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The purpose of this paper is to give an elementary proof of Griffiths’ and
Harris’ normal form theorem [4, p.385].

1 Introduction

Our topic is a variety V in PN−1 which is the trace of an (n−1)-dimensional lin-
ear subspace moving with one complex parameter. More precisely, we consider a
curve in a Grassmannian, i.e. a holomorphic mapping Φ : S → G(n− 1, N − 1),
where S is a Riemann surface and G(n− 1, N − 1) denotes the Grassmannian,
the set of (n−1)-planes in PN−1. If V is not linear, then one can get such a map
Φ as the desingularisation of the Fano variety Fn−1(V ) of V , that is the variety
in G(n−1, N −1) consisting of the (n−1)-planes contained in V . For technical
reasons we prefer to view Φ as a map Φ : S → G(n,N) into the Grassmannian
G(n,N), the set of n-dimensional subspaces in CN .

The structure theorem we want to prove is

Theorem. Let Φ : S → G(n,N) be a curve, then there exists a unique r ∈ N,
as well as unique a1 ≥ a2 ≥ . . . ≥ ar > 0 and a unique linear subspace V ⊆ CN

with
∑r

i=1 ai + dimV = n and (in general not unique) curves ϕ1, . . . , ϕr : S →
G(1, N) such that

Φ = ϕ
(a1−1)
1 ⊕ . . .⊕ ϕ(ar−1)

r ⊕ V

and
Φ(1) = ϕ

(a1)
1 ⊕ . . .⊕ ϕ(ar)

r ⊕ V.

Hereby, ϕ
(ai−1)
i , resp. ϕ

(ai)
i , denotes the (ai−1)–th, resp. (ai)–th, osculating

curve of ϕi : S → G(1, N) = PN−1 and Φ(1) is the natural generalisation of the
first osculating curve to the case of a curve in G(n,N), where n is arbitrary.

Applying the theorem to the classical case of ruled surfaces in P3, we obtain
that the developable surfaces (that is the case r = 1) are either tangent surfaces
or cones. This was already proved in [1] and [3].

∗The author thanks Gerd Fischer for his encouragement and support.
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2 Addition and decomposition of curves

The main tool in this examination and the reason why we work with a one
dimensional complex manifold S is the following ([5, p.263])

Lemma 1 If 0 6= Ψ̃ = (ψ1, . . . , ψN ) : U ⊂ C → CN , U connected, is a holo-

morphic map, then there is a unique continuation Ψ of P(Ψ̃) : U \ {z ∈ U |

Ψ̃(z) = 0} → PN−1 to Ψ : U → PN−1.

Now it is easy to define the direct sum Φ⊕Ψ of two curves Φ : S → G(n,N)
and Ψ : S → G(m,N) for which there exists a point t ∈ S with Φ(t)∩Ψ(t) = 0,
so that (Φ ⊕ Ψ)(s) = Φ(s) ⊕ Ψ(s) for s ∈ S up to isolated points.

We think of the Grassmannian G(n,N) as a submanifold of the projective
space P(

∧n
CN ) by the Plücker-embedding V = span{v1, . . . , vn} 7→ P(v1∧ . . .∧

vn). So for any point of S we can take local liftings of Φ and Ψ, i.e. curves

Φ̃ : U →
∧n

C
N \{0} and Ψ̃ : U →

∧m
C

N\{0} with P(Φ̃) = Φ, resp. P(Ψ̃) = Ψ,

and define Φ⊕Ψ on U to be the continuation of P(Φ̃ ∧ Ψ̃). A short calculation
shows that these local definitions are the same in their overlapping areas, so we
get the desired global curve Φ ⊕ Ψ : S → G(n+m,N).

It is also possible to define the sum Φ + Ψ and the intersection Φ∩Ψ of two
curves Φ : S → G(n,N) and Ψ : S → G(m,N), such that up to isolated points
we have (Φ + Ψ)(s) = Φ(s) + Ψ(s) and (Φ ∩ Ψ)(s) = Φ(s) ∩ Ψ(s).

Introducing the notation dimΦ = n for Φ : S → G(n,N), we have

Remark 2 dim(Φ ∩ Ψ) + dim(Φ + Ψ) = dimΦ + dimΨ.

Using the well-known holomorphic duality D between the Grassmannians
G(n,N) and G(N − n,N):

D : G(n,N) → G(N − n,N)
V 7→ {w ∈ CN | ∀v ∈ V : wT · v = 0},

we see that both constructions are connected similar to the sum and inter-
section of ordinary subspaces of CN

Φ ∩ Ψ = D(DΦ + DΨ) and Φ + Ψ = D(DΦ ∩ DΨ).

Likewise, it is possible to decompose a curve into the sum of smaller ones.

Proposition 3 Given Φ : S → G(n,N) and Ψ : S → G(m,N) with Ψ ⊆ Φ
(i.e. ∀s ∈ S : Ψ(s) ⊆ Φ(s)), then there exist ϕ1, . . . , ϕm−n : S → G(1, N), such
that Φ = Ψ ⊕ ϕ1 ⊕ . . .⊕ ϕm−n.

Proof. First choose t ∈ S and vectors v1, . . . , vn−m ∈ CN such that Φ(t) =
span{Ψ(t), v1, . . . , vn−m}. Now choose (N − n + 1)-dimensional subspaces Vi

with Vi ∩ Φ(t) = C · vi, finally define ϕi := Φ ∩ Vi := D(DΦ ⊕ DVi) ⊆ Φ. Then
we have ϕ1 ⊕ . . .⊕ϕn−m ⊕Ψ ⊆ Φ and comparing dimensions we see, that both
sides must be equal. 2
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3 The curves Φ(1) and Φ(1)

Next we want to study the infinitesimal behavior of a curve Φ, which we think
of as a moving n–plane. We make the following auxiliary

Definition 4 A moving point p in Φ near t ∈ S is a holomorphic mapping
p : U → CN \ {0} defined in a neighbourhood U of S so that p(s) ∈ Φ(s) for all
s ∈ U .

As a measure of the movement of Φ we define a new curve, Φ(1).

Definition of Φ(1).

An illustrative description of Φ(1) is given by

(Φ(1))(s) = {p′(s) | p a moving point of Φ near s} ⊇ Φ(s),

where p′ denotes the derivative, as usual. Unfortunately, this description is
only valid up to isolated points, so we choose a different approach, which also
shows that Φ(1) is holomorphic.

First we define Φ(1) locally. For any point of S choose a neighbourhood U and
n moving points p1, . . . , pn on it, such that Φ(s) = span{p1(s), . . . , pn(s)} on U .
Let Vs := span{p1(s), . . . , pn(s), p′1(s), . . . , p

′

n(s)} and r := maxs∈U dim Vs − n
and finally s̃ ∈ U such that dimVs̃ = n+ r. After renumbering we can assume
Vs̃ = span{p1(s̃), . . . , pn(s̃), p′1(s̃), . . . , p

′

r(s̃)}; then we define

(Φ(1))(s) = P(p1(s) ∧ . . . ∧ pn(s) ∧ p′1(s) ∧ . . . ∧ p
′

r(s))

on U , where we again continue into the exceptional set X := {s ∈ U | p1(s) ∧
. . . ∧ pn(s) ∧ p′1(s) ∧ . . . ∧ p

′

r(s)) = 0}.
In order to show that these local pieces of Φ(1) are the same at the intersec-

tions, we simply show that the new definition agrees with the old one on U \X ,
which was free of any choices. Therefore we can claim that for t ∈ U \X is

(Φ(1))(t) = {p′(t) | p a moving point of Φ near t}.

For the “⊆ ” inclusion we note that pi(t) and qi(s) := (s − t)pi(s) are moving
points of Φ, and q′i(t) = (t − t)p′i(t) + pi(t) = pi(t). For the opposite inclusion
we have p ∈ Φ = span{p1, . . . , pn}, so we can find holomorphic functions αi,
such that p =

∑n

i=1 αipi. It follows that

p′(t) =
∑

αi(t)p
′

i(t) +
∑

α′

i(t)pi(t),

i.e. p′(t) ∈ span{p1(t), . . . , pn(t), p′1(t), . . . , p
′

n(t)} = span{p1(t), . . . pn(t),
p′1(t), . . . , p

′

r(t)}. The last two terms are equal, because t /∈ X .

Lemma 5 Φ(1) = Φ ⇐⇒ Φ constant.

Proof. This is a reformulation of lemma 1 in [2]. 2

We define Φ(0) := Φ and Φ(k+1) :=
(
Φ(k)

)(1)
for k ≥ 0.

Let us apply these constructions to the lowest dimensional curves ϕ : S →
G(1, N) = PN−1. Locally we have ϕ(k) = span{p, p′, p′′, . . . , p(k)}, where p is a
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moving point of ϕ. If dimϕ(k) = k + 1, then these curves are called osculating
curves and ϕ(1)(s) is the tangent to ϕ : S → PN−1 at ϕ(s), ϕ(2)(s) is the
osculating plane and so on.

Now we come to the next construction, Φ(1), which consists of the traces
of moving points of Φ, for which p′ is also a moving point of Φ. This might
have less geometrical interpretations, but it is important, because it sometimes
reverses the previous construction, e.g.

(
ϕ(1)

)
(1)

= ϕ.

Definition of Φ(1).

Again there is an illustrative description of Φ(1)

(Φ(1))(s) = {p(s) | p a moving point of Φ near s with p′(s) ∈ Φ(s)} ⊆ Φ(s),

which is only valid up to isolated points. So let us take another approach.

Lemma 6 Let Φ : S → G(n,N), s̃ ∈ S and r := dim(Φ(1))− dimΦ, then there
exists a neighbourhood U of s̃ and moving points p1, . . . , pn of Φ on U , such that

1. Φ = span{p1, . . . , pn} on U \ {s̃}

2. p′r+1, . . . , p
′

n ∈ Φ

3. Φ(1) = span{p1, . . . , pn, p
′

1, . . . , p
′

r} on U \ {s̃}.
In particular p1, . . . , pn, p

′

1, . . . , p
′

r are linear independent on U \ {s̃}.

Proof. Looking at the definition of Φ(1) we can assume that Φ =
span{q1, . . . , qn} and Φ(1) = span{q1, . . . , qn, q

′

1, . . . , q
′

r} on U \ {s̃}.
We define pi := qi for i = 1, . . . , r and for i = r + 1, . . . , n in the following

way:
Because q′i ∈ span{q1, . . . , qn, q

′

1, . . . , q
′

r} on U \ {s̃} there are holomorphic
functions α1

i , . . . , α
n
i , β

1
i , . . . , β

r
i , γi, γi(s) 6= 0 for s ∈ U \ {s̃} (shrink U , if

necessary), such that

n∑

j=1

αj
i qj +

r∑

j=1

βj
i q

′

j + γiq
′

i = 0.

Define pi :=
∑r

j=1 β
j
i qj + γiqi, then we have

p′i =

r∑

j=1

(
βj

i
′qj + βj

i q
′

j

)
+ γ′iqi + γiq

′

i

=




r∑

j=1

βj
i q

′

j + γiq
′

i


 +

r∑

j=1

βj
i
′qj + γ′iqi

= −

n∑

j=1

αj
i qj +

r∑

j=1

βj
i
′qj + γ′iqi ∈ Φ.

Because γi 6= 0 on U \ {s̃}, 1. and 3. also follow. 2
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Now we define Φ(1) locally to be the continuation of P(pr+1 ∧ . . . ∧ pn). In
order to show that these pieces of Φ(1) patch together, we show that the new
and the old descriptions are the same on on U \ {s̃}

(Φ(1))(t) = {p(t) | p a moving point of Φ near t with p′(t) ∈ Φ(t)}.

The “⊆” inclusion is trivial. So take a moving point p with p′(t) ∈ Φ(t).
Since p ∈ Φ we have p =

∑n

i=1 αipi. Therefore,

p′(t) =

n∑

i=1

α′

i(t)pi(t) +

n∑

i=1

αi(t)p
′

i(t).

We know p′(t) ∈ Φ(t), so, because of the choices of pi in the lemma, we get
αi(t) = 0 for i = 1, . . . , r, i.e.

p(t) =
n∑

i=r+1

αi(t)pi(t) ∈ (Φ(1))(t).

Further we define Φ(0) := Φ and Φ(k+1) :=
(
Φ(k)

)
(1)

for k ≥ 0.

Remark 7 dim(Φ(1)) + dim(Φ(1)) = 2 dimΦ.

Now we can prove that these two constructions are dual.

Proposition 8 Φ(1) = D
(
(DΦ)(1)

)
and Φ(1) = D

(
(DΦ)(1)

)

Proof. The second assertion follows from the first by replacing Φ by DΦ
and applying D. In order to prove the first we calculate on all points except
for isolated points with the choice free description of the constructions. By
definition

D
(
(DΦ)(1)

)
(s) = {v ∈ CN | for all moving points p of DΦ is vT · p′(s) = 0}.

Since (DΦ)(1) ⊇ DΦ ⇒ D
(
(DΦ)(1)

)
⊆ Φ, we can assume that v ∈ Φ(s) and

that Φ(s) can be written as Φ(s) = {q(s) | q a moving point of Φ near s}, so
we get

D
(
(DΦ)(1)

)
(s) = {q(s) | q a moving point of Φ near s such that for all

moving points p of DΦ near s, q(s)T · p′(s) = 0}.

Since q ∈ Φ and p ∈ DΦ we know qT ·p = 0, so (q′)T ·p+qT ·p′ = 0. Applying
this at the point s and DΦ(s) = {p(s) | p a moving point of DΦ near s}, we
get

D
(
(DΦ)(1)

)
(s) = {q(s) | q a moving point of Φ near s with for all w ∈ DΦ(s)

is q′(s)T · w = 0}
= {q(s) | q a moving point of Φ near s with q′(s) ∈ DDΦ(s)

= Φ(s)}
= Φ(1)(s).

2
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4 The normal form

Now we can prove the theorem about the normal form.

Theorem. Let Φ : S → G(n,N) be a curve and r := dim(Φ(1)) − n, then
there exist unique a1 ≥ a2 ≥ . . . ≥ ar > 0 and a unique subspace V ⊆ CN

with
∑r

i=1 ai + dimV = n and (in general not unique) curves ϕ1, . . . , ϕr : S →
G(1, N), such that

Φ = ϕ
(a1−1)
1 ⊕ . . .⊕ ϕ(ar−1)

r ⊕ V

and
Φ(1) = ϕ

(a1)
1 ⊕ . . .⊕ ϕ(ar)

r ⊕ V.

Proof. We proceed by induction. The case n = 0 is trivial. Assume n > 0.
If r = 0, then Φ(1) = Φ = const. =: V by the lemma, so let r > 0. Now we can
apply the induction hypothesis to Φ(1) and get

Φ(1) = ϕ
(a1−1)
1 ⊕ . . .⊕ ϕ

(ar−1)
r ⊕ V

and
(Φ(1))

(1) = ϕ
(a1)
1 ⊕ . . .⊕ ϕ

(ar)
r ⊕ V,

where r := dim
(
(Φ(1))

(1)
)
− dim(Φ(1)) and

∑r

i=1 ai + l = n− r. Obviously we

have (Φ(1))
(1) ⊆ Φ, so r := dim((Φ(1))

(1))−dim(Φ(1)) ≤ dim Φ−dim(Φ(1)) = r.
Using the proposition we find ϕr+1, . . . , ϕr : S → G(1, N), such that

Φ = ϕ
(a1)
1 ⊕ . . .⊕ ϕ

(ar)
r ⊕ ϕr+1 ⊕ . . .⊕ ϕr ⊕ V.

Define ai := ai + 1 for i = 1, . . . , r and ai := 1 for i = r + 1, . . . , n, then Φ is

of the claimed form and we have Φ(1) = span{ϕ
(a1)
1 , . . . , ϕ

(ar)
r , V }. Comparing

dimensions we get the intended result.

It remains to prove the uniqueness. Solving the recursion in the definition
of Φ(k) we get

Φ(k) = ϕ
(a1−1−k)
1 ⊕ . . .⊕ ϕ(ar−1−k)

r ⊕ V,

where we set ϕ
(ai−1−k)
i := 0, if ai − 1 − k < 0.

So V = Φ(a1) and by inspecting the dimensions of these equations we get

dimΦ(k) = l +

r∑

i=1

max{0, ai − k}.

Therefore the uniqueness of the ai follows. 2

Corollary. If dim(Φ(1)) = dim Φ + 1, then Φ is either a cone (in the
projective sense, i.e. dim

⋂
s∈S Φ(s) ≥ 1) or the (n − 1)-th osculating curve

of a unique curve ϕ : S → G(1, N) = PN−1.
Proof. Just the uniqueness of ϕ for Φ = ϕ(n−1) is new, but referring to the

proof above, we see that ϕ = ϕ(0) = Φ(n−1). 2
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