Mathematisches Institut Heinrich-Heine-Universität Düsseldorf Prof. Dr. Stefan Schröer

Übungen zur Vorlesung Lineare Algebra I

Blatt 3

Aufgabe 1. Betrachten Sie die natürlichen Zahlen

a= Ihre Matrikelnummer, b= Ihr Geburtsjahr.

Berechnen Sie mit dem euklidischen Algorithmus den größten gemeinsamen Teiler

$$g = ggT(a, b),$$

und finden Sie eine Darstellung g = ra + sb mit $r, s \in \mathbb{Z}$.

Aufgabe 2. Berechnen Sie im Körper $\mathbb{F}_{53} = \mathbb{Z}/53\mathbb{Z}$ die folgenden Elemente:

$$a_1 = 34 + 63$$
, $a_2 = -4$, $a_3 = 1/2$, $a_4 = 120^2 - 555^3$, $a_5 = 1/3 + 1/2$.

Dabei ist das Ergebnis als Zahl $0\leqslant a_i<53$ anzugeben.

Aufgabe 3. Bestimmen Sie für die die Primzahlen p=3,5,7,11,13, welche Kongruenzklassen

$$[a] \in \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}, \quad 0 < a < p$$

Quadrate sind, indem sie jeweils eine Tabelle aller quadratischen Kongruenzklassen $[b]^2$ erstellen. Für p=5 sieht eine derartige Tabelle etwa so aus:

Fällt Ihnen etwas über die Anzahl der Quadrate in Abhängigkeit von p auf?

Aufgabe 4. Wir betrachten den Körper $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z} = \{0,1,2\}$ mit drei Elementen. In Analogie zu den komplexen Zahlen machen wir die neunelementige Menge $R = \mathbb{F}_3 \times \mathbb{F}_3$ durch die Verknüpfungen

$$(a,b) + (a',b') = (a+a',b+b')$$

 $(a,b) \cdot (a',b') = (aa'-bb',ab'+ba')$

zu einem Ring, mit Nullelement 0 = (0,0) und Einselement 1 = (1,0). Handelt es sich bei diesem Ring um einen Körper?

Abgabe: Bis Mittwoch, den 12.11. um 10:25 Uhr im Zettelkasten.

Achtung: Alle Abgaben müssen individuell, handschriftlich, und ohne elektronische Hilfsmittel verfasst sein.

Das griechische Alphabet

Buchstabe		Name	Transliteration
α	A	Alpha	a
β	В	Beta	b
γ	Γ	Gamma	g
δ,∂	Δ	Delta	d
ϵ	E	Epsilon	e
ζ	Z	Zeta	${f z}$
η	Н	Eta	ē
θ, ϑ	Θ	Theta	t
ι	I	Iota	i
κ	K	Kappa	k
λ	Λ	Lambda	1
μ	M	Mu	m
ν	N	Nu	n
ξ	Ξ	Xi	x
O	O	Omikron	O
π	П	Pi	p
ρ	P	Rho	r
σ	Σ	Sigma	\mathbf{s}
au	Τ	Tau	t
v	Υ	Upsilon	u
ϕ, φ	Φ	Phi	ph
χ	X	Chi	kh
ψ	Ψ	Psi	ps
ω	Ω	Omega	ō