Mathematisches Institut Heinrich-Heine-Universität Düsseldorf Prof. Dr. Stefan Schröer

Übungen zur Einführung in die Algebraische Geometrie

Blatt 1

Aufgabe 1. Sei k ein Körper und $\sigma: k \to k$ ein Körperautomorphismus. Zeigen Sie, dass mit jeder algebraischen Menge $X \subset \mathbb{A}^n(k)$ auch

$$\sigma(X) = \{ (\sigma(a_1), \dots, \sigma(a_n)) \mid (a_1, \dots, a_n) \in X \} \subset \mathbb{A}^n(k)$$

algebraisch ist.

Aufgabe 2. Seo k ein Körper und $g_1, \ldots, g_n \in k[T_1, \ldots, T_m]$ Polynome. Zeigen Sie, dass die Abbildung

$$\mathbb{A}^m(k) \longrightarrow \mathbb{A}^n(k), \quad x \longmapsto (g_1(x), \dots, g_n(x))$$

stetig bezüglich der Zariski-Topologie ist.

Aufgabe 3. Sei k ein Körper, und $n \geq 0$ eine natürliche Zahl. Wir identifizieren $\mathbb{A}^{n^2}(k)$ mit der Matrizenmenge $\mathrm{Mat}_n(k)$. Sei $f \in k[T]$ ein normiertes Polynom vom Grad $\deg(f) = n$. Zeigen Sie, dass die Teilmenge

$$X = \{B \in \operatorname{Mat}_n(k) \mid \chi_B(T) = f\} \subset \mathbb{A}^{n^2}(k)$$

der Matrizen mit charakteristischem Polynom $\chi_B(T)=f$ eine algebraische Menge ist.

Aufgabe 4. Seien k, k' zwei Körper. Verifizieren Sie, dass die topologischen Räume $X = \mathbb{A}^1(k)$ und $X' = \mathbb{A}^1(k')$ bezüglich der Zariski-Topologie homeomorph sind genau dann, wenn die Körper k, k' die gleiche Mächtigkeit haben.

Abgabe: Bis Freitag, den 28. Oktober um 8:25 Uhr im Zettelkasten.