Übungen zu Kommutative Algebra und algebraische Geometrie

Blatt 4

Aufgabe 1. Sei R ein Ring und $\mathfrak{a} \subset R$ ein Ideal, dass im Jacobsen-Radikal Rad(R) enthalten ist. Sei $\varphi: M \to N$ ein Homomorphismus von R-Moduln, und $\bar{\varphi}: \bar{M} \to \bar{N}$ die auf $\bar{M} = M/\mathfrak{a}M$ und $\bar{N} = N/\mathfrak{a}N$ die induzierte Abbildung. Angenommen, N ist endlich erzeugt. Folgern Sie

$$\bar{\varphi}: \bar{M} \to \bar{N}$$
 surjektiv $\implies \varphi: M \to N$ surjektiv

aus dem Nakayama-Lemma.

Aufgabe 2. Sei R ein Ring und $\mathfrak{a} \subset R$ ein Ideal, das im Jacobson-Radikal Rad(R) enthalten ist, und M ein R-Modul mit der Eigenschaft $\mathfrak{a}M = M$. Nach dem Nakayama-Lemma muss also M = 0, falls M endlich erzeugt ist.

- (i) Geben Sie ein Beispiel mit $M \neq 0$, wobei M nicht endlich erzeugt ist.
- (ii) Beweisen Sie, dass trotzdem M=0 gilt, sofern $\mathfrak a$ nilpotent ist, also $\mathfrak a^n=0$ für ein $n\geq 0$.

Aufgabe 3. Sei R ein lokaler Ring und M ein endlich erzeugter projektiver R-Modul, also ein direkter Summand eines freien Moduls $R^{\oplus n}$, $n \geq 0$. Zeigen Sie mit dem Nakayama-Lemma, dass dann M bereits frei sein muss.

Aufgabe 4. Beweisen Sie, dass ein Ring R bereits noethersch ist, sofern jedes Primideal $\mathfrak{p} \subset R$ endlich erzeugt ist. Tipp: Betrachten Sie die geordnete Menge aller Ideale, die nicht endlich erzeugt sind, sowie geeignete Summenund Colonideale

$$\mathfrak{p}+(f)=\{a+bf\mid a\in\mathfrak{p},b\in R\}, \qquad (\mathfrak{p}:f)=\{a\in R\mid af\in\mathfrak{p}\}.$$

Abgabe: Bis Freitag, den 19. Mai um 8:25 Uhr im Zettelkasten.