Klausur zur Vorlesung Algebra

Erste Klausur am 25. Juli 2016

Name:
Vorname:
Matrikelnummer:
Matrikemummer:
Studiengang:
Einschreibungssemester:
-

- Einziges erlaubtes Hilfsmittel: Ein DIN-A4-Blatt handschriftliche Notizen.
- Anderes mitgebrachte Papier, Bücher und elektronische Geräte bleiben die gesamte Klausur über im Rucksack verstaut.
- Legen Sie einen Lichtbildausweis sichtbar aus und tragen Sie oben Ihre Daten ein.
- Schreiben Sie auf jedes abgegebene Blatt Ihren Namen.
- Begründen Sie Ihre Antworten ausführlich.
- $\bullet\,$ Pro Aufgabe sind 10 Punkte erreichbar.
- Bearbeitungszeit: 120 Minuten.

1	2	3	4	5	Summe	Note

Aufgabe 1. Sei G eine Gruppe und A = Aut(G) ihre Automorphismengruppe. Rechnen Sie explizit nach, dass die Verknüpfung

$$(a, f) \cdot (b, g) = (af(b), f \circ g)$$

auf der Menge $G \times A$ eine Gruppenstruktur liefert, für welche $G = G \times \{id\}$ eine normale Untergruppe und Aut(G) die entsprechende Restklassengruppe ist. Welche Ordnung hat diese Gruppe $G \rtimes A$ für $G = C_{25}$?

Aufgabe 2. Wir betrachten die symmetrische Gruppe $G = S_4$. Bestimmen Sie für jede Primzahl p > 0 die Anzahl $s_p \ge 1$ der Sylow-p-Untergruppen $H \subset G$. Für welche p > 0 ist $H \subset G$ normal, und für welche p > 0 ist H zyklisch?

Aufgabe 3. Sei R ein Ring und $\mathfrak{a} \subset R$ die Teilmenge aller nilpotenten Elemente. Zeigen Sie, dass $\mathfrak{a} \subset R$ ein Ideal ist, und dass im Restklassenring R/\mathfrak{a} nur das Nullelement nilpotent ist.

Aufgabe 4. Sei K ein Körper von beliebiger Charakteristik, $K \subset \Omega$ ein algebraischer Abschluss, und $\zeta \in \Omega^{\times}$ ein Element endlicher Ordnung. Zeigen Sie, dass die Körpererweiterung $K \subset K(\zeta)$ abelsch ist.

Aufgabe 5. Sei p > 0 eine Primzahl, und $K \subset L$ eine Galois-Erweiterung, dessen Galois-Gruppe $G = \operatorname{Gal}(L/K)$ eine elementar-abelsche p-Gruppe von Ordnung $\operatorname{ord}(G) = p^2$ ist. Zeigen Sie, dass es genau p + 3 Zwischenkörper $K \subset E \subset L$ gibt.