Mathematisches Institut Heinrich-Heine-Universität Düsseldorf Dr. Andreas Bode

Einführung in die Algebraische Geometrie

Blatt 4 Abgabe: 13.11.2025, 16 Uhr

Aufgabe 1

Zeigen Sie, dass die Formel

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \frac{\lambda_1}{\lambda_0} = \frac{c\lambda_0 + d\lambda_1}{a\lambda_0 + b\lambda_1}$$

eine Wirkung der Gruppe $\mathrm{GL}_2(\mathbb{C})$ auf der Riemannschen Zahlenkugel

$$\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\} = \{\frac{\lambda_1}{\lambda_0} | \ \lambda_0, \lambda_1 \in \mathbb{C} \text{ verschwinden nicht gleichzeitig}\}$$

definiert.

Interpretieren Sie diese Wirkung neu, indem Sie Punkte auf $\mathbb{P}^1(\mathbb{C})$ als 1-dimensionale Untervektorräume $L \subset \mathbb{C}^2$ deuten.

Aufgabe 2

Zeigen Sie, dass obige Wirkung von $GL_2(\mathbb{C})$ auf $\mathbb{P}^1(\mathbb{C})$ transitiv, aber nicht treu ist. Berechnen Sie die Isotropiegruppe für $\infty \in \mathbb{P}^1(\mathbb{C})$.

Aufgabe 3

Sei $X=\mathbb{R}^n$ (mit der klassischen Topologie) für $n\geq 1$. Die Alexandroff-Kompaktifizierung ist definiert als

$$\overline{X} = X \cup \{\infty\},$$

wobei ∞ ein formales Symbol ist. Eine Teilmenge $U \subset \overline{X}$ ist offen, wenn entweder $\infty \notin U$ und U offen in \mathbb{R}^n ist, oder $\infty \in U$ und $\overline{X} \setminus U \subset \mathbb{R}^n$ kompakt ist.

- (i) Zeigen Sie, dass dies eine Topologie auf \overline{X} definiert.
- (ii) Zeigen Sie, dass \overline{X} kompakt ist.

Aufgabe 4

- (i) Zeigen Sie, dass $\mathbb{A}^n(\mathbb{C})$ mit der Zariski-Topologie für jedes $n\geq 1$ quasi-kompakt, aber nicht Hausdorffsch ist.
- (ii) Welche algebraischen Mengen sind kompakt unter der Zariski-Topologie? (Sie dürfen voraussetzen, dass jede algebraische Menge die Vereinigung von endlich vielen irreduziblen algebraischen Mengen ist.)