Mathematisches Institut Heinrich-Heine-Universität Prof. Dr. Stefan Schröer

Übungen zur Algebraischen Geometrie I

Blatt 1

Aufgabe 1. Sei (X, \mathcal{O}_X) ein Schema und $U \subset X$ eine offene Teilmenge. Verifiziern Sie, dass der geringte Raum $(U, \mathcal{O}_X|_U)$ ein Schema ist.

Aufgabe 2. Sei \mathcal{F} eine mengenwertige Garbe auf einem topologischen Raum X, und

$$s, t \in \Gamma(U, \mathcal{F})$$

zwei lokale Schnitte. Angenommen, es gilt $s_x = t_x$ im Halm \mathcal{F}_x für alle Punkte $x \in U$. Folgern Sie, dass dann s = t.

Aufgabe 3. Sei k ein Körper. Bestimmen Sie die Mengen

$$\operatorname{Hom}(\mathbb{A}^1_k, \mathbb{A}^n_k)$$
 und $\operatorname{Hom}(\mathbb{P}^1_k, \mathbb{A}^n_k)$

aller k-Morphismen des affinen 1-Raumes bzw. des projektiven 1-Raumes in den affinen n-Raum.

Aufgabe 4. Sei k ein Körper, und (X_i, \mathcal{O}_{X_i}) , i = 1, 2 zwei Kopien des affinen 1-Raumes \mathbb{A}^1_k . Sei $U_i \subset X_i$ das Komplement des Nullpunkts $0 \in \mathbb{A}^1_k$. Die affine Gerade mit verdoppeltem Nullpunkt ist die Verklebung

$$(X,\mathcal{O}_X)=(X_1,\mathcal{O}_{X_1})\cup(X_2,\mathcal{O}_{X_2})$$

bezüglich der Identität $(U_1, \mathcal{O}_{U_1}) \to (U_2, \mathcal{O}_{U_2})$. Skizzieren Sie den zugrundeliegenden Raum und weisen Sie nach, dass das Schema (X, \mathcal{O}_X) nicht affin ist.

Abgabe: Bis Montag, den 24.10.2011 um 8:15 Uhr in den Zettelkästen.