A normal form for curves in Grassmannians

Jens Piontkowski*

July 4, 2002

The purpose of this paper is to give an elementary proof of Griffiths' and Harris' normal form theorem [4, p.385].

1 Introduction

Our topic is a variety V in \mathbb{P}_{N-1} which is the trace of an (n-1)-dimensional linear subspace moving with one complex parameter. More precisely, we consider a curve in a Grassmannian, i.e. a holomorphic mapping $\Phi: S \to \mathbb{G}(n-1, N-1)$, where S is a Riemann surface and $\mathbb{G}(n-1, N-1)$ denotes the Grassmannian, the set of (n-1)-planes in \mathbb{P}_{N-1} . If V is not linear, then one can get such a map Φ as the desingularisation of the Fano variety $\mathbb{F}_{n-1}(V)$ of V, that is the variety in $\mathbb{G}(n-1, N-1)$ consisting of the (n-1)-planes contained in V. For technical reasons we prefer to view Φ as a map $\Phi: S \to \mathbb{G}(n, N)$ into the Grassmannian $\mathbb{G}(n, N)$, the set of n-dimensional subspaces in \mathbb{C}^N .

The structure theorem we want to prove is

Theorem. Let $\Phi: S \to G(n, N)$ be a curve, then there exists a unique $r \in \mathbb{N}$, as well as unique $a_1 \ge a_2 \ge \ldots \ge a_r > 0$ and a unique linear subspace $V \subseteq \mathbb{C}^N$ with $\sum_{i=1}^r a_i + \dim V = n$ and (in general not unique) curves $\varphi_1, \ldots, \varphi_r: S \to$ G(1, N) such that

$$\Phi = \varphi_1^{(a_1 - 1)} \oplus \ldots \oplus \varphi_r^{(a_r - 1)} \oplus V$$

and

$$\Phi^{(1)} = \varphi_1^{(a_1)} \oplus \ldots \oplus \varphi_r^{(a_r)} \oplus V.$$

Hereby, $\varphi_i^{(a_i-1)}$, resp. $\varphi_i^{(a_i)}$, denotes the (a_i-1) -th, resp. (a_i) -th, osculating curve of $\varphi_i : S \to G(1, N) = \mathbb{P}_{N-1}$ and $\Phi^{(1)}$ is the natural generalisation of the first osculating curve to the case of a curve in G(n, N), where *n* is arbitrary.

Applying the theorem to the classical case of ruled surfaces in \mathbb{P}_3 , we obtain that the developable surfaces (that is the case r = 1) are either tangent surfaces or cones. This was already proved in [1] and [3].

^{*}The author thanks Gerd Fischer for his encouragement and support.

2 Addition and decomposition of curves

The main tool in this examination and the reason why we work with a *one* dimensional complex manifold S is the following ([5, p.263])

Lemma 1 If $0 \neq \widetilde{\Psi} = (\psi_1, \ldots, \psi_N) : U \subset \mathbb{C} \to \mathbb{C}^N$, U connected, is a holomorphic map, then there is a unique continuation Ψ of $\mathbb{P}(\widetilde{\Psi}) : U \setminus \{z \in U \mid \widetilde{\Psi}(z) = 0\} \to \mathbb{P}_{N-1}$ to $\Psi : U \to \mathbb{P}_{N-1}$.

Now it is easy to define the direct sum $\Phi \oplus \Psi$ of two curves $\Phi : S \to G(n, N)$ and $\Psi : S \to G(m, N)$ for which there exists a point $t \in S$ with $\Phi(t) \cap \Psi(t) = 0$, so that $(\Phi \oplus \Psi)(s) = \Phi(s) \oplus \Psi(s)$ for $s \in S$ up to isolated points.

We think of the Grassmannian G(n, N) as a submanifold of the projective space $\mathbb{P}(\bigwedge^n \mathbb{C}^N)$ by the Plücker-embedding $V = span\{v_1, \ldots, v_n\} \mapsto \mathbb{P}(v_1 \land \ldots \land v_n)$. So for any point of S we can take local liftings of Φ and Ψ , i.e. curves $\widetilde{\Phi} : U \to \bigwedge^n \mathbb{C}^N \setminus \{0\}$ and $\widetilde{\Psi} : U \to \bigwedge^m \mathbb{C}^N \setminus \{0\}$ with $\mathbb{P}(\widetilde{\Phi}) = \Phi$, resp. $\mathbb{P}(\widetilde{\Psi}) = \Psi$, and define $\Phi \oplus \Psi$ on U to be the continuation of $\mathbb{P}(\widetilde{\Phi} \land \widetilde{\Psi})$. A short calculation shows that these local definitions are the same in their overlapping areas, so we get the desired global curve $\Phi \oplus \Psi : S \to G(n+m, N)$.

It is also possible to define the sum $\Phi + \Psi$ and the intersection $\Phi \cap \Psi$ of two curves $\Phi : S \to G(n, N)$ and $\Psi : S \to G(m, N)$, such that up to isolated points we have $(\Phi + \Psi)(s) = \Phi(s) + \Psi(s)$ and $(\Phi \cap \Psi)(s) = \Phi(s) \cap \Psi(s)$.

Introducing the notation dim $\Phi = n$ for $\Phi : S \to G(n, N)$, we have

Remark 2 dim $(\Phi \cap \Psi)$ + dim $(\Phi + \Psi)$ = dim Φ + dim Ψ .

Using the well-known holomorphic duality \mathcal{D} between the Grassmannians G(n, N) and G(N - n, N):

$$\begin{aligned} \mathcal{D}: \quad \mathbf{G}(n,N) &\to \qquad \mathbf{G}(N-n,N) \\ V &\mapsto \quad \{ w \in \mathbb{C}^N \mid \forall v \in V : \ w^{\mathrm{T}} \cdot v = 0 \} \end{aligned}$$

we see that both constructions are connected similar to the sum and intersection of ordinary subspaces of \mathbb{C}^N

$$\Phi \cap \Psi = \mathcal{D}(\mathcal{D}\Phi + \mathcal{D}\Psi) \quad and \quad \Phi + \Psi = \mathcal{D}(\mathcal{D}\Phi \cap \mathcal{D}\Psi).$$

Likewise, it is possible to decompose a curve into the sum of smaller ones.

Proposition 3 Given $\Phi : S \to G(n, N)$ and $\Psi : S \to G(m, N)$ with $\Psi \subseteq \Phi$ (*i.e.* $\forall s \in S : \Psi(s) \subseteq \Phi(s)$), then there exist $\varphi_1, \ldots, \varphi_{m-n} : S \to G(1, N)$, such that $\Phi = \Psi \oplus \varphi_1 \oplus \ldots \oplus \varphi_{m-n}$.

Proof. First choose $t \in S$ and vectors $v_1, \ldots, v_{n-m} \in \mathbb{C}^N$ such that $\Phi(t) = span\{\Psi(t), v_1, \ldots, v_{n-m}\}$. Now choose (N - n + 1)-dimensional subspaces V_i with $V_i \cap \Phi(t) = \mathbb{C} \cdot v_i$, finally define $\varphi_i := \Phi \cap V_i := \mathcal{D}(\mathcal{D}\Phi \oplus \mathcal{D}V_i) \subseteq \Phi$. Then we have $\varphi_1 \oplus \ldots \oplus \varphi_{n-m} \oplus \Psi \subseteq \Phi$ and comparing dimensions we see, that both sides must be equal.

3 The curves $\Phi^{(1)}$ and $\Phi_{(1)}$

Next we want to study the infinitesimal behavior of a curve Φ , which we think of as a moving *n*-plane. We make the following auxiliary

Definition 4 A moving point p in Φ near $t \in S$ is a holomorphic mapping $p: U \to \mathbb{C}^N \setminus \{0\}$ defined in a neighbourhood U of S so that $p(s) \in \Phi(s)$ for all $s \in U$.

As a measure of the movement of Φ we define a new curve, $\Phi^{(1)}$.

Definition of $\Phi^{(1)}$.

An illustrative description of $\Phi^{(1)}$ is given by

 $(\Phi^{(1)})(s) = \{p'(s) \mid p \text{ a moving point of } \Phi \text{ near } s\} \supseteq \Phi(s),$

where p' denotes the derivative, as usual. Unfortunately, this description is only valid up to isolated points, so we choose a different approach, which also shows that $\Phi^{(1)}$ is holomorphic.

First we define $\Phi^{(1)}$ locally. For any point of S choose a neighbourhood U and n moving points p_1, \ldots, p_n on it, such that $\Phi(s) = \operatorname{span}\{p_1(s), \ldots, p_n(s)\}$ on U. Let $V_s := \operatorname{span}\{p_1(s), \ldots, p_n(s), p'_1(s), \ldots, p'_n(s)\}$ and $r := \max_{s \in U} \dim V_s - n$ and finally $\tilde{s} \in U$ such that $\dim V_{\tilde{s}} = n + r$. After renumbering we can assume $V_{\tilde{s}} = \operatorname{span}\{p_1(\tilde{s}), \ldots, p_n(\tilde{s}), p'_1(\tilde{s}), \ldots, p'_r(\tilde{s})\}$; then we define

$$(\Phi^{(1)})(s) = \mathbb{P}(p_1(s) \land \ldots \land p_n(s) \land p'_1(s) \land \ldots \land p'_r(s))$$

on U, where we again continue into the exceptional set $X := \{s \in U \mid p_1(s) \land \ldots \land p_n(s) \land p'_1(s) \land \ldots \land p'_r(s)) = 0\}.$

In order to show that these local pieces of $\Phi^{(1)}$ are the same at the intersections, we simply show that the new definition agrees with the old one on $U \setminus X$, which was free of any choices. Therefore we can claim that for $t \in U \setminus X$ is

 $(\Phi^{(1)})(t) = \{p'(t) \mid p \text{ a moving point of } \Phi \text{ near } t\}.$

For the " \subseteq " inclusion we note that $p_i(t)$ and $q_i(s) := (s-t)p_i(s)$ are moving points of Φ , and $q'_i(t) = (t-t)p'_i(t) + p_i(t) = p_i(t)$. For the opposite inclusion we have $p \in \Phi = span\{p_1, \ldots, p_n\}$, so we can find holomorphic functions α_i , such that $p = \sum_{i=1}^n \alpha_i p_i$. It follows that

$$p'(t) = \sum \alpha_i(t)p'_i(t) + \sum \alpha'_i(t)p_i(t),$$

i.e. $p'(t) \in span\{p_1(t), \ldots, p_n(t), p'_1(t), \ldots, p'_n(t)\} = span\{p_1(t), \ldots, p_n(t), p'_1(t), \ldots, p'_n(t)\}$. The last two terms are equal, because $t \notin X$.

Lemma 5 $\Phi^{(1)} = \Phi \iff \Phi \text{ constant.}$

Proof. This is a reformulation of lemma 1 in [2]. \Box We define $\Phi^{(0)} := \Phi$ and $\Phi^{(k+1)} := (\Phi^{(k)})^{(1)}$ for $k \ge 0$.

Let us apply these constructions to the lowest dimensional curves $\varphi : S \to G(1, N) = \mathbb{P}_{N-1}$. Locally we have $\varphi^{(k)} = \operatorname{span}\{p, p', p'', \dots, p^{(k)}\}$, where p is a

moving point of φ . If dim $\varphi^{(k)} = k + 1$, then these curves are called osculating curves and $\varphi^{(1)}(s)$ is the tangent to $\varphi : S \to \mathbb{P}_{N-1}$ at $\varphi(s), \varphi^{(2)}(s)$ is the osculating plane and so on.

Now we come to the next construction, $\Phi_{(1)}$, which consists of the traces of moving points of Φ , for which p' is also a moving point of Φ . This might have less geometrical interpretations, but it is important, because it sometimes reverses the previous construction, e.g. $(\varphi^{(1)})_{(1)} = \varphi$.

Definition of $\Phi_{(1)}$.

Again there is an illustrative description of $\Phi_{(1)}$

$$(\Phi_{(1)})(s) = \{p(s) \mid p \text{ a moving point of } \Phi \text{ near s with } p'(s) \in \Phi(s)\} \subseteq \Phi(s),$$

which is only valid up to isolated points. So let us take another approach.

Lemma 6 Let $\Phi: S \to G(n, N)$, $\tilde{s} \in S$ and $r := \dim(\Phi^{(1)}) - \dim \Phi$, then there exists a neighbourhood U of \tilde{s} and moving points p_1, \ldots, p_n of Φ on U, such that

- 1. $\Phi = \operatorname{span}\{p_1, \ldots, p_n\}$ on $U \setminus \{\tilde{s}\}$
- 2. $p'_{r+1}, \ldots, p'_n \in \Phi$
- 3. $\Phi^{(1)} = \operatorname{span}\{p_1, \dots, p_n, p'_1, \dots, p'_r\} \text{ on } U \setminus \{\widetilde{s}\}.$ In particular $p_1, \dots, p_n, p'_1, \dots, p'_r$ are linear independent on $U \setminus \{\widetilde{s}\}.$

Looking at the definition of $\Phi^{(1)}$ we can assume that Φ = Proof. $span\{q_1,\ldots,q_n\}$ and $\Phi^{(1)} = span\{q_1,\ldots,q_n,q'_1,\ldots,q'_r\}$ on $U \setminus \{\tilde{s}\}$. We define $p_i := q_i$ for $i = 1,\ldots,r$ and for $i = r+1,\ldots,n$ in the following

way:

Because $q'_i \in span\{q_1, \ldots, q_n, q'_1, \ldots, q'_r\}$ on $U \setminus \{\hat{s}\}$ there are holomorphic functions $\alpha_i^1, \ldots, \alpha_i^n, \beta_i^1, \ldots, \beta_i^r, \gamma_i, \gamma_i(s) \neq 0$ for $s \in U \setminus \{\tilde{s}\}$ (shrink U, if necessary), such that

$$\sum_{j=1}^{n} \alpha_i^j q_j + \sum_{j=1}^{r} \beta_i^j q'_j + \gamma_i q'_i = 0.$$

Define $p_i := \sum_{j=1}^r \beta_i^j q_j + \gamma_i q_i$, then we have

$$p'_{i} = \sum_{j=1}^{r} \left(\beta_{i}^{j\prime}q_{j} + \beta_{i}^{j}q_{j}^{\prime}\right) + \gamma_{i}^{\prime}q_{i} + \gamma_{i}q_{i}^{\prime}$$
$$= \left(\sum_{j=1}^{r} \beta_{i}^{j}q_{j}^{\prime} + \gamma_{i}q_{i}^{\prime}\right) + \sum_{j=1}^{r} \beta_{i}^{j\prime}q_{j} + \gamma_{i}^{\prime}q_{i}$$
$$= -\sum_{j=1}^{n} \alpha_{i}^{j}q_{j} + \sum_{j=1}^{r} \beta_{i}^{j\prime}q_{j} + \gamma_{i}^{\prime}q_{i} \in \Phi.$$

Because $\gamma_i \neq 0$ on $U \setminus \{\tilde{s}\}$, 1. and 3. also follow.

Now we define $\Phi_{(1)}$ locally to be the continuation of $\mathbb{P}(p_{r+1} \wedge \ldots \wedge p_n)$. In order to show that these pieces of $\Phi_{(1)}$ patch together, we show that the new and the old descriptions are the same on on $U \setminus \{\tilde{s}\}$

$$(\Phi_{(1)})(t) = \{p(t) \mid p \text{ a moving point of } \Phi \text{ near } t \text{ with } p'(t) \in \Phi(t)\}.$$

The " \subseteq " inclusion is trivial. So take a moving point p with $p'(t) \in \Phi(t)$. Since $p \in \Phi$ we have $p = \sum_{i=1}^{n} \alpha_i p_i$. Therefore,

$$p'(t) = \sum_{i=1}^{n} \alpha'_i(t) p_i(t) + \sum_{i=1}^{n} \alpha_i(t) p'_i(t).$$

We know $p'(t) \in \Phi(t)$, so, because of the choices of p_i in the lemma, we get $\alpha_i(t) = 0$ for $i = 1, \ldots, r$, i.e.

$$p(t) = \sum_{i=r+1}^{n} \alpha_i(t) p_i(t) \in (\Phi_{(1)})(t).$$

Further we define $\Phi_{(0)} := \Phi$ and $\Phi_{(k+1)} := (\Phi_{(k)})_{(1)}$ for $k \ge 0$.

Remark 7 dim $(\Phi^{(1)})$ + dim $(\Phi_{(1)})$ = 2 dim Φ .

Now we can prove that these two constructions are dual.

Proposition 8 $\Phi_{(1)} = \mathcal{D}\left((\mathcal{D}\Phi)^{(1)}\right)$ and $\Phi^{(1)} = \mathcal{D}\left((\mathcal{D}\Phi)_{(1)}\right)$

Proof. The second assertion follows from the first by replacing Φ by $\mathcal{D}\Phi$ and applying \mathcal{D} . In order to prove the first we calculate on all points except for isolated points with the choice free description of the constructions. By definition

$$\mathcal{D}\left((\mathcal{D}\Phi)^{(1)}\right)(s) = \{v \in \mathbb{C}^N \mid \text{for all moving points } p \text{ of } \mathcal{D}\Phi \text{ is } v^{\mathrm{T}} \cdot p'(s) = 0\}.$$

Since $(\mathcal{D}\Phi)^{(1)} \supseteq \mathcal{D}\Phi \Rightarrow \mathcal{D}((\mathcal{D}\Phi)^{(1)}) \subseteq \Phi$, we can assume that $v \in \Phi(s)$ and that $\Phi(s)$ can be written as $\Phi(s) = \{q(s) \mid q \text{ a moving point of } \Phi \text{ near } s\}$, so we get

 $\mathcal{D}\left((\mathcal{D}\Phi)^{(1)}\right)(s) = \{q(s) \mid q \text{ a moving point of } \Phi \text{ near } s \text{ such that for all} \\ moving \text{ points } p \text{ of } \mathcal{D}\Phi \text{ near } s, q(s)^{\mathrm{T}} \cdot p'(s) = 0\}.$

Since $q \in \Phi$ and $p \in \mathcal{D}\Phi$ we know $q^{\mathrm{T}} \cdot p = 0$, so $(q')^{\mathrm{T}} \cdot p + q^{\mathrm{T}} \cdot p' = 0$. Applying this at the point s and $\mathcal{D}\Phi(s) = \{p(s) \mid p \text{ a moving point of } \mathcal{D}\Phi \text{ near } s\}$, we get

$$\begin{aligned} \mathcal{D}\left((\mathcal{D}\Phi)^{(1)}\right)(s) &= \{q(s) \mid q \text{ a moving point of } \Phi \text{ near s with for all } w \in \mathcal{D}\Phi(s) \\ &\quad is \ q'(s)^{\mathrm{T}} \cdot w = 0\} \\ &= \{q(s) \mid q \text{ a moving point of } \Phi \text{ near s with } q'(s) \in \mathcal{D}\mathcal{D}\Phi(s) \\ &\quad = \Phi(s)\} \\ &= \Phi_{(1)}(s). \end{aligned}$$

4 The normal form

Now we can prove the theorem about the normal form.

Theorem. Let $\Phi: S \to G(n, N)$ be a curve and $r := \dim(\Phi^{(1)}) - n$, then there exist unique $a_1 \ge a_2 \ge \ldots \ge a_r > 0$ and a unique subspace $V \subseteq \mathbb{C}^N$ with $\sum_{i=1}^r a_i + \dim V = n$ and (in general not unique) curves $\varphi_1, \ldots, \varphi_r: S \to$ G(1, N), such that

$$\Phi = \varphi_1^{(a_1-1)} \oplus \ldots \oplus \varphi_r^{(a_r-1)} \oplus V$$

and

$$\Phi^{(1)} = \varphi_1^{(a_1)} \oplus \ldots \oplus \varphi_r^{(a_r)} \oplus V.$$

Proof. We proceed by induction. The case n = 0 is trivial. Assume n > 0. If r = 0, then $\Phi^{(1)} = \Phi = const. =: V$ by the lemma, so let r > 0. Now we can apply the induction hypothesis to $\Phi_{(1)}$ and get

$$\Phi_{(1)} = \varphi_1^{(\overline{a}_1 - 1)} \oplus \ldots \oplus \varphi_{\overline{r}}^{(\overline{a}_{\overline{r}} - 1)} \oplus V$$

and

$$(\Phi_{(1)})^{(1)} = \varphi_1^{(\overline{a}_1)} \oplus \ldots \oplus \varphi_{\overline{r}}^{(\overline{a}_{\overline{r}})} \oplus V,$$

where $\overline{r} := \dim \left((\Phi_{(1)})^{(1)} \right) - \dim(\Phi_{(1)})$ and $\sum_{i=1}^{\overline{r}} \overline{a}_i + l = n - r$. Obviously we have $(\Phi_{(1)})^{(1)} \subseteq \Phi$, so $\overline{r} := \dim((\Phi_{(1)})^{(1)}) - \dim(\Phi_{(1)}) \leq \dim \Phi - \dim(\Phi_{(1)}) = r$. Using the proposition we find $\varphi_{\overline{r}+1}, \ldots, \varphi_r : S \to \mathcal{G}(1, N)$, such that

$$\Phi = \varphi_1^{(\overline{a}_1)} \oplus \ldots \oplus \varphi_{\overline{r}}^{(\overline{a}_{\overline{r}})} \oplus \varphi_{\overline{r}+1} \oplus \ldots \oplus \varphi_r \oplus V.$$

Define $a_i := \overline{a}_i + 1$ for $i = 1, ..., \overline{r}$ and $a_i := 1$ for $i = \overline{r} + 1, ..., n$, then Φ is of the claimed form and we have $\Phi^{(1)} = \operatorname{span}\{\varphi_1^{(a_1)}, \ldots, \varphi_r^{(a_r)}, V\}$. Comparing dimensions we get the intended result.

It remains to prove the uniqueness. Solving the recursion in the definition of $\Phi_{(k)}$ we get

$$\Phi_{(k)} = \varphi_1^{(a_1 - 1 - k)} \oplus \ldots \oplus \varphi_r^{(a_r - 1 - k)} \oplus V,$$

where we set $\varphi_i^{(a_i - 1 - k)} := 0$, if $a_i - 1 - k < 0$.

So $V = \Phi_{(a_1)}$ and by inspecting the dimensions of these equations we get

dim
$$\Phi_{(k)} = l + \sum_{i=1}^{r} \max\{0, a_i - k\}.$$

Therefore the uniqueness of the a_i follows.

Corollary. If $\dim(\Phi^{(1)}) = \dim \Phi + 1$, then Φ is either a cone (in the projective sense, i.e. $\dim \bigcap_{s \in S} \Phi(s) \ge 1$) or the (n-1)-th osculating curve of a unique curve $\varphi : S \to G(1, N) = \mathbb{P}_{N-1}$.

Proof. Just the uniqueness of φ for $\Phi = \varphi^{(n-1)}$ is new, but referring to the proof above, we see that $\varphi = \varphi^{(0)} = \Phi_{(n-1)}$.

References

[1]	Ehrhard D.: Abwickelbare Regelflächen in der reellen und kom- plexen Differentialgeometrie. Diplomarbeit, Düsseldorf 1989.
[2]	Fischer, G. and Wu, H. H.: Developable Complex Analytic Submanifolds. To appear.
[0]	

- [3] Gräf, M.: Abwickelbare Regelflächen in der affinen analytischen Geometrie. Diplomarbeit, Düsseldorf 1994.
- [4] Griffiths, P. and Harris, J.: Algebraic geometry and local differential geometry. Ann. Ec. Norm. Sup. 12 (1979), p. 355-423.
- [5] Griffiths, P. and Harris, J.: Principles of Algebraic Geometry. New York, Wiley-Interscience Publication 1978.