Übungen zu Algebraische Geometrie II

Blatt 3

Aufgabe 1.* Sei k ein Grundkörper, $n \geq 0$ eine natürliche Zahl, sowie $U = \mathbb{A}^n - \{0\}$ der punktierte n-dimensionale affine Raum. Verifizieren Sie, daß die kanonische Projektion $f: U \to \mathbb{P}^n$ ein affiner Morphismus ist.

Aufgabe 2.* Sei Y ein lokal noethersches Schema und $f: X \to Y$ ein eigentlicher Morphismus. Sei $x \in X$ ein Punkt mit $\dim(\mathcal{O}_{X,x}) \geq 1$. Zeigen Sie, daß der induzierte Morphismus $f: X - \{x\} \to Y$ nicht eigentlich ist.

Aufgabe 3. Seien A,B,C Mengen und $f:A\to B$ und $g:B\to C$ Abbildungen. Verifizieren Sie, daß das Diagramm

$$\begin{array}{ccc} A & \xrightarrow{\Gamma_f} & A \times_C B \\ f \downarrow & & \downarrow f \times \mathrm{id} \\ B & \xrightarrow{\Delta} & B \times_C B \end{array}$$

kommutativ ist, und daß die induzierte Abbildung

$$A \longrightarrow B \times_{(B \times_C B)} (A \times_C B)$$

bijektiv ist.

Aufgabe 4. Sei $f: X \to Y$ ein quasikompakter quasiseparierter Morphismus von Schemata. Zeigen Sie, daß es eine Faktorisierung $f = g \circ h$ gibt, wobei $h: X \to X'$ ein Morphismus mit $h_*(\mathcal{O}_X) = \mathcal{O}_{X'}$ ist und $g: X' \to Y$ ein affiner Morphismus ist.

Abgabe: Bis Montag, den 30.4. um 9:10 Uhr in den Zettelkästen.