Mathematisches Institut Heinrich-Heine-Universität Düsseldorf Dr. Andreas Bode

Einführung in die Algebraische Geometrie

Blatt 2 Abgabe: 30.10.2025, 16 Uhr

Aufgabe 1

Sei $R = \mathbb{C}[T_1, \dots, T_n], f \in R$ und $I \subset R$ ein Ideal.

- (i) Zeigen Sie, dass $\sqrt{I} = \{r \in R | \exists n \geq 1 \ r^n \in I\}$ ein Ideal in R ist.
- (ii) Es habe f die Primfaktorisierung $f = \prod_{i=1}^r f_i^{e_i}$, mit $f_i \in R$ irreduzibel und paarweise verschieden, $e_i \ge 1$. Zeigen Sie, dass $\sqrt{(f)} = (g)$ für $g = \prod_{i=1}^r f_i$.

Aufgabe 2

Seien $V \subset \mathbb{C}^n$, $W \subset \mathbb{C}^m$ algebraische Mengen.

Zeigen Sie, dass $\phi \mapsto \phi^*$ eine Bijektion zwischen $\operatorname{Mor}(V, W)$ und der Menge aller Homomorphismen von \mathbb{C} -Algebren $\mathbb{C}[W] \to \mathbb{C}[V]$ liefert.

Aufgabe 3

Wir betrachten die algebraische Menge $X = V(y^n - g(x))$, wobei $g \in \mathbb{C}[x]$ ein normiertes, separables Polynom vom Grad d = 3 ist. Zeigen Sie, dass durch einen Koordinatenwechsel

$$x' = u^n x + r$$
, $y' = u^3 y$

mit geeignetem $u \in \mathbb{C}^{\times}$ und $r \in \mathbb{C}$ die algebraische Menge $X \subset \mathbb{C}^2$ in die algebraische Menge $Y = V(y^n - x(x-1)(x-\lambda))$ für ein $\lambda \in \mathbb{C}$, $\lambda \neq 0, 1$ überführt wird.

Aufgabe 4

Sei $S = \{(x_1, y_1), \dots, (x_n, y_n)\} \subset \mathbb{C}^2$ eine endliche Teilmenge. Zeigen Sie, dass es ein irreduzibles Polynom $f \in \mathbb{C}[x, y]$ gibt, sodass $S \subset V(f)$.

(Hinweis: Verwenden Sie Koordinatenwechsel, um auf den Fall $x_i \neq x_j$ für $i \neq j$ zurückzuführen. Die Formel für die Vandermonde-Determinante darf vorausgesetzt werden.)