Übungen zur Algebraischen Geometrie II

Blatt 10

Aufgabe 1. Sei X ein eigentliches k-Schema, \mathcal{L} eine invertierbare Garbe, und $V \subset H^0(X, \mathcal{L})$ ein Linearsystem. Der Basisort B = Bs(V) ist als Teilmenge definiert durch

$$B = \{x \in X \mid s(x) = 0 \text{ für alle } s \in V\}.$$

Versehen Sie $B \subset X$ in kanonischer Weise mit der Struktur eines abgeschlossenen Unterschemas.

Aufgabe 2. Sei C eine eigentliche reguläre Kurve über einem Grundkörper $k = \bar{k}$, und $x_1, \ldots, x_r \in C$ endlich viele abgeschlossene Punkte. Zeigen Sie, dass es eine ample Garbe \mathcal{L} und ein Basispunkt-freies Linearsystem $V \subset H^0(C, \mathcal{L})$ gibt so, dass der induzierte Morphismus $f: C \to \mathbb{P}(V)$ die Eigenschaft

$$f(x_1) = \ldots = f(x_r)$$

hat, und auf dem Komplement $C \setminus \{x_1, \ldots, x_r\}$ eine Einbettung ist.

Aufgabe 3. Sei C eine reguläre eigentliche Kurve über einem Grundkörper k vom Geschlecht g > 0, und $x \in C$ ein k-wertiger Punkt. Argumentieren Sie, dass die invertierbare Garbe $\mathcal{L} = \mathcal{O}_C(x)$ nicht global erzeugt sein kann.

Aufgabe 4. Sei X ein eigentliches k-Schema, und \mathcal{L}, \mathcal{N} zwei invertierbare Garben auf X. Angenommen, \mathcal{N} ist semiampel und \mathcal{L} ist ampel. Beweisen Sie, dass dann auch $\mathcal{L} \otimes \mathcal{N}$ ampel ist.

Abgabe: Bis Montag, den 25.06.2012 um 8:15 Uhr in den Zettelkästen.