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Abstract. We establish structure results for Frobenius kernels of automorphism
group schemes for surfaces of general type in positive characteristics. It turns
out that there are surprisingly few possibilities. This relies on properties of the
famous Witt algebra, which is a simple Lie algebra without finite-dimensional
counterpart over the complex numbers, together with is twisted forms. The result
actually holds true for arbitrary proper integral schemes under the assumption
that the Frobenius kernel has large isotropy group at the generic point. This
property is measured by a new numerical invariant called the foliation rank.
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Introduction

Let k be an algebraically closed ground field of characteristic p ≥ 0 and X be
a proper scheme. Then the automorphism group scheme AutX/k is locally of finite

type, and the connected component Aut0X/k is of finite type. The corresponding Lie

algebra h = H0(X,ΘX/k) is the space of global vector fields. If X is smooth and of
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general type, then the group Aut(X) is actually finite, according to a general result
of Martin-Deschamps and Lewin-Ménégaux [40].

Throughout this paper we are mainly interested in characteristic p > 0. Then
the group scheme AutX/k comes with a relative Frobenius map, and the resulting
Frobenius kernel H = AutX/k[F ] is a height-one group scheme. The group of rational
points is trivial, but the coordinate ring may contain nilpotent elements. The Lie
algebra h = H0(X,ΘX/k) remains the space of global vector fields, or equivalently
the space of k-linear derivations D : OX → OX . The p-fold composition in the
associative ring of k-linear differential operators endows the Lie algebra with an
additional structure, the so-called p-map D 7→ D[p], which turns h into a restricted
Lie algebra. By the Demazure–Gabriel Correspondence, height-one group schemes
and restricted Lie algebras determine each other.

Our goal is to uncover the structural properties of the height-one group scheme
H = AutX/k[F ], or equivalently the restricted Lie algebra h = H0(X,ΘX/k), and
our initial motivation was to understand the case of surfaces of general type. Such
surfaces with h 6= 0 where first constructed Russell [46] and Lang [33]. These
constructions rely on Tango curves [55], and come with a purely inseparable covering
by a ruled surface. By a similar construction with abelian surfaces, Shepherd-Barron
produced examples in characteristic p = 2 that are non-uniruled ([51], Theorem
5.3). Ekedahl already had examples with rational double points for arbitrary p > 0
([13], pages 145–146); the vector fields, however, do not extend to a resolution of
singularities. Recently, Martin studied infinitesimal automorphism group schemes
of elliptic and quasielliptic surfaces ([38], [39]).

However, almost nothing seems to be known about the general structure of the
height-one group schemes H = AutX/k[F ], and one would expect little restrictions
in this respect. The main result of this paper asserts that in some sense, quite the
opposite is true:

Theorem. (See Cor. 12.2) Let X be a proper normal surface with h0(ω∨X) = 0. Then
the Frobenius kernel H for the automorphism group scheme AutX/k is isomorphic
to the Frobenius kernel of one of the following three basic types of group schemes:

SL2 and G⊕na and G⊕na oGm,

for some integer n ≥ 0.

In the latter two cases, the respective Frobenius kernels are α⊕np and the semidirect
product α⊕np o µp. The key idea in the proof for the above result is to relate our
problem to the the famous Witt algebra g0 = DerE(F0) formed with the truncated
polynomial ring F0 = E[t]/(tp) over certain function fields E. This algebra was
indeed introduced by Ernst Witt, compare the discussion in [53]. Note that it has
nothing to do with the ring of Witt vectors, or Witt groups for quadratic forms.

Our result applies, in particular, to surfaces of general type, and properly ellip-
tic surfaces. It actually holds holds true for any proper integral scheme X whose
foliation rank is at most one (see Theorem 12.1). This is a new invariant that can
be defined as follows: Forming the quotient Y = X/H by the Frobenius kernel of
the automorphism group scheme, the canonical map X → Y induces a height-one
extension E = k(Y ) ⊂ k(X) = F of function fields, and the foliation rank r ≥ 0 is
given by [F : E] = pr. Via the Jacobson Correspondence, this can also be expressed
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in terms of the inertia subgroup scheme for the induced action of the base-change
HF on F⊗EF . This geometric interpretation of the Jacobson Correspondence seems
to be of independent interest (see Section 5).

The condition r = 1 means that deg(X/Y ) = p. This situation is paradoxi-
cal, because it may hold even with large Frobenius kernels H. We now compare
H ⊂ AutX/k with the generic fiber of the relative group scheme G = AutX/Y . In
other words, we relate the restricted Lie algebra h = H0(X,ΘX/k) over k with the
restricted Lie algebra g = DerE(F ) over the function field E = k(Y ).

This g is a a twisted form of the Witt algebra g0 = DerE(F0) formed with the
truncated polynomial ring F0 = E[t]/(tp). This g0 is one of the simple algebras
in characteristic p > 0 having no finite-dimensional counterpart over the complex
numbers. The classification of its subalgebras due to Premet and Steward [44]
is one key ingredient for our proof. Among other surprising features, g0 contains
Cartan algebras of different dimensions. A key observations is that the bigger Cartan
algebras disappear after passing to twisted forms like g, leaving few possibilities for
subalgebras. This is an algebraic incarnation for the fact that the reduced part of a
group scheme may not be a subgroup scheme, and if it is, it may not be normal.

The semidirect products α⊕np o µp indeed occur as Frobenius kernels of automor-
phism group schemes. In Section 14, we construct examples of surfaces as coverings
X → P2 of degree p or divisors X ⊂ P3 of degree 2p+ 1, such that h = kn o gl1(k),
for certain integers n ≥ 0. So far, we do not know if h = sl2(k) may also occur.
In our examples, the minimal resolutions are surfaces S of general type, and X are
their canonical models.

Such X are also called canonically polarized surface. They come with two Chern
numbers c21 = c21(L

•
X/k) = K2

X and c2 = c2(L
•
X/k). This was introduced by Ekedahl,

Hyland and Shepherd-Barron [15] for general proper surfaces whose local rings are
complete intersections, such that the cotangent complex is perfect. Using Noether’s
inequality and results from Ekedahl [14], we show with more classical methods:

Theorem. (see Thm. 13.2) Let X be canonically polarized surface, with Chern
numbers c21 and c2. Then the Lie algebra h = H0(X,ΘX/k) for the Frobenius kernel
H = AutX/k[F ] has the property dim(h) ≤ Φ(c21, c2) for the polynomial

Φ(x, y) =
1

144
(14641x2 + 242xy + 60x+ y2 − 12y + 288).

The paper is organized as follows: Section 1 contains general facts on restricted
Lie algebras and their semidirect products. In Section 2 we examine multiplicative
and additive vectors, and the toral rank. In Section 3 we collect general facts
on automorphism group schemes for proper schemes, the quotient by height-one
group schemes, and discuss twisted forms of some relevant restricted Lie algebras.
Section 5 contains a geometric interpretation of the Jacobson correspondence, in
terms of inertia group schemes at generic points. We introduce the foliation rank
and establish its basic properties in Section 6. In Section 7 we analyze the removal
of subvector spaces under certain twists. Then we make a detailed analysis of the
automorphism group scheme for radical extensions of prime degree in Section 8,
followed by an examination of the corresponding Witt algebras in Section 9. In
Section 10 we show how structural properties of restricted Lie algebras over different
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fields are inherited. Our main result on the structure of the Frobenius kernel for
automorphism groups is contained in Section 11. Section 13 contains the bound for
surfaces of general type. In the final Section 14, we construct examples.

Acknowledgement. The research started during a visit of the first author at the
University of Cyprus, and he likes to thank the Department of Mathematics and
Statistics for its hospitality. The research was also conducted in the framework
of the research training group GRK 2240: Algebro-Geometric Methods in Algebra,
Arithmetic and Topology.

1. Restricted Lie algebras

In this section we review some standard results on restricted Lie algebras and
height-one group schemes that are relevant for the applications we have in mind.
Let k be a ground field of characteristic p > 0. For each ring R, not necessarily
commutative or associative, the vector space Derk(R) of k-derivations D : R → R
is closed under forming commutators [D,D′] and p-fold compositions Dp in the
associative ring Endk(R). One now views Derk(R) as a Lie algebra, endowed the
map D 7→ Dp as an additional structure.

This leads to the following abstraction: A restricted Lie algebra is a Lie algebra
g, together with a map g → g, x 7→ x[p] called the p-map, subject to the following
three axioms:

(R 1) We have adx[p] = (adx)
p for all vectors x ∈ g.

(R 2) Moreover (λ · x)[p] = λp · x[p] for all vectors x ∈ g and scalars λ ∈ k.

(R 3) The formula (x+ y)[p] = x[p] + y[p] +
∑p−1

r=1 sr(x, y) holds for all x, y ∈ g.

Here the summands sr(x, y) are universal expressions defined by

sr(t0, t1) = −1

r

∑
u

(adtu(1) ◦ adtu(2) ◦ . . . ◦ adtu(p−1)
)(t1),

where ada(x) = [a, x] denotes the adjoint representation, and the the index runs over
all maps u : {1, . . . , p− 1} → {0, 1} taking the value zero exactly r times. For p = 2
the expression simplifies to s1 = [t0, t1], whereas p = 3 gives s1 = [t1, [t0, t1]] and
s2 = [t0, [t0, t1]]. Restricted Lie algebras were introduced and studied by Jacobson
[25], and also go under the name p-Lie algebras. We refer to the monographs of
Demazure and Gabriel [11], in particular Chapter II, §7, or Strade and Farnsteiner
[54] for more details.

Throughout the paper, terms like homomorphisms, subalgebras, ideals, extensions
etc. are understood in the restricted sense, if not said otherwise. For example, an
ideal a ⊂ g is a vector subspace such that [x, y], x[p] ∈ a whenever x ∈ a and y ∈ g.
Note that this holds for the center C(g) = {a ∈ g | [a, x] = 0 for all x ∈ g}, because
[a[p], x] = (ada)

p(x) = (ada)
p−1([a, x]) = 0.

For abelian g, the p-map becomes semi-linear, which means that it corresponds
to a linear map g → g when the scalar multiplication in the range is redefined via
Frobenius. In turn, those g correspond to modules over the associative polynomial
ring k[F ], in which the relation Fλ = λpF holds. Every right ideal is principal; this
also holds for left ideals, provided that k is perfect, and then the structure theory
developed by Jacobson applies ([28], Chapter 3).
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In contrast, for non-abelian g the p-map fails to be additive, and it is challenging to
understand its structure. However, by axiom (R 1) it is determined by the bracket
up to central elements, because [a[p], x] = (ada)

p(x). In particular, if the center
is trivial, the p-map is unique, once it exists. This also explains the terminology
restricted.

Recall that for each group scheme G, the Lie algebra g = Lie(G) is defined by the
short exact sequence

0 −→ Lie(G) −→ G(k[ε]) −→ G(k) −→ 0,

where k[ε] is the ring of dual numbers, and the map is the restriction with respect to
the inclusion k ⊂ k[ε]. As explained in [11], Chapter II, §7 it carries the structure of
a restricted Lie algebra, in a functorial way. Also recall that the relative Frobenius
F : G → G(p) is a homomorphism. The resulting Frobenius kernel G[F ] is a group
scheme whose underlying topological space is a singleton.

Let us call G of height one if it is of finite type and annihilated by the relative
Frobenius map. We then also say that G is a height-one group scheme. According
to [11], Chapter II, §7, Theorem 3.5 the canonical map

Hom(G,H) −→ Hom(Lie(G),Lie(H))

is bijective whenever G has height one. In particular, the functor G 7→ Lie(G) is
an equivalence between the category of height-one group schemes and the category
of finite-dimensional restricted Lie algebras. We call this the Demazure–Gabriel
Correspondence. The inverse functor sends g to the spectrum of the dual for the
Hopf algebra U [p](g), which is the universal enveloping algebra U(g) modulo the
ideal generated by the elements xp − x[p], for x ∈ g. From this one deduces the
formulas

|G| = h0(OG) = pdim(g) and edim(OG,e) = dim(g).

As customary, we write gln(k) for the restricted Lie algebra of n×n-matrices, where
bracket and p-map are given by commutators and p-powers, and sln(k) for the ideal
of trace zero matrices. Furthermore, kn denotes the standard vector space, endowed
with trivial bracket and p-map.

Let a ⊂ g be an ideal, and consider the vector space Derk(a) of all k-linear deriva-
tions. Then Derk(a) ⊂ gl(a) is a subalgebra. Derivations D : g → g satisfying
the additional condition D(a[p]) = (ada)

p−1(D(a)) for all a ∈ a are called restricted
derivations. Write Der′k(a) for the vector space of all restricted k-derivations. Ac-
cording to [27], Theorem 4 the inclusion Der′k(a) ⊂ Derk(a) is a subalgebra. By the
Jacobi identity and axiom (R 1), the adjoint map defines a homomorphism

(1) g −→ Der′k(a), x 7−→ (a 7→ [x, a]).

Given restricted Lie algebras h and a, we are are now interested in extensions

0 −→ a −→ g −→ h −→ 0,

such that a ⊂ g becomes an ideal with quotient g/a = h. The extension splits if
the ideal a ⊂ g admits a complementary subalgebra h′ ⊂ g. Composing the inverse
for the projection h′ → h with (1), we obtain a homomorphism ϕ : h → Der′k(a).
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Conversely, suppose we have such a homomorphism, written as h 7→ (a 7→ ϕh(a)).
On the vector space sum a⊕ h, we now define bracket and p-map by

(2)

[a+ h, a′ + h′] = [a, a′] + [h, h′] + ϕh(a
′)− ϕh′(a),

(a+ h)[p] = a[p] + h[p] +

p−1∑
r=1

sr(a, h).

Lemma 1.1. The above endows the vector space g = a ⊕ h with the structure of a
restricted Lie algebra, such that a and h is an ideal and subalgebra, respectively.

Proof. As explained in [7], Chapter I, §1.8 the bracket turns g = a ⊕ h into a Lie
algebra, having a as an ideal and h as a subalgebra. Now choose bases ai ∈ a and
hj ∈ h, such that ai, hj form a basis for g. We claim that

(3) (adai)
p = ad(ai)[p] and (adhj)

p = ad(hj)[p]

as k-linear endomorphisms of g. Indeed: Since a and h are restricted, and by the
definition of the bracket in g, it is enough to verify (adai)

p(h) = −ϕh((ai)[p]) for every
vector h ∈ h, and (adhj)

p(a) = ϕ(hj)[p](a) for every a ∈ a. Since the derivations ϕh
are restricted, we have

−ϕh((ai)[p]) = − adp−1ai
(ϕh(ai)) = − adp−1ai

([h, ai]) = (adai)
p(h).

The argument for (adhj)
p(a) is similar. Thus (3) holds. According to [54], Theorem

2.3 there is a unique p-map satisfying (3) and the axioms (R 1)–(R 3). By construc-
tion, this p-map on g coincides with the given p-map on a and h. It thus coincides
with (2), in light of the third axiom. �

In the above situation, the restricted Lie algebras g = aoϕ h are called semidirect
products. Obviously, every split extension of h by a is of this form. Of particular
importance for us is the case a = kn and b = gl1(k), where the homomorphism
ϕ : gl1(k) → gl(kn) = Derk(k

n) sends scalars to scalar matrices. The resulting
restricted Lie algebra is written as kn o gl1(k). Here bracket and p-map are given
by the formulas

(4) [v + λe, v′ + λ′e] = λv′ − λ′v and (v + λe)[p] = λp−1(v + λe),

where e ∈ gl1(k) is the unit element, and v, v′ ∈ kn are vectors, and λ, λ′ ∈ k are
scalars.

2. Toral rank and p-closed vectors

Let g be a finite-dimensional restricted Lie algebra over a ground field k of char-
acteristic p > 0, and G be the corresponding height-one group scheme, such that
Lie(G) = g. Recall that x ∈ g is called p-closed if x[p] ∈ kx. Such vectors are called
multiplicative if x[p] 6= 0, and additive if x[p] = 0. If the vector is non-zero, h = kx is
a one-dimensional subalgebra, hence corresponds to a subgroup scheme H ⊂ G of
order p. For multiplicative vectors, this is a twisted form of the diagonalizable group
scheme µp = Gm[F ]. In the additive case, it is isomorphic to the unipotent group
scheme αp = Ga[F ]. This basic fact has many geometric applications: For results
concerning K3 surfaces, Enriques surfaces and Kummer surfaces, see [48], [50] and
[32].
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Proposition 2.1. Every vector in g = kn o gl1(k) is p-closed. The same holds for
g = sl2(k) in characteristic p ≥ 3.

Proof. The first assertion immediately follows from (4). Recall that sl2(k) is the
restricted Lie algebra comprising the traceless matrices A = ( a b

c −a ) ∈ Mat2(k).
The characteristic polynomial χA(T ) = T 2 + d depends only on the determinant
d = −a2 − bc, so the possible Jordan normal forms are(√

d 0

0 −
√
d

)
and

(
0 0
1 0

)
.

Computing p-powers via the above normal forms, we see that A[p] = d(p−1)/2A. �

The traceless matrices h = ( 1 0
0 −1 ) and x = ( 0 1

0 1 ) and y = ( 0 0
1 0 ) form a basis of

sl2(k), and the structural constants are given by

[h, x] = 2x, [h, y] = 2y, [x, y] = h[p] = h, x[p] = y[p] = 0.

One also says that (h, x, y) is an sl2(k)-triple. For p ≥ 3, it follows that for each non-
zero a ∈ sl2(k), the adjoint map ada is bijective, hence sl2(k) is simple. In contrast,
for p = 2 we have a central extension 0 → gl1(k) → sl2(k) → k2 → 0, where the
kernel corresponds to scalar matrices. The extension does not split, because A[2] 6= 0
for all matrices not contained in the kernel.

If k is algebraically closed, the toral rank for a restricted Lie algebra g is the
maximal integer r ≥ 0 for which there is an embedding gl1(k)⊕r ⊂ g. In terms
of vectors, the condition means that there are linearly independent x1, . . . , xr ∈ g

with [xi, xj] = 0 and x
[p]
i = xi. For general fields k, we define the toral rank as

the toral rank of the base-change g ⊗k kalg. Following the notation in [12], Exposé
XII, Section 2 we denote this integer by ρt(g) ≥ 0. By Hilbert’s Nullstellensatz the
toral rank does not change under field extensions. According to [6], Lemma 1.7.2 it
satisfies ρt(g) = ρt(n) + ρt(g/n) for each ideal a ⊂ g. In other words, it is additive
in extensions. Obviously 0 ≤ ρt(g) ≤ dim(g).

Proposition 2.2. The following are equivalent:

(i) The restricted Lie algebra g has maximal toral rank ρt(g) = dim(g).
(ii) The group scheme G is a twisted form of some µ⊕rp .

(iii) The group scheme G is multiplicative.

Proof. It suffices to treat the case that k is algebraically closed. The implications
(i)⇔(ii)⇒(iii) are obvious. Now suppose that (iii) holds. Since k = kalg the group
scheme G is diagonalizable, whence the spectrum of the Hopf algebra k[Λ] for some
finitely generated abelian group Λ. We have pΛ = 0 because G has height one.
Choosing an Fp-basis for Λ gives G = µ⊕rp , thus (ii) holds. �

The other extreme is somewhat more involved:

Proposition 2.3. The following are equivalent:

(i) The restricted Lie algebra g has minimal toral rank ρt(g) = 0.
(ii) There is some exponent ν ≥ 0 with x[p

ν ] = 0 for all vectors x ∈ g.
(iii) There are ideals 0 = a0 ⊂ . . . ⊂ ar = g inside g with quotients ai/ai−1 ' k.
(iv) There are normal subgroup schemes 0 = N0 ⊂ . . . ⊂ Nr = G inside G with

quotients Ni/Ni−1 ' αp.



8

(v) The group scheme G is unipotent.

Proof. The implications (iv)⇒(v) and (iii)⇒(ii) and (ii)⇒(i) are trivial, whereas
(iv)⇔(iii) follows from the Demazure–Gabriel Correspondence.

We next verify (v)⇒(i). Without loss of generality we may assume that k is alge-
braically closed. Then there is a composition series Gj inside G such that Gj/Gj−1
is isomorphic to a subgroup scheme of the additive group Ga. This already lies in
αp = Ga[F ], because G has height one. For the corresponding subalgebras bj inside
g this means bj/bj−1 ⊂ k. The additivity of toral rank implies ρt(g) = 0.

To see (i)⇒(ii) we may assume that k is algebraically closed, and then the impli-
cation follows from [43], Corollary 2. For (ii)⇒(iii) we use (ada)

pν = ada[pν ] = 0, and
conclude with Engel’s Theorem ([7], Chapter I, §4.2) that the underlying Lie algebra
g is nilpotent. Now recall that the center C(g) is invariant under the p-map. In turn,
the upper central series, which is recursively defined by gi+1/gi = C(g/gi), yields a
sequence of ideals 0 = g0 ⊂ . . . ⊂ gs = g having abelian quotients. This reduces our
problem to the case that g itself is abelian. We proceed by induction on n = dim(g).
The case n = 0 is trivial. Suppose now that n > 0, and that (iii) holds for n−1. Fix

some x 6= 0, and consider the largest exponent d ≥ 1 such that x[p
d] 6= 0. Replacing

x by x[p
d], we may assume that x[p] = 0. Then a1 = kx is a one-dimensional ideal.

The quotient g′ = g/a has dimension n′ = n − 1, and furthermore ρt(g
′) = 0 by

additivity of toral rank. To the induction hypothesis applies to g′ = g/a, and the
Isomorphism Theorem gives the desired ideals in g. �

3. Automorphism group schemes

Let k be a ground field. Write (Aff/k) for the category of affine k-schemes, which
we usually write as T = Spec(R). Recall that an algebraic space is a contravariant
functor X : (Aff/k) → (Set) satisfying the sheaf axiom with respect to the étale
topology, such that the diagonal X → X×X is relatively representable by schemes,
and that there is an étale surjection U → X from some scheme U . According to
[52], Lemma 076M, the sheaf axiom already holds with respect to the fppf topology.
Throughout, we use the fppf topology if not stated otherwise. Algebraic spaces are
important generalizations of schemes, because modifications, quotients, families, or
moduli spaces of schemes are frequently algebraic spaces rather than schemes. We
refer to the monographs of Olsson [42], Laumon and Moret-Bailly [34], Artin [2],
Knutson [31], and to the stacks project [52], Part 4.

Let X be a scheme, or more generally an algebraic space, that is separated and
of finite type. Recall that the R-valued points of the Hilbert functor HilbX/k are
the closed subschemes Z ⊂ X ⊗R such that the projection Z → Spec(R) is proper
and flat. Regarding automorphisms f : X ⊗ R → X ⊗ R as graphs, we see that
AutX/k is an open subfunctor. According to [1], Theorem 6.1 the Hilbert functor is
representable by an algebraic space that is separated and locally of finite type. In
turn, the same holds for AutX/k, which additionally carries a group structure. Using
descent and translations, one sees that it must be schematic. The Lie algebra for
the automorphism group scheme is given by

Lie(AutX/k) = H0(X,ΘX/k),
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where ΘX/k = Hom(Ω1
X/k,OX) is the coherent sheaf dual to the sheaf of Kähler

differentials.
We now assume that X is proper, and that the ground field has characteristic

p > 0. Then g = H0(X,ΘX) is a restricted Lie algebra of finite dimension, which
corresponds to the Frobenius kernel G[F ] for the automorphism group scheme G =
AutX/k. Note that G[F ] is a height-one group scheme, of order pn, where n =
h0(ΘX/k).

Let H be a group scheme that is separated and locally of finite type, f : H → G
be a homomorphism, and P be a H-torsor. The latter is an algebraic space, endowed
with a free and transitive H-action. The set of isomorphism classes comprise the
non-abelian cohomology H1(k,H), formed with respect to the fppf topology. On
the product P × X we get a diagonal action. This action is free, because it is
free on the first factor. It follows that the quotient PX = H\(P × X) exists as
an algebraic space (see for example [35], Lemma 1.1). We have PX ' X provided
that P is trivial, that is, contains a rational point. In any case, there is an étale
surjection U → P from some scheme U . According to Hilbert’s Nullstellensatz,
every closed point a ∈ U defines a finite field extension k′ = κ(a), and we see that
PX ⊗ k′ ' X ⊗ k′. We therefore say that PX is a twisted form of X. Indeed, every
algebraic space Y that becomes isomorphic to X after some field extension is of this
form, with H = AutX/k.

Our f : H → G = AutX/k induces a homomorphism c : H → AutG/k, which
sends h ∈ H(R) to the inner automorphism g 7→ f(h)gf(h)−1. This gives a twisted
form PG of G, and its Lie algebra Pg is a twisted form of g. In fact, one may view
g as a vector scheme as in Section 7, regard bracket and p-map as morphisms of
schemes, and obtains Pg by taking the rational points on the twisted form of the
vector scheme, formed via the derivative c′ : H → Autg/k.

Lemma 3.1. There is a canonical identification PAutX/k = AutPX/k, where on the
left we take twist with respect to c : H → AutG/k. The restricted Lie algebra for this
group scheme is Pg, where we twist with respect to c′ : H → Autg/k.

Proof. This follows from very general considerations in [18], Chapter III, which can
be made explicit as follows: Consider the canonical morphism

P × AutX/k −→ AutPX , (p, ψ) 7−→ (H · (p, x) 7→ H · (p, ψ(x)),

where the description on the right is viewed as a natural transformation for R-
valued points. This is well-defined, because in presence of p ∈ P (R) the projection
{p} × X(R) → (PX)(R) is bijective. For each h ∈ H(R), the element (hp, hψh−1)
sends the orbit H · (p, x) = H · (hp, hx) to the orbit H · (hp, hψ(x)) = H · (p, ψ(x)).
Thus the above transformation descends to a morphism PAutX/k → AutPX , where
H acts via conjugacy on AutX/k. The same argument applies for the Frobenius
kernel, and equivalently to the restricted Lie algebra. �

We now change notation, and suppose that G = X is a height-one group scheme,
and write g = Lie(G). One easily checks that AutG/k is a closed subgroup scheme of
the general linear group GLV/k, where V = H0(G,OG). By the Demazure–Gabriel
Correspondence, used in the relative form, we get an identification AutG/k = Autg/k.
The latter can be constructed directly: Choose a basis e1, . . . , en ∈ g. Then Autg/k is
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the closed subgroup scheme inside GLk,n respecting the structural equations [er, es] =∑
λr,s,iei and e

[p]
r =

∑
µr,jej. For later use, we compute some automorphism group

schemes Autg/k:

Proposition 3.2. The following table gives automorphism group scheme and result-
ing cohomology sets for the restricted Lie algebras k, gl1(k), k o gl1(k) and sl2(k),
where ? denotes a singleton, and the last column is only valid for p ≥ 3:

g k gl1(k) k o gl1(k) sl2(k)

Autg/k Gm µp−1 Ga oGm PGL2

H1(k,Autg/k) {1} k×/k×(p−1) ? k×/k×2

Proof. For the first case g = k we immediately get Autg/k = GL1 = Gm, and Hilbert
90 gives H1(k,Gm) = 0.

In the second case, the restricted Lie algebra g = gl1(k) is generated by one
element A1, which gives an embedding Autg/k ⊂ Gm. The structure for g is given

by A
[p]
1 = A1. For each k-algebra R and each invertible scalar λ ∈ R× we thus have

λpA
[p]
1 = λA1, and thus λp−1 = 1. Conversely, each such λ gives an automorphism,

hence Autg/k = µp−1. The Kummer sequence yields H1(k,Autg/k) = k×/k×p−1.
The restricted Lie algebra g = kogl1(k) is generated inside gl2(k) by the matrices

A1 = ( 0 1
0 0 ) and A2 = ( 1 0

0 0 ), which gives an embedding Autg/k ⊂ GL2. For each
R-valued point ϕ = ( a bc d ) from the automorphism group scheme, the condition
[ϕ(A1), ϕ(A2)] = ϕ(A1) implies c = 0 and a = ad. It follows a ∈ R× and d = 1,
and we obtain Autg/k ⊂ GaoGm. Conversely, one easily sees that each matrix with
c = 0 and d = 1 yields an automorphism of the restricted Lie algebra. Now let T
be a torsor over k with respect to Ga oGm. The induced Gm-torsor has a rational
point, by Hilbert 90. Its preimage T ′ ⊂ T is a torsor for Ga. Over any affine scheme,
the higher cohomology of Ga vanishes, so T ′ also contains a rational point, and the
torsor T is trivial.

We come to the last case g = sl2(k), which is freely generated by the matrices
A1 = ( 1 0

0 −1 ) and A2 = ( 0 1
0 0 ) and A3 = ( 0 0

1 0 ). This gives an inclusion Autg/k ⊂ GL3.

We already saw in the proof for Proposition 2.1 that A[p] = det(A)(p−1)/2A for
all A = ( a b

c −a ). Moreover, det(A) = −a2 − bc defines, up to sign, the standard
smooth quadratic form on sl2(k) viewed as the affine space A3, and one obtains an
inclusion Autg/k ⊂ O(3). Combining Jacobson’s arguments in [30], page 283 and
[26], page 493 we conclude every automorphism of sl2(k) is given by A 7→ SAS−1,
and it follows that that Autg/k ⊂ SO(3). The latter is smooth, connected and
three-dimensional. On the other hand, the conjugacy map defines an inclusion
PGL2 → Autg/k. Since PGL2 is smooth, connected and three-dimensional, we see
that the inclusions PGL2 ⊂ Autg/k ⊂ SO(3) are qualities.

Finally, we have a central extension 0→ Gm → GL2 → PGL2 → 1, and get maps
in non-abelian cohomology

H1(k,GL2) −→ H1(k,PGL2) −→ H2(k,Gm).

The term on the left is a singleton, by Hilbert 90, whereas the term on the right
equals the Brauer group Br(k). It follows that the coboundary map is injective ([18],
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Chapter IV, Proposition 4.2.8)), and is contained in the 2-torsion of the Brauer group
([19], Proposition 1.4). From the Kummer sequence one gets Br(k)[2] = H1(k, µ2) =
k×/k×2. Each member of this group can be realized by some smooth conic curve in
P2. Summing up, we have an identification H1(k,Autg/k) = k×/k×2. �

4. Quotients by height-one group schemes

Let k be a ground field of characteristic p > 0, and G a height-one group scheme,
with restricted Lie algebra g. Suppose X is an scheme endowed with a G-action.
Taking derivatives, we obtain a homomorphism g → H0(X,ΘX/k) of restricted Lie
algebras. According to [11], Chapter II, §7, Proposition 3.10 any such homomor-
phism comes from a unique G-action. Note that this does not require any finiteness
assumption for the scheme X.

We now show that such actions admits a categorical quotient in the category
(Sch/k) ([41], Definition 0.5). To this end we temporarily change notation and
write the schemes in question as pairs, comprising a topological space and a structure
sheaf. Our task is to construct the categorical quotient (Y,OY ) for the action on
(X,OX). First recall that the image Op

X of the homomorphism OX → OX , f 7→ fp

is a quasicoherent OX-algebra, with algebra structure f · gp = (fg)p. In turn, the
ringed space (X,Op

X) is a Fp-scheme. Choose a vector space basis D1, . . . , Dn ∈ g.
The canonical inclusion Op

X ⊂ OX turns OX into a quasicoherent Op
X-algebra, and

yields the absolute Frobenius morphism (X,OX) → (X,Op
X). The derivations Di :

OX → OX are Op
X-linear, and we write Og

X =
⋂n
i=1 Ker(Di) for the intersection of

kernels. This is another quasicoherent Op
X-algebra. Setting Y = X and OY = Og

X ,
we obtain a scheme (Y,OY ) that is affine over (X,Op

X). The identity id : X → Y
and the canonical inclusion ι : OY ⊂ OX define a morphism of Fp-schemes

(id, ι) : (X,OX) −→ (Y,OY ).

The following should be well-known:

Lemma 4.1. The above morphism of schemes is a categorical quotient in (Sch/k).
Moreover, the formation of the quotient is compatible with flat base-change in the
scheme (Y,OY ).

Proof. First note that the OY ⊂ OX is invariant with respect to multiplication of
scalars λ ∈ k, so the morphism belongs to the category (Sch/k). Furthermore, the
formation of kernels and finite intersections for maps between quasicoherent sheaves
on schemes is compatible with flat base-change, and in particular the formation of
(Y,OY ) is compatible with flat base-change.

We now verify the universal property. Let (T,OT ) be scheme endowed with the
trivial G-action, and (f, ϕ) : (X,OX) → (T,OT ) be an equivariant morphism. Ob-
viously, there is a unique continuous map g : Y → T with f = g ◦ id. The trivial
G-action on (T,OT ) corresponds to the zero map g→ H0(T,OT ), and equivariance
ensures that f−1(OT ) → OX factors over the injection OY ⊂ OX . This gives a
unique morphism (g, ψ) : (Y,OY ) → (T,OT ) of ringed spaces that factors (f, ϕ).
For each point a ∈ X, the local map OT,f(a) → OX,a factors over OY,a, and it follows
that ψ : OT,g(a) → OY,a is local. Thus (g, ψ) is a morphism in the category (Sch/k),
which shows the universal property. �
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We now revert back to the usual notation, and write Y = X/G for the quotient
of the action µ : G × X → X, with quotient map q : X → Y . Clearly, this
map is surjective, Y carries the quotient topology, and the set-theoretical image of
µ×pr2 : G×X → X×X equals the fiber product X×Y X. By construction, for each
open set U ⊂ Y and each local section f ∈ Γ(U, q∗(OX)), we have f ∈ Γ(U,OY )
if and only if f ◦ µ = f ◦ pr2 as morphisms G × q−1(U) → A1. Summing up,
our categorical quotient is also a uniform geometric quotient, in the sense of [41],
Definition 0.7. The following observation will be useful:

Proposition 4.2. Suppose that X is integral, with function field F = OX,η. Then
OY,a = OX,a∩(F g) for each point a ∈ X. Moreover, the scheme Y is normal provided
this holds for Y .

Proof. Set R = OX,a, such that Rg = OY,a. Choose a basis D1, . . . , Dn ∈ g, and
consider the resulting commutative diagram with exact rows

0 −−−→ Rg −−−→ R −−−→ R⊕ny y y
0 −−−→ F g −−−→ F −−−→ F⊕n

where the horizontal maps on the right are given by s 7→ (D1(s), . . . , Dn(s)). The
commutativity of the left square gives Rg ⊂ R∩F g, and the injectivity of the vertical
map on the right ensures the reverse inclusion, by a diagram chase. Now suppose
that R is normal, and f ∈ F g satisfies an integral equation over the subring Rg.
This is also an integral equation over R, hence f ∈ R ∩ F g = Rg. �

5. Inertia and Jacobson correspondence

The goal of this section is provide a new, more geometric interpretation of the
Jacobson Correspondence ([25] and [29]). We start by recalling this correspondence,
which relates certain subfields and restricted Lie algebras, in Bourbaki’s formulation
([8], Chapter V, §13, No. 3, Theorem 3):

Let F be a field of characteristic p > 0. It comes with a subfield F p and a
restricted Lie algebra g = Der(F ) over F p that is also endowed with the structure of
an F -vector space. Note that the bracket is F p-linear but in general not F -bilinear.
Rather, we have the formula

(5) [λD, λ′D′] = λλ′ · [D,D′] + λD(λ′) ·D′ − λ′D′(λ) ·D.
Throughout, a subgroup h ⊂ g is called an F p-subalgebra with F -multiplication if
it is stable under bracket, p-map, and multiplication by scalars λ ∈ F . It is thus
a restricted Lie algebra over F p, endowed with the F -multiplication as additional
structure. Consider the ordered sets

Φ = {E | F p ⊂ E ⊂ F is an intermediate field},
Ψ = {h | h ⊂ g is an F p-subalgebra with F -multiplication}.

Similar to classical Galois theory for separable algebraic extensions, one has inclusion-
reversing maps Φ→ Ψ and Ψ→ Φ given by

E 7−→ DerE(F ) and h 7−→ F h,
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respectively. Here F h denotes the intersection of the kernels for D : F → F , where
D ∈ h runs over all elements. Then the Jacobson Correspondence asserts that
the above maps induces a bijection between the intermediate fields F p ⊂ E ⊂ F
having [F : E] < ∞ and the F p-subalgebras with F -multiplication h ⊂ g having
dimF (h) <∞. Moreover, under this bijection [F : E] = pdimF (h) holds.

In particular, if F has finite p-degree, which means that F p ⊂ F is finite, we get
an unconditional identification

{intermediate fields E} = {F p-subalgebras h with F -multiplication}.

Forgetting the F -multiplication, the restricted Lie algebra h = DerE(F ) corresponds
to a height-one group scheme H, with h = Lie(H). By construction, this coincides
with the Frobenius kernel of the affine group scheme AutF/E.

We now consider the following set-up geared towards geometric applications: Let
k be a ground field of characteristic p > 0, and F be some extension field; one should
think of the function field of some proper integral scheme. Let H be a height-one
group scheme over k, with corresponding restricted Lie algebra h = Lie(H). Suppose
we have a faithful action of the group scheme H on the scheme Spec(F ), in other
words, a homomorphism h → Derk(F ) that is k-linear and injective. Throughout,
we regard this homomorphisms also as an inclusion.

Let E = F h, such that h ⊂ DerE(F ). Then the field E contains the composite
k ·F p, and its spectrum is the categorical quotient Spec(F )/H, according to Propo-
sition 4.1. Moreover, we obtain subspace h ⊂ h ·E ⊂ h ·F inside DerE(F ). This are
subvector spaces over k and E and F , respectively. Obviously we have

dimF (h · F ) ≤ dimE(h · E) ≤ dimk(h).

Let us unravel how these various fields and vector spaces are related:

Proposition 5.1. In the above situation, the following holds:

(i) The subspace h ⊂ DerE(F ) contains an F -basis, such that h ·F = DerE(F ).
(ii) The canonical inclusions E = F h ⊂ F h·E ⊂ F h·F are equalities.

(iii) The subspace h · E ⊂ DerE(F ) is stable with respect to bracket and p-map.
(iv) The extension E ⊂ F is finite, of degree [E : F ] = pdimF (h·F ).

Proof. To see (ii), choose a k-generating set D1, . . . , Dn ∈ h. Clearly, F h coincides
with the intersection of the Ker(Di : F → F ). Since D1, . . . , Dn ∈ h · F is an
F -generating set as well, this intersection coincides with F h·F , and the equalities
F h = F h·E = F h·F follow.

We next verify that the F -vector subspace h·F ⊂ DerE(F ) is stable under bracket
and p-map. The former follows from (5), the latter from the axioms (R 2) and (R 3)
for restricted Lie algebras in Section 1. In turn, h ·F ⊂ DerE(F ) is an F p-subalgebra
with F -multiplication, obviously of finite F -dimension. Now the Jacobson Corre-
spondence applied to E = F h·F shows (iv). Applying the correspondence once more
reveals h · F = DerE(F ), and (i) follows. The above reasoning likewise shows that
the E-vector subspace h · E ⊂ DerE(F ) is stable under bracket and p-map, which
reveals (iii). �

We now seek a more geometric understanding of the above facts. Set hE = h⊗kE,
and consider the E-linearization hE → DerE(F ) of our inclusion h ⊂ DerE(F ). Write
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htrivE ⊂ hE for the kernel. This is an ideal, giving an inclusion hE/h
triv
E ⊂ DerE(F ).

Now recall that H denotes the height-one group scheme with Lie(H) = h. Write
HE = H ⊗k E for its base-change, and Htriv

E ⊂ HE for the normal subgroup scheme
corresponding to htrivE . This acts trivially on Spec(F ), whereas the quotient HE/H

triv
E

acts faithfully.

Proposition 5.2. The action of the group scheme HE on Spec(F ) is transitive.

Proof. Recall that for any site C, the action of a group-valued sheaf G on a sheaf Z
is called transitive if the morphism µ × pr2 : G × Z → Z × Z is an epimorphism,
where µ : G× Z → Z denotes the action.

In our situation the site is (Aff/E), endowed with the fppf topology. Set G =
HE/H

triv
E and Z = Spec(F ). We have to check that for any R-valued points

a, b ∈ Z(R), there is an fppf extension R ⊂ R′ and some σ ∈ G(R′) that sends
the base-change a ⊗ R′ to b ⊗ R′. Replacing R by R ⊗E F , we may assume
that R is an F -algebra. Choose a p-basis for the extension E ⊂ F , such that
F = E[T1, . . . , Tr]/(T

p
1 − µ1, . . . , T

p
r − µr) for some scalars µi ∈ E. Then

F ⊗E R = R[s1, . . . , sr]/(s
p
1, . . . , s

p
r)

for the elements si = T1 ⊗ 1− 1⊗ T1. The R-valued points of Z thus correspond to
si 7→ λi, where λi ∈ R satisfy λpi = 0. It suffices to treat the case that a, b ∈ Z(R)
is given by by si 7→ 0 and si 7→ λi, respectively.

The differentials dTi ∈ Ω1
F/E form an F -basis. The dual basis inside DerE(F ) =

Hom(Ω1
F/E, F ) are the partial derivatives ∂/∂Ti. Clearly we have [∂/∂Ti, ∂/∂Tj] =

(∂/∂Ti)
[p] = 0. Consequently, the linear combination D =

∑
λi∂/∂Ti satisfies

D[p] = 0, thus D is an additive element inside DerR(F ⊗E R). Note that this
would fail with coefficients from F ⊗E R rather then R. By the Demazure–Gabriel
Correspondence, it yields a homomorphism of group schemes αp,R → AutF/E ⊗ER.

According to Proposition 5.1 we have DerE(F ) = h · F , so there are elements
D1, . . . , Dr ∈ h · E = hE/h

triv
E that form an F -basis of DerE(F ). In particular, we

may write
∑
λi∂/∂Ti =

∑
αiDi for some αi ∈ R. In turn, we get an additive element

D ∈ (hE/h
triv
E ) ⊗E R, so our homomorphism of group schemes has a factorization

αp,R → GR. For R′ = R[σ]/(σp) we get a canonical element σ ∈ αp,R′ , whose image
is likewise denoted by σ ∈ G(R′). By construction, we have

σ∗(sj) = D(sj) =
∑
i

λi∂Tj/∂Ti = λj,

for all 1 ≤ j ≤ n, and the desired property σ · a = b follows. �

Note that the E-scheme Z = Spec(F ) does not contain a rational point, except
for h = 0. The existence of such a point would allow us to form the inertia subgroup
scheme and view Z as a homogeneous space. However, we can achieve this after
further base-change:

Regard A = F ⊗E F as an F -algebra via λ 7→ 1⊗λ. Then the multiplication map
λ⊗µ 7→ λµ yields a canonical retraction. Indeed, A is a local Artin ring with residue
field A/mA = F . In turn, ZF = Z ⊗ F has a unique rational point z0 ∈ ZF . Write
H inert
F = I(z0) for the resulting inertia subgroup scheme inside HF = H ⊗k F . By

the Demazure–Gabriel Correspondence, it is given by a Lie subalgebra hinertF inside
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hF = h ⊗k F , which we call the inertia Lie algebra. We now interpret the base
change ZF as a homogeneous space:

Proposition 5.3. The orbit morphism HF · {z0} → ZF induces an identification
HF/H

inert
F = Spec(F ⊗E F ). Moreover, the inertia Lie algebra hinertF is the kernel for

the canonical surjection

h⊗k F −→ h · F = DerE(F ).

Finally, the degree of the field extension E ⊂ F can be expressed as [F : E] = pc,
where c ≥ 0 is the codimension of the inertia Lie algebra hinertF ⊂ hF .

Proof. According to Proposition 5.2, the HF -action on ZF is transitive, and it follows
that the orbit HF · {z0} → ZF is an epimorphism. By definition of the inertia
subgroup scheme, the induced morphism HF/H

inert
F → ZF is a monomorphism.

Hence the latter is an isomorphism. This is a finite scheme, and the F -dimension
for the ring of global sections for the homogeneous space is given by pc. It follows
[F : E] = pc.

It remains to see that the inertia Lie algebra hinertF coincides with the kernel K of
the canonical surjection hF → h · F . We saw in Proposition 5.1 and the preceding
paragraph that

pdimF (h·F ) = [F : E] = h0(OZ ⊗E F ) = pdim(hF /h
inert
F ).

It thus suffices to verify that the canonical map hinertF → DerE(F ) is zero. Suppose
this is not the case, and fix some non-zero D ∈ hinertF from the kernel. Choose a
p-basis for E ⊂ F and write

F = E[T1, . . . , Tr]/(T
p
1 − µ1, . . . , T

p
r − µr)

for some scalars µi ∈ E×. The partial derivatives ∂/∂Ti ∈ DerE(F ) form another
F -basis, and D =

∑
λi∂/∂Ti. Without restriction, we may assume λ1 6= 0. Now

make a base-change to R = F , such that

A = F ⊗E F = R[s1, . . . , sr]/(s
p
1, . . . , s

p
r)

as in the proof for Proposition 5.2. Then D(s1) = λ1 ⊗ 1 6∈ mA. But this implies
that H inert

F does not fix the closed point z0 ∈ ZF = Spec(A), contradiction. �

6. The foliation rank

Throughout this section, k is a ground field of characteristic p > 0, and X is
a proper scheme. Note that everything carries over verbatim to proper algebraic
spaces. Let H = AutX/k[F ] be the resulting height-one group scheme, whose re-
stricted Lie algebra is h = H0(X,ΘX/k). To simplify exposition, we also assume
that X is integral. Let η ∈ X be the generic point and F = k(X) be the function
field. The quotient Y = X/H is integral as well, and we denote its function field by
E = k(Y ). This field extension E ⊂ F is finite and purely inseparable. This yields
a numerical invariant:

Definition 6.1. The foliation rank of the proper integral scheme X is the integer
r ≥ 0 defined by the formula deg(X/Y ) = pr.
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In other words, we have [F : E] = pr. Since the field extension E ⊂ F has height
one, the foliation rank r ≥ 0 is also given by r = dimF (Ω1

F/E), which can also be

seen as the rank of the coherent sheaf Ω1
X/Y . Dualizing the surjection Ω1

X/k → Ω1
X/Y

gives an inclusion F = ΘX/Y ⊂ ΘX/k. The subsheaf F is closed under Lie brackets
and p-maps, hence constitutes a foliation, where the integer rank(F ) = rank(Ω1

X/Y )
coincides with our foliation rank r ≥ 0.

To obtain an interpretations of the foliation rank in terms of group schemes,
consider the restricted Lie algebras

h = Lie(H) = H0(X,ΘX/k) and g = DerE(F ) = ΘX/Y,η.

The former is a finite-dimensional over the ground field k. The latter a finite-
dimensional over the function field E, and can be seen as the Lie algebra for the
automorphism group scheme for Spec(F ) viewed as a finite E-scheme. The local-
ization map h = H0(X,ΘX/k)→ ΘX/k,η respects brackets and p-powers, and factors
over the subalgebra g = ΘX/Y,η. This gives a k-linear map h→ g, together with its
E-linearization

h⊗k E −→ g, δ ⊗ λ 7−→ (f 7→ λδη(f)).

The latter is a homomorphism of restricted Lie algebras over E. The map h → g
is injective, because the coherent sheaf ΘX/k is torsion free, and we often view it as
an inclusion h ⊂ g. Note, however, that its E-linearization in general it is neither
injective nor surjective. This is perhaps the main difference to the classical situation
of group actions rather than group scheme actions.

We are now in the situation studied in Section 5. Let hinertF be the inertia Lie
algebra inside the base-change hF = h ⊗k F , corresponding to the inertia group
scheme with respect to the F -rational point in Spec(F ⊗E F ). From Proposition 5.3
we obtain:

Proposition 6.2. The foliation rank r ≥ 0 of the scheme X coincides with the
codimension of hinertF ⊂ hF .

In some sense, this measures how free the Frobenius kernel of the automorphism
group scheme acts generically:

Proposition 6.3. The foliation rank of the scheme X satisfies 0 ≤ r ≤ h0(ΘX/k).
We have r = 0 if and only if the Frobenius kernel H = AutX/k[F ] vanishes. The
condition r = h0(ΘX/k) holds if and only if H acts freely on some dense open set
U ⊂ X.

Proof. The inequality r ≤ h0(ΘX/k) follows from Proposition 6.2. If the group
scheme H is trivial we have h0(ΘX/k) = 0 and hence r = 0. Conversely, if H is
non-trivial there is a non-zero derivation D : OX → OX . Since the structure sheaf
is torsion-free, the derivation remains non-zero at the generic point, which implies
that E = F h dose not coincide with F , and thus r > 0.

If H acts freely on some dense open set, the projection ε : X → Y to the quotient
Y = X/H is a principal homogeneous H-space over the dense open set V ⊂ Y
corresponding to U . In turn [F : E] = h0(OH), and thus r = dim(h) = h0(ΘX/k).

Finally, suppose that the foliation rank takes the maximal possible value r =
h0(ΘX/k). Then the inertia Lie algebra hinertF ⊂ hF has codimension r = dim(hF ),
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thus is trivial. It follows that the group scheme HE acts freely on Spec(F ) viewed
as an E-scheme. Thus there is an open dense set V ⊂ Y over which the projection
ε : X → Y becomes a principal homogeneous H-space, and the H-action on U =
ε−1(V ) is free. �

We next describe how the foliation rank behaves under birational maps:

Proposition 6.4. Let f : X → X ′ be a birational morphism to another proper
integral scheme X ′, with the property OY ′ = f∗(OX). Then the respective foliation
ranks satisfy r ≤ r′.

Proof. According to Blanchard’s Lemma, there is a unique homomorphism f∗ :
Aut0X/k → Aut0X′/k of group schemes making the morphism f : X → X ′ equivariant.
Indeed, the original form of the lemma for complex-analytic spaces ([5], Proposition
I.1) was extended to schemes by Brion, Samuel and Uma ([9], Proposition 4.2.1).

The homomorphism of group schemes is a monomorphism, because f is birational,
and the schemes in question are integral. In particular, the induced homomorphism
on Frobenius kernel gives a closed embedding H ⊂ H ′, and an injection h ⊂ h′ of
restricted Lie algebras. For the common function field F = k(X) = k(X ′), we get
F h ⊃ F h′ , and r ≤ r′ follows. �

The following gives an upper bound on the foliation rank:

Proposition 6.5. Let i ≥ 0 be some integer, and suppose that the coherent sheaf
F = Hom(Ωi

X/k,OX) satisfies h0(F ) = 0. Then X has foliation rank r < i.

Proof. We have to show that the vector space h · F = DerE(F ) has dimension
at most i − 1. Seeking a contradiction, we suppose that there are k-derivations
D1, . . . , Di : OX → OX that are F -linearly independent. Then the same holds for the
corresponding OX-linear maps s1, . . . , si : OX → ΘX/k. Consequently their wedge
product s1∧. . .∧si : OX → Λi(ΘX/k) is generically non-zero. The universal property
of exteriour powers gives a canonical map Λi(ΘX/k)→ Hom(Ωi

X/k,OX) = F , which
is generically bijective. Thus s1 ∧ . . . ∧ si yield a non-zero global section of F ,
contradiction. �

Corollary 6.6. Let X be a geometrically normal surface with h0(ω∨X) = 0. Then
the foliation rank is r ≤ 1.

Proof. Replacing the ground field k by the field H0(X,OX), it suffices to treat the
case h0(OX) = 1. By Serre’s Criterion, the scheme X is regular in codimension one,
so the locus of non-smoothness Sing(X/k) is finite. Let f : S → X be a resolution
of singularities. Suppose for the moment that the regular surface S is smooth. Then
ωS = Ω2

S/k. Consider the following chain of canonical maps

Ω2
X/k −→ f∗f

∗(Ω2
X/k) −→ f∗(Ω

2
S/k) −→ f∗(ωS) −→ ωX ,

where to the right is the trace map. All these maps are bijective on the complement
U = X r Sing(X/k), so the same holds for the dual map

ϕ : ω∨X −→ Hom(Ω2
X/k,OX) = F .
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According to [23], Corollary 1.8 and Theorem 1.9, these rank-one sheaves are re-
flexive and satisfy the Serre Condition (S2). Since ϕ|U is bijective, already ϕ is
bijective, by loc. cit. Theorem 1.12. The assertion thus follows from the theorem.

It remains to treat the case that the ground field k is imperfect. Choose a perfect
closure k′. The base-change X ′ = X ⊗k k′ is normal, and the above reasoning
applies to any resolution of singularities S ′ → X ′. It follows that ω∨X and F become
isomorphic after base-changing to k′. If follows that Hom(ωX ,F ) is one-dimensional.
Choose a non-zero element ϕ : ωX → F . Then ϕ ⊗ k′ must be bijective, and by
descent the same holds for ϕ. �

This applies in particular to smooth surfaces S of Kodaira dimension kod(S) ≥ 1,
which comprise surfaces of general type, and the properly elliptic surfaces, including
those with quasi-elliptic fibration. It also applies to surfaces S with Kodaira dimen-
sion zero, provided that the dualizing sheaf of the minimal model X is non-trivial.

Let S be smooth surface of general type, and X be its canonical model. This is
the homogeneous spectrum P (S, ωS) of the graded ring R(S, ωS) =

⊕
H0(S, ω⊗tS ).

Then X is normal, the singularities are at most rational double points, and the
dualizing sheaf ωX is ample. We also say that X is a canonically polarized surfaces.
Obviously h0(ω⊗−1X ) = 0, and X has foliation rank r ≤ 1. According to Proposition
6.4, the same holds for S.

Proposition 6.7. Suppose that X has foliation rank r = 1, and let D ∈ H0(X,ΘX/k)
be any non-zero global section. Then for each point x ∈ X, the local ring OY,ε(x) is
the kernel for the additive map D : OX,x → OX,x.

Proof. Set y = ε(x). The local ring is given by OY,y = Oh
X,x, which is contained in

the kernel OD
X,x of the derivation D. Let f ∈ OD

X,x, and D′ ∈ h be another derivation.
Then D′ = λD for some element λ from the function field F = Frac(OX,x), and thus
D′(f) = λD(f) = 0 inside F . Since the localization map OX,x → F is injective, we
already have D′(f) = 0 inside OX,x. This shows f ∈ OY,y. In turn, the inclusion
OY,y ⊂ OD

X,x is an equality. �

We will later see that for r = 1 each vector in g is p-closed. Thus the non-zero
elements D ∈ h indeed yield height-one group schemes N ⊂ H of order |N | = p,
such that Y = X/N .

7. Invariant subspaces

Let k be a ground field of characteristic p ≥ 0 and V be a finite-dimensional
vector space of dimension n ≥ 0. Let us write GLV/k for the group-valued functor
on the category (Aff/k) of affine k-schemes T = Spec(R) defined by

GLV/k(R) = AutR(V ⊗k R).

This satisfies the sheaf axiom with respect to the fppf topology. In fact, it is repre-
sentable by an affine group scheme, and the choice of a basis e1, . . . , en ∈ V yields
GLV/k ' GLn,k.

Let us write V for the abelian functor whose R-valued points are V (R) = V ⊗kR.
As explained in [21], Chapter I, Section 9.6 this is an affine scheme represented by
the spectrum of the symmetric algebra on the dual vector space V ∗. Moreover, the
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structure morphism V → Spec(k) carries the structure of a vector bundle of rank
n with V (k) = V , and the canonical homomorphism GLV/k → AutV /k of group
schemes is bijective. Combining [20], Theorem 11.7 with [4], Exposé VIII, Corollary
2.3 and [8], Chapter V, §10, No. 5, Proposition 9 one sees that each GLV/k-torsor
is trivial, that is, the non-abelian cohomology set H1(k,GLV/k) with respect to the
fppf topology is a singleton. In other words, all vector bundles E → Spec(k) of rank
n are isomorphic to V .

Now let H ⊂ GLV/k be a subgroup scheme, and T → Spec(k) be a H-torsor.
Then the quotient

TV = T ∧H V = H\(T × V )

with respect to the diagonal action σ ·(t, v) = (tσ−1, σv) = (σt, σv) is another vector
bundle called the T -twist. We now consider the following general problem: What
subbundles exist in the T -twist whose pull-back to T are contained in the pullback of a
fixed subbundle V ′ ⊂ V ? By fppf descent, these pullbacks correspond to subbundles
inside the induced bundle V ×T → T whose total space is invariant with respect to
the diagonal H-action.

The n-dimensional vector space TV = (TV )(k) of k-rational points is likewise
called the T -twist of V . If H is finite and T = Spec(L) is the spectrum of a field,
we are thus looking for k-vector subspaces U ⊂ TV such that U ⊗k L is contained
in the base-change V ′ ⊗k L, or equivalently to L-vector subspaces in V ′ ⊗k L that
are invariant for the diagonal H-action.

Suppose now that p > 0, and that H = αp is the infinitesimal group scheme
defined by H(R) = {α ∈ R | αp = 0}, where the group law is given by addition.
Recall that the Lie algebra of GLV/k is the vector space gl(V ) = Endk(V ), where

the Lie bracket is given by commutators [f, g] = fg− gf , and the p-map f [p] = fp is
the p-fold composition. The inclusion homomorphism H → GLV/k corresponds to a
vector f ∈ gl(V ) that is nilpotent, with all Jordan blocks of size ≤ p. On R-valued
points, the map becomes

H(R) −→ GLV/k(R), α 7−→
p−1∑
i=0

(αf)i

i!
.

Set eαf =
∑p−1

i=0 (αf)i/i! to simplify notation. By naturality, the above maps are
determined by the single matrix etf with entries in the truncated polynomial ring
R = k[t]/(tp). The following is well-known:

Lemma 7.1. Each torsor T for the infinitesimal group scheme H = αp is isomorphic
to the spectrum of L = k[s]/(sp − ω) for some ω ∈ k, where the group elements
α ∈ H(R) act via s 7→ s+ α. The torsor T is non-trivial if and only if L is a field.
Moreover, each purely inseparable field extension k ⊂ L of degree p, the spectrum
Spec(L) admits the structure of a H-torsor.

Proof. Consider the relative Frobenius map F : Ga → Ga on the additive group,
which comes from the k-linear map k[t] → k[t] given by t 7→ tp. Then H = αp is

the kernel. The short exact sequence 0 → H → Ga
F→ Ga → 0 yields a long exact

sequence

k −→ k −→ H1(k,H) −→ H1(k,Ga) −→ H1(k,Ga).
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The terms on the right vanish. It follows that each H-torsor T arises as the fiber
for F : Ga → Ga over some rational point ω ∈ Ga(k) Thus T is equivariantly
isomorphic to the spectrum of k[s]/(sp − ω), where the group elements α ∈ H(R)
act via s 7→ s + α. If T is non-trivial, the polynomial sp − ω ∈ k[s] has no root in
k. We infer that it is irreducible, because the algebra L = k[s]/(sp − ω) has prime
degree p. Thus L is a field, which is purely inseparable over k. Conversely, if L is a
field, then T has no rational point, and the torsor is trivial.

Finally, let k ⊂ L be a purely inseparable extension of degree p. For each element
in L not contained in k we get an identification L = k[s]/(sp − ω). Thus Spec(L)
arises as fiber of the relative Frobenius map, thus admits the structure of a H-
torsor. �

For the applications we have in mind, we now consider the particular situation
that V = k[t]/(tp) is the underlying vector space of dimension n = p coming from the
truncated polynomial ring, and V ′ = tk[t]/(tp) is given by the maximal ideal. Each
vector can be uniquely written as a polynomial f(t) =

∑p−1
i=0 λit

i, with coefficients
λi ∈ k. This vector space comes with a canonical action of the additive group Ga,
where the elements α ∈ Ga(R) = R act via f(t) 7→ f(t + α). With respect to the
canonical basis t0, . . . , tp−1 ∈ V ⊗k R, this automorphism is given by α 7→ (αij),
where the matrix entries are αij =

(
j
j−i

)
αj−i. In turn, we get an induced action of

the Frobenius kernel H = αp. Note that V ′ ⊂ V is not H-invariant, because some
α0j = αj are non-zero for α 6= 0.

Now let T = Spec(L) be a H-torsor. The resulting twist TV , which is another
vector space of dimension n = p. Note that both V and TV are isomorphic to k⊕p,
but there is no canonical isomorphism. The following observation will be crucial for
later applications:

Proposition 7.2. In the above situation, there is no vector x 6= 0 inside the twist
TV such that the induced element x ⊗ 1 inside TV ⊗k L = V ⊗k L is contained in
the base change V ′ ⊗k L.

Proof. Seeking a contradiction, we assume that such an element exists. Its image
x ⊗ 1 inside TV ⊗k L = V ⊗k L takes the form f(t) =

∑p−1
i=1 λit

i with coefficients
λi ∈ L. According to Lemma 7.1, we have L = k[s]/(sp − ω) for some ω ∈ k, and
the group elements α ∈ H(R) act via s 7→ s + α. Write λi =

∑p−1
j=0 λijω

j with

coefficients λij ∈ k. The H-invariance of the vector f(t) ∈ V ⊗k L with respect to
the diagonal H-action means

(6)

p−1∑
i=1

p−1∑
j=0

λij(s+ α)j(t+ α)i =

p−1∑
i=1

p−1∑
j=0

λijs
jti

for each α ∈ H(R). Our task is to infer λij = 0. We now consider the univer-
sal situation, where α is the class of the indeterminate in the truncated polyno-
mial ring R = k[u]/(up). Then (6) becomes an equation in the residue class ring
k[t, s, u]/(tp, sp − ω, up). Writing

(s+ α)j(t+ α)i = sjti + α(jsj−1ti + isjti−1) + α2(. . .)
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as a polynomial in α and comparing coefficients in (6) at the linear terms we get
the equation

p−1∑
i=1

p−1∑
j=0

λij(js
j−1ti + isjti−1) = 0.

It thus suffices to verify that the p(p − 1) elements aij = jsj−1ti + isjti−1 are k-
linearly independent in the ring k[s, t]/(tp, sp−ω). We do so by comparing them with
the standard basis vectors sjti, and use the lexicographic order for the exponents
(i, j) ∈ N2, where (u, v) < (i, j) means that u < i, or u = i and v < j. Obviously

aij =
∑

(u,v)≤(i−1,j)

µ(u,v),(i,j)s
vtu

for some coefficients µ(u,v),(i,j) ∈ k, with µ(i−1,j),(i,j) = i. The resulting matrix
(µ(u,v),(i,j)) has p2 rows and p(p− 1) columns, and we see that the last p(p− 1) rows
form a square matrix in row-echelon form, whose diagonal entries µ(i−1,j),(i,j) = i lie
in the unit group F×p . Consequently, the whole matrix has maximal rank, thus the
vectors aij are linearly independent. �

8. Automorphisms for prime-degree radical extensions

Let k be a ground field of characteristic p > 0. For each scalar ω ∈ k, write

L = Lω = k[t]/(tp − ω)

for the resulting finite algebra of rank p. Each element can be uniquely written as∑p−1
i=0 λit

i, and we call such expressions truncated polynomials. Write AutL/k for the
group-valued functor on the category (Aff/k) whose R-valued points are the R-linear
automorphisms of L ⊗ R. This functor is representable by an affine group scheme.
In this section we make a detailed study of the opposite group scheme

G = Gω = AutSpec(Lω)/k = (AutLω/k)
op,

which comprises the automorphisms of the affine scheme Spec(L). We shall see
that G is geometrically non-smooth, so understanding the scheme structure is of
paramount importance. Note that the Lie algebras g = Lie(G) where discovered by
Witt, compare the discussions in [10], Introduction and also [58], footnote on page
3. These so-called Witt algebras will be studied in the next section.

Any automorphism g : L⊗k R→ L⊗k R is determined by the image of the gen-
erator t, which is some truncated polynomial ϕg(t) =

∑p−1
i=0 αit

i. The multiplication
gh ∈ G(R) of group elements corresponds to the substitution ϕh(ϕg(t)) of truncated
polynomials.

The inverse group element g−1 defines another truncated polynomial ϕg−1 =∑p−1
i=0 βit

i, such that
∑
αi(
∑
βjt

j)i = t =
∑
βi(
∑
αjt

j)i. Note, however, that
the truncated polynomials attached to group elements are never units in the ring
L ⊗k R, unless R = 0. To avoid this ambiguity in notation we use the additional
symbol ϕg(t) to denote the image of the indeterminate under g ∈ G(R).

The coefficients in the truncated polynomials ϕg(t) =
∑p−1

i=0 λit
i for the group

elements g ∈ G(R) define a monomorphism G→ Ap.
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Proposition 8.1. The monomorphism G → Ap is is an embedding, and its image
is the intersection of the closed set defined by the Fermat equation

(7) λp0 + (λ1 − 1)pω + λp2ω
2 + . . .+ λpp−1ω

p−1 = 0

with the open set given by det(αij) 6= 0. Here the matrix entries come from the
truncated polynomials (

∑
λit

i)j =
∑
αijt

i, with 0 ≤ i, j ≤ p− 1.

Proof. For each g ∈ G(R), with truncated polynomial ϕg(t) =
∑
λit

i, the images
(
∑
λit

i)j of the basis vectors tj form a R-basis of L⊗R, thus G→ Ap factors over
the open set U ⊂ Ap given by det(αij) 6= 0. Since tp = ω, we also have (

∑
λit

i)p = ω,
so the monomorphism also factors over the closed set Z ⊂ Ap defined by (7). Any
tuple (λ0, . . . , λp−1) ∈ Ap(R) lying in U ∩ Z gives via the truncated polynomial∑
λit

i some group element g ∈ G(R). It follows that the monomorphism G → Ap

is an embedding, with image U ∩ Z. �

Note that throughout, we regard the coefficients λi either as scalars or as inde-
terminates, depending on the context. This abuse of notation simplifies exposition
and should not cause confusion.

Proposition 8.2. The neutral element e ∈ G has coordinates (0, 1, 0, . . . , 0) with
respect to the embedding G ⊂ Ap. If the scalar ω ∈ k is not a p-power, then the
group of rational points is G(k) = {e}.

Proof. The truncated polynomial of the neutral element is ϕe(t) = t, which gives the
coordinates of e ∈ G. Now suppose that ω 6∈ kp. By Proposition 8.1, it suffices to
verify that the polynomial equation ω0T p0 + ω1T p1 + . . .+ ωp−1T pp−1 = 0 has no non-
trivial solution. The latter means that 1, ω, . . . , ωp−1 ∈ k are linearly independent
over kp. This indeed holds, because kp ⊂ k is an extension of height ≤ 1, hence the
minimal polynomial of any λ ∈ k not contained in kp is of the form T p − λp. �

We now consider the Frobenius pullback G(p) and its reduced part G
(p)
red = (G(p))red.

Note that over imperfect fields, reduced parts of group schemes may fail to be
subgroup schemes, see [17], Proposition 1.6 for an example. The following shows that
even if it is a subgroup scheme, it might be non-normal. Note that this phenomenon
seems to be the crucial ingredient for the main results of this paper.

Proposition 8.3. The reduced part G
(p)
red ⊂ G(p) is non-normal subgroup scheme.

Moreover, G
(p)
red ' U oGm, where U has a composition series of length p− 2 whose

quotients are isomorphic to the additive group Ga. In particular, G is affine, irre-
ducible, and of dimension p− 1.

Proof. Recall thatG(p) is defined as the base-change ofG with respect to the absolute
Frobenius map on Spec(k). Clearly, the Frobenius pullback of Lω = k[t]/(tp − ω) is
isomorphic to L0 = k[t]/(tp), and for our automorphism group schemes this means
G(p) ' G0. Thus we may assume ω = 0, and work with G = G(p).

The embedding G ⊂ Ap in Proposition 8.1 is now given by the conditions λp0 = 0
and det(αij) 6= 0. View the entries of the matrix (αij) as elements from the ring A =
k[λ0, . . . , λp−1]/(λ

p
0). Taken modulo the radical Rad(A) = (λ0), the matrix takes

lower triangular form, with diagonal entries 1, λ1, . . . , λ
p−1
1 . In turn, the embedding

G ⊂ Ap is given by λp0 = 0 and λ1 6= 0. Consequently, the reduced part Gred is
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given by λ0 = 0 and λ1 6= 0, which is smooth. Moreover, we see that G is affine,
irreducible, and of dimension p− 1.

Given two truncated polynomials ϕg =
∑
αit

i and ϕh =
∑
βit

i with constant
term α0 = β0 = 0, the substitution ϕg(ϕh(t)) has constant term α0 + β0 = 0, so
the subsets Gred(R) ⊂ G(R) are subgroups. Over R = k[u, v, ε]/(uv − 1, ε2), the
truncated polynomials ϕg = ε + t and ϕh = ut have ϕg−1(ϕh(ϕg))) = uε + t, so the
subgroup Gred(R) ⊂ G(R) fails to be normal.

Summing up, Gred ⊂ G is a smooth non-normal subgroup scheme. The map∑p−1
i=1 λit

i 7→ λ1 defines a short exact sequence

0 −→ U −→ Gred −→ Gm −→ 0.

The inclusion U ⊂ Ap is given by λ0 = 0 and λ1 = 1, hence the underlying scheme of
U is a copy of the affine space Ap−2. By Lazard’s Theorem ([11], Chapter IV, 4.1),
the group scheme U admits a composition series whose quotients are isomorphic
to the additive group Ga. Moreover, the projection Gred → Gm has a section via
λ1 7→ λ1t. This is a homomorphism, hence Gred is a semidirect product. �

Clearly, the group elements g ∈ G(R) with linear truncated polynomial ϕg =
λ0 + λ1t form a closed subgroup scheme B ⊂ G. It sits in a short exact sequence

(8) 0 −→ αp −→ B −→ Gm −→ 0,

where the map on the left is given by λ0 7→ λ0 + t, and the map on the right comes
from λ0 + λ1t → λ1. In particular, B is a connected solvable group scheme. We
see later that B is maximal with respect to this property, so one may regard it as
a Borel group. However, we want to stress that this lies in a non-smooth group
scheme, and B itself is non-reduced. We therefore call B ⊂ G a non-reduced Borel
group.

An element λ1 ∈ Gm(R) lies in the image if and only if λ0 = (1 − λ1)ω1/p exists
in R. It follows that the extension (8) splits if and only if ω ∈ k is a p-power.
Moreover, we see that the canonical map Gm → Autαp/k = Gm is the identity. Note
that the group of all such extension of Gm by αp, with non-trivial Gm-action, is
identified with k/kp, according to [11], Chapter III, Corollary 6.4. Note that for
p = 2 the inclusion B ⊂ G is an equality. In any case, the pullback of the extension
(8) along the inclusion µp ⊂ Gm admits a splitting given by λ1 7→ λ1t, and one sees
B ×Gm µp = αp o µp.

Write G[F ] for the kernel of the relative Frobenius map G → G(p), which is a
normal subgroup scheme of height one. We now consider the resulting G/G[F ] ⊂
G(p).

Proposition 8.4. The group scheme G/G[F ] is smooth, and coincides with the

reduced part G
(p)
red inside the Frobenius pullback G(p).

Proof. We may assume that k is algebraically closed. We first verify that G/G[F ]
is reduced. The short exact sequence (8) yields an inclusion αp ⊂ G. This is
not normal, but contained in the Frobenius kernel G[F ]. The resulting projection
G/αp → G/G[F ] is faithfully flat, and it suffices to check that the homogeneous
space G/αp is reduced. Since G acts transitively, it is enough to verify that the
the local ring at the image in G/αp of the origin e ∈ G is regular. According to
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[48], Proposition 2.2 it is enough to check that in the local ring OG,e, the ideal a
corresponding to the subgroup scheme αp ⊂ G has finite projective dimension. But
this is clear, because it is given by the complete intersection λ1 = . . . = λp−1 = 0.

Thus G/G[F ] is reduced. The reduced closed subschemes G/G[F ] and G
(p)
red inside

the Frobenius pullback have the same underlying set, whence G/G[F ] = G
(p)
red. The

latter is smooth by Proposition 8.3, whence the same holds for the former. �

Now consider the conjugacy map c : G → AutG/k, sending g ∈ G(R) to the
automorphism x 7→ gxg−1. In terms of truncated polynomials, gxg−1 is given by
the triple substitution ϕg−1(ϕx(ϕg(t))). According to [47], Theorem 4.13 we have:

Proposition 8.5. The conjugacy map c : G→ AutG/k is an isomorphism.

In other words, the center and the scheme of outer automorphisms are trivial.
One also says the the group scheme G is complete. Now recall that G = Gω depends
on a scalar ω ∈ k.

Proposition 8.6. For each pair of scalars ω, ω′ ∈ k×, the following are equivalent:

(i) The k-algebras Lω and Lω′ are isomorphic.
(ii) The group schemes Gω and Gω′ are isomorphic.

(iii) We have kp(ω) = kp(ω′) as subfields inside k.

Proof. According to [18], Chapter III, Corollary 2.5.2 the category of twisted forms
for Lω, and the category of twisted forms of Gω are both equivalent to the category
of Gω-torsors. This implies the equivalence of (i) and (ii).

It remains to check (i)⇔(iii). Write Lω = k[t]/(tp − ω) and Lω′ = k[t′]/(t′p − ω′).
Suppose first that these algebras are isomorphic. Choose an isomorphism and regard
it as an identification Lω = Lω′ . Then t′ =

∑p−1
i=0 λit

i, consequently ω′ =
∑
λpiω

i,
and hence kp(ω′) ⊂ kp(ω). By symmetry, the reverse implication holds as well.

Conversely, suppose that kp(ω) = kp(ω′). If this subfield coincides with kp,
then both ω, ω′ ∈ k are p-powers, hence both algebras Lω, Lω′ are isomorphic to
k[t]/(tp). Suppose now that the subfield is different from kp. Taking p-th roots we
get k(ω1/p) = k(ω′1/p) inside some perfect closure kperf. These fields are isomorphic
to Lω and Lω′ , because both scalars ω, ω′ ∈ k are not p-powers. �

In particular, each L = Lω is a twisted form of L0, and each G = Gω is a twisted
form of G0. Up to isomorphism, these twisted forms correspond to classes in non-
abelian cohomology set H1(k,G0). We will use this throughout to gain insight into
G, by using facts on G0. For example, from Proposition 8.1 we see that the locus of
non-smoothness Sing(G0/k), defined as in [17], Section 2, equals the whole scheme
G0. Hence the same holds for G, because it is a twisted form of G0.

We now write Sing(G) for the singular locus of G, which comprise all points
a ∈ G where the local ring OG,a is singular. Note that the formation of such
loci commutes with base-changes along separable extension, but usually not with
inseparable extensions.

Proposition 8.7. The local ring at the origin is singular, with embedding dimension
edim(OG,e) = p. Moreover, the inclusion Sing(G) ⊂ G is not an equality if and only
if ω ∈ k is not a p-power. In this case, the singular locus has codimension one in
G.
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Proof. Since e ∈ G is a rational point, the embedding dimension of OG,a does not
change under ground field extensions. If ω ∈ kp we have G ' G0 and thus every
point a ∈ G the local ring OG,a is singular. Now suppose that ω is not a p-power,
and consider the p-Fermat hypersurface X ⊂ Pp−1 defined by the homogeneous
polynomial λ0T

p
0 + . . . + λp−1T

p
p−1, with coefficient λi = ωi. The field extension

kp ⊂ E generated by λi/λ0 = ωi is nothing but kp(ω). It has degree [E : k] = p,
hence its p-degree is d = 1. According to [49], Theorem 3.3 the singular locus
Sing(X) ⊂ X has codimension d = 1. It follows that Sing(G) ⊂ G is not an
equality.

Seeking a contradiction, we now assume that Z = Sing(G) has codimension ≥ 2.
Then the scheme G is normal, by Serre’s Criterion. Choose a normal compactifica-
tion Y = Ḡ. The canonical map k → H0(Y,OY ) is bijective, because we have the
rational point e ∈ G. According to [49], Lemma 1.3 the base-change Y ⊗k k(ω1/p)
remains integral. On the other hand, we just saw that G⊗ k(ω1/p) is non-reduced,
contradiction. �

9. Witt algebras

We keep the notation from the previous section. Our goal now is to understand
the restricted Lie algebra g = gω, or equivalently the Frobenius kernel, attached to
the automorphism group scheme G = Gω of the spectrum of the ring L = Lω =
k[t]/(tp − ω).

From G = AutSpec(L)/k we get an identification g = Derk(L). Any k-derivation
δ : L → L can be seen as an L-linear map Ω1

L/k → Lω. The module of Kähler
differentials is a free L-module of rank one, generated by dt. Let ∂ ∈ g be the dual
basis vector. In turn we get the canonical k-basis ti∂, with 0 ≤ i ≤ p − 1, and the
Lie bracket is given by

[ti∂, tj∂] = (j − i)ti+j−1∂.
The p-map (f∂)[p] = (f∂)p is the p-fold composition in Endk(L). It can be made
explicit as follows: For each truncated polynomial f =

∑p−1
i=0 λit

i, we write fp−1 =∑p−1
i=0 Cit

i, where the Ci ∈ k are certain polynomial expressions in the coefficients
λ0, . . . , λp−1 and ω, which also depend on the prime p > 0. Set C = Cp−1.

Proposition 9.1. We have (f∂)[p] = C · f∂ for every element f∂ ∈ g. Moreover,
the factor C is homogeneous of degree p− 1 in the coefficients of f =

∑
λit

i.

Proof. Clearly we have ∂p = 0. According to Hochschild’s Formula ([24], Lemma 1)
the p-fold composition of f∂ is given by

(f∂)p = fp∂p + g∂ = g∂,

where g = (f∂)p−1(f). Consider the differential operator D = ∂f∂ . . . f∂, where
the number of ∂-factors is p− 1, such that g = fD(f). According to [16], Theorem
2 we have D(f) = −∂p−1(fp−1). Clearly, ∂p−1(ti) = 0 for 0 ≤ i ≤ p − 2, whereas
∂p−1(tp−1) = (p − 1)! = −1. Summing up, we have D(f) = C, hence g = fC =
Cf , and the statement on the p-map follows. From (

∑
λit

i)p−1 =
∑
Cit

i one
immediately sees that each Ci = Ci(λ0, . . . , λp−1) is homogeneous of degree p−1. �

This has a remarkable consequence:
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Corollary 9.2. Every vector in the restricted Lie algebra g is p-closed.

So each non-zero vector f∂ ∈ g defines a subgroup scheme H ⊂ G of order p. Note
that the additive vectors might be viewed as rational points on the hypersurface of
degree p−1 defined by the homogeneous equation C(λ0, . . . , λp−1) = 0. For example,
with p = 5 the polynomial becomes

(λ30λ4 + 2λ20λ1λ3 + λ20λ
2
2 + 2λ0λ

2
1λ2 + λ41) + ω(2λ0λ1λ

2
4 + 4λ0λ2λ3λ4 + 4λ0λ

3
3+

2λ21λ3λ4 + 2λ1λ
2
2λ4 + 2λ1λ2λ

2
3 + 4λ32λ3) + ω2(4λ2λ

3
4 + λ23λ

2
4).

For the primes p = 2 and p = 3 we get C(λ0+λ1) = λ1 and C(λ0, λ1, λ2) = λ21−λ0λ2,
respectively, which then reveals the structure of g:

Corollary 9.3. For p = 2 we have g ' k o gl1(k). For p = 3 we get g ' sl2(k),
provided that −1 ∈ k× is a square.

Proof. In the first case, one easily checks that the linear bijection g → k o gl1(k)
given by (a + bt) 7→ (a, b) respects bracket and p-map. In the second case we set
i =
√
−1, and see that the linear bijection

g −→ sl2(k), (a+ bt+ ct2) 7−→
(
ia b
c −ia

)
likewise respects bracket and p-map. �

Consider the adjoint representation Ad : G→ Autg/k, which sends each g ∈ G(R)
to the derivative of cg. From [57], Theorem A we get:

Proposition 9.4. For p ≥ 5 the adjoint representation Ad : G → Autg/k is an
isomorphism of group schemes.

So for p ≥ 5 our G can be seen as the automorphism group scheme for the ring
L, the group scheme G, and the restricted Lie algebra g. Consequently, the three
conditions in Proposition 8.6 are also equivalent to gω ' gω′ . For p = 2, 3 the adjoint
representation G→ Autg/k is not bijective, according to Proposition 3.2.

We now come to the crucial result of this paper:

Theorem 9.5. Suppose that the scalar ω ∈ k is not a p-power, and that k× =
k×(p−1). Then each subalgebra g′ ⊂ g of dimension 1 ≤ n ≤ p − 1 is isomorphic to
either k or gl1(k) or k o gl1(k) or sl2(k).

Proof. In the special case p = 2 the dimension of g′ must be n = 1, and it follows
that g′ is a twisted form of k or gl1(k). According to Proposition 3.2, all such twisted
forms are trivial, so our assertion indeed holds.

From now on we assume p ≥ 3. Recall that g = Lie(G) is a twisted form of
g0 = Lie(G0), where G0 is the automorphism group scheme for the spectrum of
L0 = k[t]/(tp). Let g0,red be the subalgebra corresponding to the reduced part
G0,red. According to Proposition 10.3 below, there is no vector x 6= 0 in g such that
x⊗ 1 ∈ g⊗ k(ω1/p) is contained in g0,red⊗ k(ω1/p). In particular, the latter does not
contain the base-change g′ ⊗ k(ω1/p).

It follows that the further base-change g′ ⊗ kalg is not contained in g0,red ⊗ kalg.
Such subalgebras where studied by Premet and Stewart in [44], Section 2.2: They
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remark on page 971 that a subalgebra in g0 ⊗ kalg is not contained in g0,red ⊗ kalg if
and only if it does not preserve any proper non-zero ideal, and call such subalgebras
transitive. We thus may apply loc. cit., Lemma 2.2 and infer that g′ is a twisted
form of k or gl1(k) or k o gl1(k) or sl2(k). By assumption, the group k×/k×(p−1)

vanishes. Since p is odd, this ensures that k×/k×2 vanishes as well. According to
Lemma 3.2, the four restricted Lie algebras in question have no twisted forms over
our field k, thus g′ is isomorphic to one of them. �

Note that for p = 2 the assumption k× = k×(p−1) is vacuous, and for p = 3 means
that the field k is quadratically closed.

10. Twisting adjoint representations

We keep the assumption of the preceding section, and establish the crucial in-
gredients for the proof of Theorem 9.5. Recall that we are in characteristic p > 0,
that G = Gω is the automorphism group scheme of the spectrum of L = Lω =
k[t]/(tp−ω), for some scalar ω ∈ k. The resulting restricted Lie algebra g = Lie(G)
is the p-dimensional vector space Derk(L), which comprises the derivations f(t)∂,
where ∂ =

∑p−1
i=0 λit

i is a truncated polynomial. Moreover, that the group elements
g ∈ G(R) act on L ⊗k R via the substitution t 7→ ϕg(t), for the corresponding
truncated polynomial ϕg(t) =

∑
λit

i, and that its coefficients define an embedding
G ⊂ Ap of the underlying scheme. For each g ∈ G(R), write cg for the induced inner
automorphism x 7→ gxg−1. The resulting conjugacy map c : G → AutG/k is given
in terms of truncated polynomials by the formula

ϕgxg−1(t) = ϕg(ϕx(ϕg−1(t))).

By functoriality, the elements cg ∈ AutG/k(R) induce an automorphism Adg =
Lie(cg) of g⊗k R, which defines the adjoint representation Ad : G→ Autg/k.

Proposition 10.1. Let g ∈ G(R), and write ϕ(t) = ϕg−1(t) for the truncated poly-
nomial of the inverse g−1. Then the formal derivative ϕ′(t) is a unit in the ring
L⊗k R, and for each f(t)∂ ∈ g⊗k R we have

Adg(f(t)∂) =
f(ϕ(t))

ϕ′(t)
∂.

Proof. By definition, the element f(t)∂ ∈ g ⊗k R ⊂ G(R[ε]) acts on the algebra
L⊗R[ε] via

h(t) 7−→ h(t) + εf(t)∂(h) = h(t) + εf(t)h′(t).

Thus the adjoint Adg(f(t)∂) = g ◦ f(t)∂ ◦ g−1 is given by the following composition:

(9) t 7−→ ϕg(t) 7−→ ϕg(t) + εf(t)ϕ′g(t) 7−→ ϕg(ϕg−1(t)) + εf(ϕg−1(t))ϕ′g(ϕg−1(t)).

For a moment, let us regard the truncated polynomials ϕg(t) and ϕg−1(t) as elements
in the polynomial ring R[t]. Then t = ϕg(ϕg−1(t))+(tp−ω)h(t) for some polynomial
h(t). Taking formal derivatives and applying the chain rule, we obtain

1 = ϕ′g(ϕg−1(t)) · ϕg−1(t) + (tp − ω)h′(t).

This gives 1 = ϕ′g(ϕg−1(t)) · ϕg−1(t) in the truncated polynomial ring L ⊗k R =
R[t]/(tp). It follows that ϕ(t) = ϕg−1(t) is a unit, with inverse ϕ′g(ϕg−1(t)). Substi-
tuting for the term on the right in (9) gives the desired formula for Adg(f(t)∂). �
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Now consider the additive vector ∂ ∈ g, which corresponds to an inclusion of the
infinitesimal group scheme H = αp into the group scheme G. The R-valued points
h ∈ H(R) = {λ0 ∈ R | λp = 0} correspond to truncated polynomials ϕh(t) = t+ λ.
The inverse R-valued point has ϕh−1 = t − λ, with formal derivative ϕ′h−1(t) = 1.
This immediately gives:

Corollary 10.2. With the above notation, we have Adh(f(t)∂) = f(t − λ)∂ for
every element f(t)∂ ∈ g⊗k R.

Recall that G = Gω depends on some scalar ω ∈ k, and is a twisted form of
G0. The latter coincides with its own Frobenius pullback. By Proposition 8.3, the
reduced part G0,red is a non-normal subgroup scheme. Recall that the embedding
G0 ⊂ Ap is given by λp0 = 0 and λ1 6= 0, such that G0,red is defined by λ0 = 0
and λ1 6= 0. Write g0,red ⊂ g0 for the resulting subalgebra, which comprises the

derivations f∂ where the truncated polynomial f =
∑p−1

i=0 λit
i has λ0 = 0. Write

H0 ⊂ G0 for the copy of αp given by the additive vector ∂ ∈ g0.
Now suppose that our ground field k is imperfect, that our scalar ω ∈ k is not a

p-power, and consider the resulting field extension k(ω1/p). In light of Lemma 7.1,
we may endow its spectrum T with the structure of an H0-torsor. Lemma 3.1 gives
an identification Tg0 = gω, and thus an identification g0 ⊗k k(ω1/p) = gω ⊗k k(ω1/p)
The following fact was a crucial ingredient for the proof of Theorem 9.5:

Proposition 10.3. The twisted form gω contains no vector x 6= 0 such that the
induced vector x ⊗ 1 inside g0 ⊗k k(ω1/p) = gω ⊗k k(ω1/p) is contained in the base-
change g0,red ⊗k k(ω1/p).

Proof. Setting V = g0 and V ′ = g0,red, we see that that action of H0 = αp via the
adjoint representation G0 → Autg0/k is exactly as described in Proposition 7.2, and
the assertion follows. �

11. Subalgebras

Throughout this section, k is a field of characteristic p > 0, and k ⊂ E is a field
extension. Suppose we have a group scheme H of finite type over k, a group scheme
G of finite type over E, and a homomorphism f : H⊗kE → G. We shall see that in
certain circumstances, important structural properties of the Frobenius kernel G[F ]
are inherited to H[F ].

Consider the finite-dimensional restricted Lie algebra h = Lie(H) over k and
g = Lie(G) over E. Our homomorphism of group schemes induces an E-linear
homomorphism

Lie(f) : h⊗k E → g, x⊗ α 7−→ αx,

of restricted Lie algebras which corresponds to a k-linear homomorphism h → g of
restricted Lie algebras. We are mainly interested in the case that E is the function
field of an integral k-scheme X of finite type, such that g is an infinite-dimensional
k-vector space. Set N = Ker(f), with Lie algebra n = Ker(Lie(f)).

Proposition 11.1. The following are equivalent:

(i) The k-linear homomorphism h→ g is injective.
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(ii) For every non-trivial subgroup scheme H ′ ⊂ H that is minimal with respect
to inclusion, the base-change H ′ ⊗k E is not contained in the kernel N ⊂
H ⊗k E.

Proof. We prove the contrapositive: Suppose h→ g is not injective. Inside the ker-
nel, choose a subalgebra h′ 6= 0 that is minimal with respect to inclusion. Then the
induced E-linear map h′ ⊗k E → g is zero. By the Demazure–Gabriel Correspon-
dence, the corresponding subgroup scheme H ′ ⊂ H of height one is minimal with
respect to inclusion, and H ′⊗k E ⊂ N . Conversely, suppose H ′⊗k E ⊂ N for some
H ′ as in (ii). Choose some non-zero vector x from h′ = Lie(H ′). By construction, it
lies in the kernel for h→ g. �

We now suppose that the above equivalent conditions hold, and regard the in-
jective map as an inclusion h ⊂ g. To simplify exposition, we also assume that k
is algebraically closed, and that h contains an E-basis for g. In other words, the
induced linear map h ⊗k E → g is surjective. Note that this E-linear map is usu-
ally not injective. However, we shall see that important structural properties of g
transfer to h. We start with a series of three elementary but useful observations:

Lemma 11.2. If every vector in g is p-closed, the same holds for every vector in h.

Proof. Fix some non-zero x ∈ h. By assumption we have x[p] = αx for some α ∈
E, and our task is to verify that this scalar already lies in k. Since the latter is
algebraically closed, it is enough to verify that α is algebraic over k. By induction
on i ≥ 0 we get x[p

i] = αnix for some strictly increasing sequence 0 = n0 < n1 < . . .
of integers. Since dimk(h) < ∞ there is a non-trivial relation

∑r
i=0 λix

[pi] for some
r ≥ 0 and some coefficients λi ∈ k. This gives

∑
λiα

nix = 0. Since x 6= 0 we must
have

∑
λiα

ni = 0, hence α ∈ E is algebraic over k. �

Lemma 11.3. The restricted Lie algebras g and h have the same toral rank, and
the kernel n for h⊗k E → g has toral rank ρt(n) = 0.

Proof. It follows from [6], Lemma 1.7.2 that ρt(h) = ρt(g) + ρt(n), and in particular
ρt(g) ≥ ρt(h). For the reverse inequality, suppose there are k-linearly independent

vectors x1, . . . , xr ∈ h with [xi, xj] = 0 and x
[p]
i = xi. We have to check that the

vectors are E-linearly independent. Suppose there is a non-trivial relation. Without
loss of generality, we may assume that x1, . . . , xr−1 are E-linearly independent, and
that xr =

∑r−1
i=1 λixi for some coefficients λi ∈ E. From the axioms of the p-map we

get ∑
λixi = xr = x[p]r = (

∑
λixi)

[p] =
∑

λpix
[p]
i =

∑
λpixi.

Comparing coefficients gives λpi = λi. Thus λi lie in the prime field, in particular in
k. In turn, the vectors are k-linearly dependent, contradiction. �

Let us call the restricted Lie algebra h simple if it is non-zero, and contains no
ideal besides a = 0 and a = h.

Lemma 11.4. Suppose there is a restricted Lie algebra h′ over k such that g is a
twisted form of the base-change h′ ⊗k E. If h′ is simple of dimension n′ ≥ 2, we
must have h ' h′ and g ' h′ ⊗k E.
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Proof. Let H and H ′ be the finite group schemes of height one corresponding
to the restricted Lie algebras h and h′, respectively. Consider the Hom scheme
X ⊂ HilbH×H′ of surjective homomorphisms H → H ′. By assumption, this scheme
contains a point with values in the algebraic closure Ealg. By Hilbert’s Nullstel-
lensatz, there must be a point with values in k, hence there there is a surjective
homomorphism H → H ′. It corresponds to a short exact sequence of restricted Lie
algebras

0 −→ a −→ h −→ h′ −→ 0.

We claim that the ideal a vanishes. Suppose this is not the case. Clearly, h′ and g
have the same toral rank. By Lemma 11.3, also g and h have the same toral rank.
According to [6], Lemma 1.7.2 we have ρt(n) = 0, so the p-map on a is nilpotent. On
the other hand, the p-map on h′ is not nilpotent, because the Lie algebra is simple
of dimension dim(h′) ≥ 2. The same holds for g, and we infer that the induced map
a⊗k E → g is not surjective. Its image b ( g is non-zero, because h ⊂ g. Since g is
simple, there is are elements x ∈ b and y ∈ g with [x, y] 6∈ b. Such vectors may be
chosen with x ∈ a and y ∈ h. Consequently, a ⊂ h is not an ideal, contradiction.

This shows that h = h′. In particular, h and g have the same vector space
dimension, so our surjection h⊗kE → g must be bijective. Our assertions follow. �

For each a ∈ h, the Lie bracket ada(x) = [a, x] defines a k-linear endomorphism of
h, but also an E-linear endomorphism of g. Write adh,a and adg,a for the respective
maps, and µh,a(t) ∈ k[t] and µg,a(t) ∈ E[t] for the resulting minimal polynomials.

Lemma 11.5. We have µh,a(t) = µg,a(t). In particular, the endomorphism adg,a is
trigonalizable, and its eigenvalues coincide with those of adh,a. Moreover, the former
is diagonalizable if and only if this holds for the latter.

Proof. The surjection h ⊗k E → g already reveals that µg,a(t) divides µh,a(t). The
latter decomposes into linear factors over k, because this field is algebraically closed.
We conclude that µg,a(t) =

∑
λit

i actually lies in k[t], and decomposes into linear
factors over k. Moreover, for each vector x from h ⊂ g we have

∑
λi adih,a(x) = 0,

hence µh,a(t) divides µg,a(t). In turn, the two minimal polynomials coincide. The
remaining assertions follow immediately. �

We now consider some special cases for g, and deduce structure results for h.
Recall that kn denotes the n-dimensional restricted Lie algebra over k with trivial
bracket and p-map. The following fact is obvious:

Proposition 11.6. If g is isomorphic to Em then the restricted Lie algebra h is
isomorphic to kn for some integer n ≥ m.

Recall that kn oϕ gl1(k) denotes the semidirect product formed with respect to
the homomorphism ϕ : gl1(k) → gl(kn) = Der′k(k

n) that sends scalars to scalar
matrices.

Proposition 11.7. If g is isomorphic to Emogl1(E), then the restricted Lie algebra
h is isomorphic to kn o gl1(k) for some n ≥ m.

Proof. Without loss of generality we may assume g = Emogl1(E). First recall that
bracket and p-map are given by the formulas

(10) [v + λe, v′ + λ′e] = λv′ − λ′v and (v + λe)[p] = λp−1(v + λe),
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where v ∈ En, and e ∈ gl1(E) denotes the unit. In particular, each vector is p-closed.
Moreover, a = v+λe is multiplicative if and only if λ 6= 0, and a[p] = a if and only if
λ ∈ µp−1(E). For any such vector, we see that the endomorphism ada(x) = [a, x] is
diagonalizable, and En ⊂ g is the eigenspace with respect to the eigenvalue α = λ,
whereas the line Ea ⊂ g is the eigenspace for α = 0.

From the extension 0 → Em → g → gl1(E) → 0 one sees that g has toral rank
one. According to Lemma 11.3, the same holds for h. Choose some non-zero vector
a ∈ h with a[p] = a. Then a = v + λe for some λ ∈ µp−1(E) ⊂ k×. Replacing
a by λ−1a we may assume λ = 1. By Lemma 11.5, the adjoint representation
adh,a is diagonalizable, with eigenvalues α = 0 and α = 1. Let h = U0 ⊕ U1 be
the corresponding eigenspace decomposition. Then U0 lies in the corresponding
eigenspace for adg,a, which is En ⊂ g. It follows that U0 has trivial Lie bracket
and p-map. The choice of a k-basis gives U0 = kn for some n ≥ 0. Likewise, U1 is
contained in Ea. Thus the bracket vanishes on U1, and the p-map is injective. Using
Lemma 11.3, we infer that U1 = ka. The vector space decomposition h = U0 ⊕ U1

thus becomes a semidirect product h = kn o gl1(k). We must have m ≥ n because
the map h⊗k E → g is surjective. �

Recall that sl2(E) is simple for p ≥ 3. Using Lemma 11.4, we immediately obtain:

Proposition 11.8. Suppose p ≥ 3. If g is isomorphic to a twisted form of sl2(E),
then the restricted Lie algebra h is isomorphic to sl2(k).

12. Structure results for Frobenius kernels

We now come to our main result. Let k be an algebraically closed field of charac-
teristic p > 0, and X be a proper integral scheme or more generally a proper integral
algebraic space, H = AutX/k[F ] be the Frobenius kernel for the automorphism group
scheme, and h = H0(X,ΘX/k) the corresponding restricted Lie algebra over k. Let
HF = H ⊗k F be the base-change to the function field F = k(X), and H inert

F ⊂ HF

the inertia subgroup scheme for the rational point in the spectrum of F ⊗E F , with
corresponding restricted Lie algebra hinertF ⊂ hF . Recall that the foliation rank r ≥ 0
is given by

r = dim(hF/h
inert
F ) = dim(Ω1

F/E) and [HF : H inert
F ] = [F : E] = pr,

where E = F h is the kernel for all derivations D : F → F from the Lie algebra h.
This is nothing but the function field E = k(Y ) of the quotient Y = X/H.

Theorem 12.1. Suppose that the proper integral scheme X has foliation rank r ≤ 1.
Then the Frobenius kernel H = AutX/k[F ] is isomorphic to the Frobenius kernel of
one of the following three basic types of group schemes:

SL2 and G⊕na and G⊕na oGm,

for some integer n ≥ 0.

Proof. The case r = 0 is trivial, so we assume r = 1, such that h 6= 0. By assumption
the subfield E = F h has [F : E] = p, and we thus have F = E[T ]/(T p − ω) for
some ω ∈ E. Thus the restricted Lie algebra g = DerE(F ) is a twisted form of the
Witt algebra g0 over E. By construction, we have an inclusion h ⊂ g. It generates
a restricted subalgebra g′ = h · E.
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We now replace the field E by some separable closure Esep, and likewise F by
F ⊗E Esep. According to Theorem 9.5 the restricted Lie algebra g′ is isomorphic to
either sl2(E) or E or g1(E) or E o g1(E). By the results in Section 11, this ensures
that h is isomorphic to sl2(k) or kn or kn o g1(k) for some n ≥ 0. This are the
Frobenius kernels for the group schemes in question, and our assertion follows. �

In the latter two cases, the respective Frobenius kernels are α⊕np and α⊕np o µp.
With Proposition 6.6, we immediately get the following consequence:

Corollary 12.2. Suppose that X is a proper normal surface with h0(ω∨X) = 0. Then
H = AutX/k[F ] is isomorphic to the Frobenius kernel of one of the three basic types
of group schemes in the Theorem.

This applies in particular to smooth surface S of Kodaira dimension kod(S) ≥ 1,
to surfaces of general type S and their minimal models X, or normal surfaces with
c1 = 0 and ωX 6= OS having at most rational double points.

13. Canonically polarized surfaces

Let k be a ground field of characteristic p > 0, and X be a proper normal surface
with h0(OX) = 1 whose complete local rings O∧X,a are complete intersections. Then
the cotangent complex L•X/k is perfect, and we obtain two Chern numbers

c21 = c21(L
•
X/k) and c2 = c2(L

•
X/k),

as explained by Ekedahl, Hyland and Shepherd–Barron [15], Section 3. In some
sense, these integers are the most fundamental numerical invariants of the surface
X. Note that c21 is nothing but the self-intersection number K2

X = (ωX · ωX) of the
dualizing sheaf. If the singularities are also rational, hence rational double points,
the Chern numbers of X coincide with the Chern numbers of the minimal resolution
of singularities S, according to loc. cit. Proposition 3.12 and Corollary 3.13. For
more details on rational double points, we refer to [37] and [3].

Recall that a canonically polarized surface is the canonical model X of a smooth
surface S of general type. Then ωX is ample, all local rings OX,a are either regular
or rational double points, and the above applies. Let us record the following facts:

Lemma 13.1. Suppose that X is canonically polarized. Then

χ(OX) =
1

12
(c21 + c2) and h0(ωX) ≤ 1

2
(c21 + 4) and c2 ≤ 5c21 + 36.

Proof. Let f : S → X be the minimal resolution of singularities. Then S is a smooth
minimal surface of general type, and the first formula holds for S instead of X by
Hirzebruch–Riemann–Roch. We already observed that the surfaces X and S have
the same Chern numbers, and the structure sheaves have the same cohomology.
Thus the formula also holds for X. In particular we have h0(ωX) = h2(OX) =
h2(OS) = h0(ωS), and Noether’s Inequality (for example [36], Section 8.3) for the
minimal surface of general type S gives the second formula. This ensures

χ(OX) = 1− h1(ωX) + h0(ωX) ≤ 1 + h0(ωX) = 1 + h0(ωS) ≤ (c21 + 6)/2.

Combining with χ(OX) = (c21 + c2)/12 we get the third inequality. �
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Theorem 13.2. Let X be canonically polarized surface, with Chern numbers c21, c2.
Then the Lie algebra h = H0(X,ΘX/k) for the Frobenius kernel H = AutX/k[F ] has
the property dim(h) ≤ Φ(c21, c2) for the polynomials

Φ(x, y) =
1

144
(14641x2 + 242xy + 60x+ y2 − 12y + 288).

Moreover, we also have the weaker bound dim(h) ≤ Ψ(c21) with the polynomial

Ψ(x) =
441

4
x2 + 63x+ 8.

Proof. According to [14], Theorem 1.20 the invertible sheaf ω⊗5X is very ample, and
defines a closed embedding X ⊂ Pn, such that n + 1 = h0(ω⊗5X ) and OX(1) = ω⊗5X .
Serre Duality gives hi(ω⊗5X ) = h2−i(ω⊗−4X ). This vanishes for i = 2, because ωX is
ample, and also for i = 1 by [14], Theorem 1.7. Thus we have h0(ω⊗5X ) = χ(ω⊗5X ),
and Riemann–Roch gives

(11) n+ 1 = h0(ω⊗5X ) = χ(OX) +
1

2

(
(5KX)2 − (5KX ·KX)

)
= χ(OX) + 10c21.

Applying the functor Hom(·,OX) to the canonical surjection Ω1
Pn/k ⊗ OX → Ω1

X/k

gives an inclusion

(12) H0(X,ΘX/k) = Hom(Ω1
X/k,OX) ⊂ Hom(Ω1

Pn/k ⊗ OX ,OX) = Hom(Ω1
Pn ,OX).

Likewise, the Euler Sequence 0 → Ω1
Pn/k →

⊕n
i=0 OPn(−1) → OPn → 0 induces the

exact sequence

0 −→ H0(OX) −→
n⊕
i=0

H0(OX(1)) −→ Hom(Ω1
Pn/k,OX) −→ H1(OX),

where we have used the identification Exti(E ∨,OX) = H i(X,E |X) for locally free
sheaves E on Pn. Combining the above sequence with (11) and (12) gives the
estimate

h0(ΘX) ≤ dim Hom(Ω1
Pn/k,OX) ≤ (n+ 1) · h0(ω⊗5X )− 1 + h1(OX).

With (11) and Serre duality, the right-hand side can be rewritten as

(χ(OX) + 10c21) · (χ(OX) + 10c21)− χ(OX) + h0(ωX).

Using χ(OX) = (c21 + c2)/12 and h0(ωX) ≤ (c21 − 4)/2 from Lemma 13.1, we get the
desired bound dim(h) ≤ Φ(c21, c2). Finally c2 ≤ 5c21 + 36 yields the weaker bound
dim(h) ≤ Ψ(c21). �

14. Examples

Let k be a ground field of characteristic p > 0. In this section we give examples
of canonically polarized surfaces X with AutX/k[F ] = α⊕np o µp for certain n ≥ 0.

In other words, the corresponding restricted Lie algebra is h = H0(X,ΘX/k) =
kno gl1(k). The examples are simply-connected, with c21 being a cubic polynomials
in p. Note that the full automorphism group scheme AutX/k for canonically polarized
surface with fixed c21 is bounded, according to [56], Theorem 3.1. Also note that we
do not have examples with h = sl2(k).
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We start by constructing examples with n ≥ 1. View P2 as the homogeneous
spectrum of k[T0, T1, T2]. Fix some d ≥ 1, set L = OP2(d) and consider the section

(13) s = T0T1T
pd−2
2 + T1T2T

pd−2
0 + T2T0T

pd−2
1 ∈ Γ(P2,L ⊗pd).

Regarded as L ⊗−p → OP2 , this endows the coherent sheaf A =
⊕p−1

i=0 L ⊗−i with
the structure of a Z/pZ-graded OP2-algebra, and we define X = Spec(A ) as the
relative spectrum.

Proposition 14.1. In the above setting, suppose p 6= 3 and d ≥ 4. Then

h = kn o gl1(k) and AutX/k[F ] = α⊕np o µp,

where n = (d + 1)(d + 2)/2. Moreover, X is a canonically polarized surface with
Chern invariants c21 = p(pd− d− 3)2 and c2 = 3p+ dp(p− 1)(pd− 3).

Proof. Being locally a hypersurface in affine three-space, the schemeX is Gorenstein.
According to [14], Proposition 1.7 the dualizing sheaf is ωX = π∗(ωP2 ⊗ L p−1),
which equals the pullback of OP2(pd − d − 3). The statement on c21 follows. Using
d(p − 1) − 3 ≥ d − 3 ≥ 1 we see that ωX is ample. Since π : X → P2 is finite, the
Euler characteristic χ(OX) equals

p−1∑
i=0

χ(OP2(−id)) =

p−1∑
i=0

(
2− id

2

)
=

12p− 9d(p− 1)p+ d2(p− 1)p(2p− 1)

12
.

Now suppose for the moment that we already know that X is geometrically normal,
with only rational double points. Then X is a canonically polarized surface, and
Lemma 13.1 yields the statement on c2.

We proceed by computing h = H0(X,ΘX/k) as a vector space. The grading of the

structure sheaf A =
⊕p−1

i=0 L ⊗−i corresponds to an action of G = µp on the scheme
X, with quotient P2. Let D : OX → ΘX/k be the corresponding multiplicative vector
field, and OX(∆) ⊂ ΘX/k the saturation of the image, for some effective Weil divisor
∆ ⊂ X. Lemma 14.5 below gives an exact sequence

0 −→ OX(∆)
D−→ ΘX/k −→ ω⊗−1X (−∆).

The term on the right has no non-zero global sections, because ωX is ample, and
consequently H0(X,OX(∆)) = H0(X,ΘX/k). We have ωX = π∗(ωP2)⊗OX((p−1)∆)
by [45], Proposition 2 combined with Proposition 3, which gives OX(∆) = π∗(L ).
Consequently

H0(X,OX(∆)) = H0(P2,A ⊗L ) = H0(P2,L )⊕H0(P2,OP2) = kn × k,

with the integer n = (d+ 1)(d+ 2)/2, as desired.
It is not difficult to compute bracket and p-map for h = H0(X,ΘX/k). The

coordinate rings for the affine open sets Ui = D+(Ti) of P2 are the homogeneous
localizations Ri = k[T0, T1, T2](Ti), and the preimages π−1(Ui) are the spectra of
Ai = Ri[ti]/(t

p
i − si). Here si denotes the dehomogenization of (13) with respect to

Ti. We have ΘAi/Ri = Ai∂/∂ti, and our multiplicative vector field restricts becomes
D = ti∂/∂ti. For any bi, b

′
i ∈ Ri, one immediately calculates

[bi∂/∂ti, ti∂/∂ti] = bi∂/∂ti, [bi∂/∂ti, b
′
i∂/∂ti] = 0 and (bi∂/∂ti)

[p] = 0.
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Choosing a basis for H0(P2,L ), we infer that the vector space decomposition h =
H0(P2,L ) ⊕H0(P2,OP2) becomes a semi-direct product structure h = kn o gl1(k)
for the restricted Lie algebra.

It remains to check that Sing(X/k) is finite, and that all singularities are rational
double points. For this we may assume that k is algebraically closed. In light of the
symmetry in (13), it suffices to verify this on the preimage V = π−1(U) of the open
set U = D+(T0). Setting x = T1/T0 and y = T2/T0, we see that V has coordinate
ring A = k[x, y, t]/(f) with

f = tp − xy − xpd−2y − xypd−2.

The singular locus comprises the common zeros of f and the partial derivatives
∂f∂x = −y + 2xpd−3y − ypd−2 = 0 and ∂f/∂y = −x− xpd−2 + 2xypd−3 = 0. Clearly
there are only finitely many singularities with x = 0 or y = 0. For the remaining
part of Sing(X), it suffices to examine the system of polynomial equations

(14) − 1 + 2xpd−3 − ypd−3 = 0 and − 1− xpd−3 + 2ypd−3 = 0.

This actually is a system of linear equations in the powers xpd−3 and ypd−3. Using
p 6= 3 we conclude that it has only finitely many solutions.

It remains to verify that all singularities are rational double points. It would be
tedious and cumbersome to do this explicitly. We resort to a trick of independent
interest, where we actually show that there are only rational double points of A-
type: By Proposition 14.3 and Lemma 14.4, it suffices to verify that no singular

point is a zero for the polynomial ∂2f
∂x∂y
· ∂2f
∂x∂y
− ∂2f

∂x2
· ∂2f
∂y2

, which gives the additional
equation

(15) 1 + 4x2pd−6 + 4y2pd−6 − 4xpd−3 − 4ypd−3 − 28(xy)pd−3 = 0.

Assume some singular point also satisfies the above. Clearly x 6= 0 or y 6= 0. If both
inequalities hold we easily get from (14) that xpd−3 = ypd−3 = 1, which in light of
the above gives 1 − 28 ≡ 0 modulo p, contradiction. We thus may assume x 6= 0
and y = 0. Now (14) ensures −1 + xpd−3 = 0, and (15) yields 1 + 4 + 4 ≡ 0, again
contradiction. �

Note that π : X → P2 is a universal homeomorphism, so the geometric funda-
mental group of X is trivial, and b1 = 0 and b2 = 1. Let x1, . . . , xr be the geometric
singularities on X. We saw above that they are rational double points of certain
types An1 , . . . , Anr . As discussed in Section 13, the Chern number c2 is the alter-
nating sum of the Betti numbers on the minimal resolution of X, which yields the
formula c2 − 3 = n1 + . . .+ nr.

We now describe a different construction that gives surfaces with h = gl1(k).
Regard P3 as the homogeneous spectrum of k[T0, . . . , T3]. Consider the homogeneous
polynomial

(16) s = T0T1T
2p−1
2 − T0T1T 2p−1

3 + T 2p
0 T2 + T 2p

1 T3 + T 2p+1
2 + T 2p+1

3

and the resulting surface X ⊂ P3 of degree 2p+ 1.

Proposition 14.2. In the above setting, the surface X has

h = gl1(k) and AutX/k[F ] = µp.
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Moreover, X is a canonically polarized surface with c21 = (2p − 3)2(2p + 1) and
c2 = 8p3 − 4p2 + 2p+ 3.

Proof. The Adjunction Formula gives ωX = OX(2p − 3). This sheaf is ample, and
the statement on the Chern number c21 is immediate. The short exact sequence
0→ OP3(−2p− 1)→ OP3 → OX → 0 yields

χ(OX) = χ(OP3)− χ(OP3(−2p− 1)) = 1− (2− 2p)(1− 2p)(−2p)/6.

Suppose for the moment that X is normal, and the singularities are rational double
points. Then X is a canonically polarized surfaces, and Lemma 13.1 yields the
statement on the Chern number c2.

We proceed to compute g = H0(X,ΘX). Consider the global vector field

D = T0∂/∂T0 − T1∂/∂T1
on P3. FromD(T0) = T0, D(T1) = −T1 andD(T2) = D(T3) = 0 we seeDp = D. One
easily checks that D(s) = 0, so one gets an induced multiplicative vector field on X,
which we likewise denote by D. Let OX(∆) ⊂ ΘX/k be the saturation of the mapping
D : OX → ΘX/k With Lemma 14.5 below we get H0(X,OX(∆)) = H0(X,ΘX/k).
We claim that this vector space is one-dimensional.

To see this, let us first examine the fixed scheme for the action of G = µp on
P3 corresponding to the multiplicative vector field D. Using the quotient rule, we
compute

D(T1/T0) = −2T1/T0, D(T2/T0) = −T2/T0, D(T3/T0) = −T3/T0.
With xi = Ti/T0 one gets D|U0 = −2x1∂/∂x1 − x2∂/∂x2 − x3∂/∂x3 on the affine
open set U0 = D+(T0). So on this chart, the fixed scheme is given by the ideal
a = (2x1, x2, x3). Note the different behavior for p 6= 2 and p = 2. With yj = Tj/T3,
one gets D = y0∂/∂y0− y1∂/∂y1 on U3 = D+(T3). Making similar computations on
the remaining charts, we infer that the fixed scheme in P3 is contained in the union
of the disjoint lines L = V+(T2, T3) and L′ = V+(T0, T1), regardless of p > 0. Clearly
L′ ∩X is finite, whereas L ⊂ X. Thus ∆ ⊂ L, and hence OX(∆) ⊂ OX(L).

Serre Duality yields h0(OX(L)) = h2(ωX(−L)). From the short exact sequence
0→ ωX(−L)→ ωX → ωX |L → 0 we get an exact sequence

H1(L, ωX |L) −→ H2(X,ωX(−L)) −→ H2(X,ωX) −→ 0.

The term on the left vanishes, because ωX |L = OP1(2p−3), and h0(ωX) = 1, therefore
also h2(ωX(−L)) = 1. Combining the above facts we infer that H0(X,OX(∆))
indeed is one-dimensional.

It remains to verify that Sing(X/k) is finite, and that the singularities are rational
double points. For this we may assume that k is algebraically closed. We compute
partial derivatives:

∂f/∂T0 = T1 ·
∏

(T2 − ζT3) and ∂f/∂T1 = T0 ·
∏

(T2 − ζT3),

where the products run over the (2p − 1)-th roots of unities ζ ∈ k×. From the
defining equation (16) we see that there are only finitely many points on X satisfying
T1 = T0 = 0. All other singularities lie on a plane given by some T2− ζT3 = 0. Now
consider

∂f/∂T2 = −T0T1T 2p−2
2 + (T 2

0 + T 2
2 )p and ∂f/∂T3 = T0T1T

2p−2
3 + (T 2

1 + T 2
3 )p.
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Substituting T3 = ζ−1T2 and the first term in ∂f/∂T3, we see that the other sin-
gularities are common solutions of −T0T1T 2p−2

2 + T 2p
0 + T 2p

2 = 0 and an equation
T 2
0 + αT 2

1 + βT 2
2 = 0, hence finite in number. Summing up, Sing(X) is finite.

It remains to verify that every singularity is a rational double point. Again we
show that that only A-types occurs. We do the computation on the open set U0 =
D+(T0), the other coordinate charts can be handled in a similar way. Set xi = Ti/T0.
The dehomogenization of (16) is f = x1x

2p−1
2 −x1x2p−13 +x2 +x2p1 x3 +x2p+1

2 +x2p+1
3 .

Suppose there is a singularity that is not a rational double point of A-type. By
Proposition 14.4 combined with Lemma 14.3 below it must be a common zero of

∂f

∂x2
= −x1x2p−22 + 1 + x2p2 and

∂2f

∂x1∂x2
· ∂2f

∂x2∂x1
− ∂2f

∂x21
· ∂

2f

∂x22
= x4p−42 ,

giving the desired contradiction. �

Note that the inclusion of the surface X ⊂ P3 induces a bijection on fundamental
groups ([22], Exposé X, Theorem 3.10), so again the geometric fundamental group
of X is trivial.

It remains to establish the technical results used in the preceding arguments. Let
A be a complete local k-algebra that is regular of dimension three, with maximal
ideal mA and residue field k = A/mA. Note that for each choice of regular system
of parameters x, y, z ∈ A one obtains an identification A = k[[x, y, z]].

Lemma 14.3. Let f ∈ A be an irreducible element such that f ≡ x0y0 +λz20 modulo
m3
A for some regular system of parameters x0, y0, z0 and some λ ∈ k. Then there

exists another regular system of parameters x, y, z such that (f) = (xy + zn), for
some n ≥ 2. Hence B = A/(f) is a rational double point of type An−1.

Proof. We construct by induction on n ≥ 0 certain regular system of parameters
xn, yn, zn ∈ A such that xn ≡ xn−1 and yn ≡ yn−1 modulo mn

A, and zn = z0, and

(17) f = xnyn + xnφn + ynψn + hn

for some φn, ψn ∈ mn+2
A and hn ∈ z2nk[[zn]]. For n = 0 we take x0, y0, z0 as in our

assumptions. If we already have defined xn, yn, zn ∈ A, we set

(18) xn+1 = xn + ψn, yn+1 = yn + φn and zn+1 = zn.

Clearly xn+1 ≡ xn and yn+1 ≡ yn modulo mn+1
A , and zn+1 = z0. In particular the

above is a regular system of parameters. Since φnψn ∈ m2n+4
A , we may write

−φnψn = xn+1φn+1 + yn+1ψn+1 + σn

with φn+1, ψn+1 ∈ m2n+3
A and σn ∈ z2n+4

n+1 k[[zn+1]]. Combining (17) and (18), we get

f = xn+1yn+1 + xn+1φn+1 + yn+1ψn+1 + hn+1

where hn+1 = hn + σn belongs to z2n+1k[[zn+1]]. This completes our inductive defini-
tion. Note that hn+1 ≡ hn modulo m2n+4

A .
By construction, the xn, yn, zn are convergent sequences in A with respect to

the mA-adic topology. The limits x, y, z ∈ A give the desired regular system of
parameters: Since the φn, ψn converge to zero, we have f = xy + h(z), where h
is the limit of the hn ∈ k[[z]]. We must have h 6= 0, because f is irreducible.
Hence h = uzn with u ∈ k[[z]]× and n ≥ 2. Replacing x by u−1x, we finally
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get (f) = (xy − zn). Summing up, B = A/(f) is a rational double point of type
An−1. �

The condition in the proposition can be checked with partial derivatives, at least
if k is algebraically closed. This makes the criterion applicable for computations:

Proposition 14.4. Let f ∈ m2
A. Suppose that k is algebraically closed, and that

(19)

(
∂2f

∂u1∂u2

)
·
(

∂2f

∂u1∂u2

)
−
(
∂2f

∂u21

)
·
(
∂2f

∂u22

)
6∈ mA

for some system of parameters u1, u2, u3 ∈ A. Then there exists another system of
parameters x, y, z such that f ≡ xy + λz2 modulo m3

A, for some λ ∈ k.

Proof. Write f = q + g, where q = q(u1, u2, u3) is a homogeneous polynomial of
degree two and g ∈ m3

A. Write q = q1 + u3l, where l = l(u1, u2, u3) is homogeneous
of degree one and q1 = q1(u1, u2). If q1 is a square, a straightforward computation
with partial derivatives produces a contradiction to (19). Since k is algebraically
closed we have a factorization q1 = L1 ·L2 where L1 = L1(u1, u2) and L2 = L2(u1, u2)
are independent homogeneous polynomials of degree one. Then w1 = L1, w2 = L2

and w3 form another regular system of parameters of A, and we have

q = w1w2 + w3l = w1w2 + aw3w1 + bw3w2 + cw2
3,

with a, b, c ∈ k. We finally set x = w1 + bw3, y = w2 + aw3 and z = w3. This is
is a further regular system of parameters, with q = xy + λz2, where λ = c − ab.
Therefore, f ≡ xy + λz2 modulo m3

A, as claimed. �

We also used a general fact on coherent sheaves: Let X be a noetherian scheme
that is integral and normal, E be a coherent sheaf of rank two, s : OX → E ∨ a
non-zero global section. The double dual OX(−∆) for the image of the dual map
s∨ : E ∨∨ → OX defines an effective Weil divisor ∆ ⊂ X. By [23], Corollary 1.8 the
duals of coherent sheaves on X are reflexive. Dualizing E ∨∨ → OX(−∆) ⊂ OX we
see that the homomorphism s factors over an inclusion OX(∆) ⊂ E ∨. The latter is
called the saturation of the section s ∈ Γ(X,E ∨).

Lemma 14.5. In the above setting there is a four-term exact sequence

0 −→ OX(∆) −→ E ∨ −→ L (−∆) −→ N −→ 0,

where L = Hom(Λ2(E ),OX), and N is a coherent sheaf whose support has codi-
mension at least two.

Proof. According to [23], Theorem 1.12 it suffices to construct a short exact sequence
0→ OX(∆)→ E ∨ → L (−∆)→ 0 on the complement of some closed set Z ⊂ X of
codimension at least two. Let E0 be the quotient of E by its torsion subsheaf. The
surjection E → E0 induces an equality E ∨0 = E ∨, so we may assume that E is torsion
free. It is then locally free in codimension one, so it suffices to treat the case that
E is locally free. By construction, the cokernel F for OX(∆) ⊂ E ∨ is torsion-free
of rank one, so we may assume that it is invertible. Taking determinants shows
F ' L (−∆). �



39

References

[1] M. Artin: Algebraization of formal moduli I. In: D. Spencer, S. Iyanaga (eds.), Global
Analysis, pp. 21–71. Univ. Tokyo Press, Tokyo, 1969.

[2] M. Artin: Algebraic spaces. Yale University Press, New Haven, Conn.-London, 1971.
[3] M. Artin: Coverings of the rational double points in characteristic p. In: W. Baily, T. Shioda

(eds.), Complex analysis and algebraic geometry, pp. 11–22. Iwanami Shoten, Tokyo, 1977.
[4] M. Artin, A. Grothendieck, J.-L. Verdier (eds.): Théorie des topos et cohomologie étale
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cohomologie des schémas, pp. 88–189. North-Holland, Amsterdam, 1968.
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