Übungen zur Linearen Algebra II

Blatt 4

Aufgabe 1. Sei V ein endlich-dimensionaler K-Vektorraum von Dimension ≥ 2 . Ist die Teilmenge der nilpotenten Endomorphismen $N \subset \operatorname{End}(V)$ ein Untervektorraum?

Aufgabe 2. Sei $A \in \text{Mat}(n, K)$ eine obere Dreiecksmatrix. Zeigen Sie, daß die Matrix A genau dann nilpotent ist, wenn ihre Diagonaleinträge verschwinden.

Aufgabe 3. Sei p > 0 eine Primzahl, und $U \subset \mathbb{F}_p[T]$ der Untervektorraum aller Polynome vom Grad $d \leq 5$, und

$$\partial/\partial T: U \longrightarrow U, \quad T^i \longmapsto iT^{i-1}$$

der nilpotente Endomorphismus, der ein Polynom auf seine formale Ableitung schickt. Bestimmen Sie die Jordan-Normalform

$$J = \begin{pmatrix} J_{m_1}(0) & & \\ & \ddots & \\ & & J_{m_s}(0) \end{pmatrix} \in \operatorname{Mat}(6, \mathbb{F}_p), \quad m_1 \ge \ldots \ge m_s$$

von $\partial/\partial T$ in Abhängigkeit von der Charakteristik p.

Aufgabe 4. Sei $p \geq 0$ eine Primzahl. Beweisen Sie, daß es genau p^2 nilpotente Matrizen $A \in \operatorname{Mat}(2, \mathbb{F}_p)$ gibt. (Sie dürfen die Tatsache benutzen, daß in \mathbb{F}_p^{\times} , $p \neq 2$ genau die Hälfte der Elemente Quadrate sind.)

Abgabe: Bis Mittwoch den 20.5. um 11:00 Uhr in den Zettelkästen.