Übungen zur Algebra

Blatt 8

Aufgabe 1. Sei $K = \mathbb{R} \cap \mathbb{Q}^{\text{alg}}$ der Körper der reellen algebraischen Zahlen. Beweisen Sie, dass für jede endliche Erweiterung $L = K(\alpha)$ mit $\alpha \notin K$ der Grad n = [L:K] eine gerade Zahl ist.

Aufgabe 2. Zeigen Sie, dass der Körper \mathbb{C} unendlich viele algebraisch abgeschlossenen Unterkörper enthält.

Aufgabe 3. Wir betrachten den endlichen Körper \mathbb{F}_q zur Primzahlpotenz $q=p^n$.

- (i) Für welche Exponenten n gibt es genau vier Unterkörper $K\subset \mathbb{F}_q?$
- (ii) Für welche nist die Menge der Unterkörper $L\subset \mathbb{F}_q$ total geordnet?

Aufgabe 4. Sei $K \subset \mathbb{R}$ ein Unterkörper. Angenommen, der Punkt $z = (\omega_1, \omega_2)$ aus \mathbb{R}^2 geht durch eine elementare ZL-Konstruktion mit zwei Kreisen aus Punkten mit Koordinaten in K hervor. Rechnen Sie explizit nach, dass

$$[K(\omega_1, \omega_2) : K] = 2^{\nu}$$

für $\nu = 1$ oder $\nu = 0$.

Abgabe: Bis Mittwoch, den 17. Juni um 8:25 Uhr über ILIAS.