Übungen zu Algebraische Geometrie II

Blatt 8

Aufgabe 1.* Sei E eine reguläre integre Kurve vom arithmetischen Geschlecht $p_a = 1$. Sei \mathcal{L} eine invertierbare Garbe auf E vom Grad $\deg(\mathcal{L}) = 1$. Zeigen Sie, daß dann \mathcal{L} nicht global erzeugt sein kann.

Aufgabe 2.* Sei X ein projektives \mathbb{C} -Schema. Zeigen Sie, daß es endlich viele komplexe Zahlen $z_1,\ldots,z_n\in\mathbb{C}$ mit der folgenden Eigenschaft gibt: Es gibt ein projektives Schema Y über dem Unterkörper $K=\mathbb{Q}(z_1,\ldots,z_n)$ und einen \mathbb{C} -Isomorphismus $Y\otimes_K\mathbb{C}\to X$.

Aufgabe 3. Sei C eine eine eigentliche Kurve, die irreduzible und Cohen-Macaulay ist. Angenommen, es gibt eine invertierbare Garbe \mathcal{L} vom Grad $\deg(\mathcal{L}) = 1$ auf C. Zeigen Sie, daß C reduziert sein muß.

Aufgabe 4. Sei C eine reguläre eigentliche Kurve über einem Grundkörper k mit $h^0(\mathcal{O}_C) = 1$ und arithmetischem Geschlecht $p_a = 0$. Zeigen Sie, daß es einen abgeschlossenen Punkt $x \in C$ gibt mit der Eigenschaft

$$[\kappa(x):k] \leqslant 2.$$

Abgabe: Bis Montag, den 11.6. um 9:10 Uhr in den Zettelkästen.