Übungen zur Vorlesung Lineare Algebra II

Blatt 13

Aufgabe 1. Sei $f:U\to V$ eine lineare Abbildung zwischen endlichdimensionalen Vektorräumen, und $f^*:V^*\to U^*$ die duale Abbildung. Verifizieren Sie die folgenden beiden Aussagen:

- (i) f ist injektiv genau dann, wenn f^* surjektiv ist.
- (ii) f ist surjektiv genau dann, wenn f^* injektiv ist.

Aufgabe 2. Sei $f:V\to V$ ein Endomorphismus eines endlich-dimensionalen unitären Vektorraumes, und $f^*:V\to V$ seine adjungierte Abbildung. Zeigen Sie, dass f normal ist genau dann, wenn $f^*=P(f)$ für ein Polynom $P\in\mathbb{C}[T]$ gilt.

Aufgabe 3. Wie lautet die Jordan-Normalform für das Kronecker-Produkt $J_2(1) \otimes J_2(1) \in \operatorname{Mat}_3(K)$? Hierbei ist

$$J_2(1) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in \operatorname{Mat}_2(K).$$

Aufgabe 4. Sei K ein Körper von Charakteristik $p \neq 2, 3$ und $A \in Mat_6(K)$ mit

$$\chi_A(T) = (T-1)(T+2)^2(T+1)^3$$
 und $\mu_A(T) = (T-1)(T+2)(T+1)^2$.

Wie lautet die Jordan-Normalform für A? Was lässt sich in den Fällen p=2 oder p=3 sagen?

Abgabe: Bis Donnerstag, den 9.7. um 8:25 Uhr im Zettelkasten. Dieses Blatt wird nicht mehr von den Hilfskräften korrigiert, aber in den Übungsgruppen besprochen.