Übungen zur Einführung in die Algebra

Blatt 2

Aufgabe 1. (i) Ist die Gruppe $C_3 \times C_5$ zyklisch? Wie steht es mit der Gruppe $C_2 \times C_2$?

- (ii) Sei G eine zyklische Gruppe. Beweisen Sie, dass dann auch jede Quotientengruppe G/H und jede Untergruppe $H \subset G$ zyklisch ist.
- (iii) Ist die Gruppe $G = Aut(C_8)$ zyklisch?

Aufgabe 2. Sei G eine Gruppe.

- (i) Verifizieren Sie, dass die Kommutatoruntergruppe $[G, G] \subset G$ normal ist.
- (ii) Zeigen Sie, dass die Quotientengruppe $G_{ab} = G/[G, G]$ abelsch ist.
- (iii) Sie $f:G\to A$ ein Homomorphismus in einer abelschen Gruppe A. Beweisen Sie, dass es genau einen Homomorphismus $f_{ab}:G_{ab}\to A$ gibt, so dass das Diagramm

kommutativ ist.

Bemerkung: Man bezeichnet die Gruppe G_{ab} als die Abelianisierung von G.

Aufgabe 3. Sei G eine Gruppe, $A \subset G$ eine normale Untergruppe und $B \subset G$ eine Untergruppe. Angenommen, jedes Element $g \in G$ läßt sich in eindeutiger Weise als Produkt g = ab mit $a \in A$ und $b \in B$ schreiben. Beweisen Sie die folgenden Aussagen:

- (i) Der induzierte Homomorphismus $B \to G/A$, $b \mapsto bA$ ist bijektiv.
- (ii) Die Vorschrift $b \mapsto (a \mapsto bab^{-1})$ liefert einen wohldefinierten Homomorphismus $f: B \to \operatorname{Aut}(A)$.
- (iii) Die auf dem semidirekten Produkt definierte Abbildung $h: A \rtimes_f B \to G$, $(a,b) \mapsto ab$ ist ein bijektiver Homomorphismus.

Aufgabe 4. Sei G eine dihedrale Gruppe von Ordnung ord(G) = 2n mit $n \geq 3$. Beweisen Sie die folgenden drei Aussagen:

- (i) Es gibt genau eine zyklische Untergruppe $N \subset G$ vom Index [G:N]=2.
- (ii) Es gibt genau n nichtzentrale Elemente $x \in G$ von Ordnung zwei, also $x \notin C(G)$ und $\operatorname{ord}(x) = 2$.
- (iii) Sei $x \in G$ so ein nichtzentrales Element von Ordnung zwei, $H = \{e, x\}$ die davon erzeugte Untergruppe, und X = G/H die zugehörige Quotientenmenge. Dann ist der zur Translationswirkung $G \times X \to X$ gehörige Homomorphismus $G \to S_X$, $g \mapsto (yH \mapsto gyH)$ injektiv.

Abgabe: Bis Donnerstag, den 20.4. um 9:10 Uhr in den Zettelkästen.

Sprechstunden: Prof. Dr. Stefan Schröer montags von 11–12h ct.

Dr. Christian Liedtke donnerstags von 13–14h ct.

Ilya Gendler und Saša Novaković dienstags von 13–14h ct im Korrektorenzimmer 25.13.U1.31.

Klausur: Donnerstag, 13.7.2006, von 9:00–11:00 Uhr im Hörsaal 5E. Nachklausur: Montag, 16.10.2006, von 11:00–13:00 Uhr im Hörsaal 5H. Erlaubte Hilfsmittel: 2 Blatt Papier mit handschriftlichen Notizen.

Zulassung zu Klausur/Nachklausur: Sie müssen eine Ubungsaufgabe in den Übungen vorrechnen und mindestens 40% = 96 Punkte erreichen. Wir ermutigen Sie, die Übungsaufgaben in Gruppen zu bearbeiten; die Lösungen müssen jedoch einzeln aufgeschrieben und abgegeben werden.