Übungen zu algebraische Geometrie I

Blatt 5

Aufgabe 1. Sei A ein Ring mit trivialer Picard-Gruppe Pic(A) = 0. Beschreiben Sie die Menge der A-wertigen Punkte $\mathbb{P}^n(A)$ durch homogene Koordinaten.

Aufgabe 2. Sei F ein Körper und $R \subset F$ ein Unterring mit folgender Eigenschaft: Für jedes $f \in F^{\times}$ gilt $f \in R$ oder $1/f \in R$. Folgern Sie, dass dann $F = \operatorname{Frac}(R)$ gilt, und dass die Menge aller Ideale $\mathfrak{a} \subset R$ durch die Inklusionsrelation total geordnet ist.

Aufgabe 3. Sei k ein Grundkörper, X ein integres Schema mit Ring der globalen Schnitte $\Gamma(X, \mathcal{O}_X) = k$, und \mathcal{L} eine invertierbare Garbe. Angenommen, sowohl \mathcal{L} als auch die duale Garbe $\mathcal{L}^{\otimes -1}$ besitzen nicht-triviale globale Schnitte. Zeigen Sie, dass dann $\mathcal{L} \simeq \mathcal{O}_X$ gilt.

Aufgabe 4. Sei X ein Schema, dessen zugrundeliegender Raum noethersch ist, und \mathcal{L} , \mathcal{N} zwei invertierbare Garben. Angenommen, \mathcal{L} is ampel. Beweisen Sie mit dem Fortsetzungssatz für lokale Schnitte, dass es eine natürliche Zahl $n \geq 0$ gibt so, dass $\mathcal{N} \otimes \mathcal{L}^{\otimes n}$ ampel ist.

Abgabe: Bis Freitag, den 24. November um 8:25 Uhr im Zettelkasten.