Übungen zur Algebraischen Geometrie II

Blatt 12

Aufgabe 1. Sei $X \subset \mathbb{P}^{n+1}$ eine Hyperfläche vom Grad $d \geq 1$. Für welche d ist die dualisierende Garbe ω_X ampel, wann ist $\omega_X^{\otimes -1}$ ampel, und unter welchem Umstand gilt $\omega_X = \mathcal{O}_X$?

Aufgabe 2. Sei R eine endliche k-Algebra. Geben Sie einen R-Modul N und eine k-lineare Abbildung $\tau: N \to k$ an, für den

$$(\omega_X, \operatorname{Tr}) = (\widetilde{N}, \widetilde{\tau})$$

eine dualisierende Garbe auf dem projektiven k-Schema $X = \operatorname{Spec}(R)$ ist. (Erkennen Sie dabei, wie es bei der Serre-Dualität zur Bezeichnung "Spurabbildung" kam?)

Aufgabe 3. Sei Y ein eigentliches k-Schema, dass equidimensional und Cohen-Macaulay ist, und $X \subset Y$ eine irreduzible Komponente. Beschreiben Sie die dualisierende Garbe ω_X durch die dualisierende Garbe ω_Y .

Aufgabe 4. Sei $f_1, \ldots, f_{n-1} \in \mathbb{C}[T_0, \ldots, T_n]$ eine reguläre Sequenz von homogene Polynome vom Grad $d_1, \ldots, d_r \geq 1$ so, dass das Verschwindungschema

$$X = V_+(f_1, \dots, f_{n-1}) \subset \mathbb{P}^n_{\mathbb{C}}$$

regulär ist. Wie viele Henkel hat die zugehörige topologische 2-Mannigfaltigkeit $X(\mathbb{C})$?

Abgabe: Bis Montag, den 09.07.2012 um 8:15 Uhr in den Zettelkästen.