ¢, : S — G(1, N), such that

b= . oo dpr®.. . ®p V.
Define a;, :=a; +1fori=1,...,7Tand aq; ;== 1 fori =7+ 1,...,n, then ® is
of the claimed form and we have ®(1) = span{cpgal), ce gpi‘”), V}. Comparing
dimensions we get the intended result.

It remains to prove the uniqueness. Solving the recursion in the definition
of &y we get
Suy =\ e op R eV,

where we set wgai_l_k) =0,ifa;, —1 -k <0.

So V' = ®(,,) and by inspecting the dimensions of these equations we get
dim @y =1 + Zmax{o, a; — k}.
i=1

Therefore the uniqueness of the a; follows. O

Corollary. If dim(®®) = dim® + 1, then ® is either a cone (in the
projective sense, i.e. dim(),cq®(s) > 1) or the (n — 1)-th osculating curve
of a unique curve ¢ : S — G(1, N) =Pxn_1.

Proof. Just the uniqueness of ¢ for ® = ¢(®~1 is new, but referring to the
proof above, we see that ¢ = () = &, _y). O
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