Übungen zur Algebra

Blatt 2

Aufgabe 1. Sei K ein Körper und V ein K-Vektorraum von Dimension $n \geq 1$. Die Gruppe $G = \operatorname{GL}(V)$ wirkt auf der Menge X aller 1-dimensionalen Untervektorräume $L \subset V$ durch $g \cdot L = g(L)$. Zeigen Sie mit dem Basisergänzungssatz, dass es nur eine Bahn gibt, und beschreiben Sie die Standgruppen G_L .

Aufgabe 2. Sei G eine Gruppe, H eine Untergruppe, X = G/H die resultierende G-Menge, und

$$f: G \longrightarrow S_X, \quad a \longmapsto (xH \mapsto axH)$$

der entsprechendem Homomorphismus. Folgern Sie mit dieser Abbildung, dass $H \subset G$ ein Normalteiler ist, sofern für den Index [G:H] = 2 gilt.

Aufgabe 3. Sei G eine Gruppe. Zeigen Sie, dass

$$f: G \longrightarrow \operatorname{Aut}(G), \quad a \longmapsto (x \mapsto axa^{-1})$$

ein Homomorphismus ist, bei dem das Bild $f(G) \subset Aut(G)$ normal ist.

Aufgabe 4. Die Gruppe $G = \mathrm{GL}_2(\mathbb{F}_p)$ wirkt auf der Menge X aller trigonalisierbaren Matrizen $A \in \mathrm{Mat}_2(\mathbb{F}_p)$ durch Konjugation. Bestimmen Sie mittels Jordan-Normalform die Anzahl der Bahnen $G \cdot A \subset X$, und berechenen Sie für

$$J = \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}$$

die Standgruppe G_J .

Abgabe: Bis Dienstag, den 22. April um 10:25 Uhr im Zettelkasten.