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Overview: The étale cohomology groups H i(X,Qℓ(j)) for a scheme X of finite type
over a ground field k yield powerful tools in algebraic geometry to understand both
geometric and arithmetic aspects. These Qℓ-vector spaces can be seen as analogues
of the classical singular cohomology groups for topological spaces, and many of
the crucial properties carry over, in one form or another (finiteness, cup products,
cycle classes, Künneth Formula, Poincaré Duality, base-change). An important
consequence is that the Betti numbers bi, which intuitively count the number of
i-dimensional “holes” in a topological space, remain meaningful for schemes. The
étale cohomology groups also incorporate properties of the ground field k. In fact,
one should view H i(X⊗ksep,Qℓ(j)) as fiber of a local system H i(X,Qℓ(j)) over the
étale site of the base scheme S = Spec(k).
By Grothendieck’s insight, one may replace the Zariski topology of all open sets

U ⊂ X, which is too coarse to yield analogues of singular cohomology, by the
category of all étale morphisms V → X, endowed by what is now called Grothendieck
topology. Another crucial insight was that coefficients like Q or Z do not work, and
have to be essentially replaced by torsion groups. Thanks to Kummer theory, the
sheaf of roots of units F = µℓν for some prime ℓ > 0 that is invertible in the ground
field gives best results. Forming the inverse limit for H i(X,µ⊗j

ℓν ) and tensoring with
the field of fractions for Zℓ then yields the vector spaces H i(X,Qℓ(j)).

Working in a relative setting with morphisms f : X → Y , one can form Rif∗(F ).
These higher direct images satisfy two fundamental base-change properties: If f
is proper, the formation of Rif∗(F ) commutes with arbitrary base-change. If f
is merely quasicompact and quasiseparated, the formation commutes at least with
smooth base-change. In a somewhat imprecise manner, this is often called proper
and smooth base-change, respectively.

The goal of this Oberseminar is to familiarize with the étale cohomology groups,
to gain an understanding for the base-change theorems, and see the role of the theory
in some concrete situations.
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Time and Place: Monday, 12:30–13:30, seminar room 25.22.03.73.

Schedule: (all dates are tentative and shifts are likely to occur, for example due to
internal talks or guests)

Talk 1 (20. October)
Ping:
The point of departure: singular cohomology.
Recall singular cohomology groups H i(X,Z). Discuss their computability for CW-
complexes via the cellular chain complex, and Poincaré Duality for closed oriented
manifolds ([9], Theorem 3.5 and Proposition 3.38, or any other useful source). Point
out that the latter is a very strong condition (compare [14], Chapter II, Theorem
5.3). Also mention the Ehresmann Lemma ([7] or [18], Section 9.1.1), and the base-
change property for proper continuous maps ([4], first page of Chapter IV; compare
also [16], Theorem 4.4).

Talk 2 (27. October)
Schröer:
Étale morphisms, Grothendieck topologies, and sites.
Recall the notion of étale morphisms U → X of schemes (for example [13], Chapter
I, §3), and explain that this generalizes the local homeomorphisms from topology.
Discuss that one may replace the collection of open sets U ⊂ X by the category of
étale morphisms V → X; the latter come with a Grothendieck topology and form
the étale site, with ensuing notions of sheaves and cohomology (for example [4],
Chapter I).

Talk 3 (3. November)
Ritschel:
Étale cohomology and Galois cohomology.
Let K be a field, Ksep a separable closure, and G = Gal(Ksep/K) the resulting
Galois group. Recall that Galois cohomology H i(G,M) is a special case of group
cohomology (for example [8], Section 4.5). Discuss that this can be viewed as étale
cohomology on the scheme S = Spec(K), and compute H i(G,Ksep) (loc. cit., Propo-
sition 5.7.8 and Theorem 4.5.3)
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Talk 4 (17. November)
Rodatz:
Picard groups, Brauer groups, and Hilbert 90.

Explain the Kummer sequence 0 → µℓ → Gm
ℓ→ Gm → 0 and discuss how to

compute the étale cohomology provided that ℓ > 0 is invertible on the scheme X.
and in particular on curves ([8], Theorem 7.2.9). Highlight the close connection to
Picard groups and Brauer groups (confer [13], Chapter IV), and briefly dip into the
Artin–Schreier sequence 0 → Z/pZ → Ga → Ga → 0 and the resulting long exact
sequences ([8], Theorem 7.2.3).

Talk 5 (24. November)
Reichardt:
Betti numbers, ℓ-adic cohomology, and cycle classes.
Mention how Serre used supersingular elliptic curves E to show that there is no
meaningful cohomology theory with values in finitely generated abelian groups ([6],
Introduction). Discuss the definition of the ℓ-adic cohomology groups

H i(X,Qℓ(j)) = lim←−
j≥0

H i(X,µ⊗j
ℓν )⊗Zℓ

Qℓ.

and the ensuing Betti numbers bi. Motivate the Tate twists given by j via the cycle
class map, following [5], Section 2.

Talk 6 (1. December)
Bode:
The Base Change Theorem for proper morphisms.
The goal of this talk is to elucidate the following foundational result: Let f : X → S
be a proper morphism, and F be an abelian sheaf on X that is annihilated by some
arbitrary ℓ > 0. Then the stalks Rif∗(F ) at a geometric point s : Spec(Ω) → X
can be identified with the étale cohomology H i(Xs, F |Xs) of the fiber, and thus
commutes with arbitrary base-changes S ′ → S. Highlight how this general result is
reduced to rather elementary properties of families of curves ([4], Chapter IV and
[8], Section 7.3).
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Talk 7 (8. December)
Zock:
The Base Change Theorem by smooth morphisms I.
This and the next talk require some coordination. The goal is to elucidate the fol-
lowing foundational result ([4], Chapter V, Theorem 3.2): Let f : X → S be a
separated morphism of finite type, and F be an abelian sheaf annihilated by some
ℓ > 0 that is invertible on S. Then the formation of Rif∗(F ) commutes with smooth
base-changes S ′ → S. In this talk, concentrate on local acyclicity, and why ℓ must
be invertible, following [4], Chapter V, Section 2 and [8], Section 7.6.

Talk 8 (15. December)
Monreal:
The Base Change Theorem by smooth morphisms II.
Continue the previous talk to elucidate the proof of the Base-Change Theorem by
Smooth morphisms, following [4], Chapter V, Section 3 and [8], Section 7.7.

Talk 9 (5. January)
Schröer:
K3 surfaces.
Recall the notion of K3 surfaces, following the lecture notes [17]. Discuss the upper
bound on the rank of Pic(X ⊗ Kalg) for a K3 surfaces X over a number field K
in terms of Frobenius eigenvalues on étale cohomology at primes of good reduction
(loc. cit., Theorem 2.12).

Talk 10 (12. January)
Otto Overkamp:
Point counting.
Discuss the Zeta function Z(X, t) for a smooth projective scheme X over a finite
field k = Fp, and its expression via reverse characteristic polynomials Pi(X, t) of the
Frobenius on étale cohomology, following [13], Chapter VI, §12. Elucidate what this
concretely means for K3 surfaces, following [10], Chapter 4, Section 4.1, and [17],
Example 3.16.
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