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Abstract. We show that there is no family of Enriques surfaces over the ring
of integers. This extends non-existence results of Minkowski for families of finite
étale schemes, of Tate and Ogg for families of elliptic curves, and of Fontaine
and Abrashkin for families of abelian varieties and more general smooth proper
schemes with certain restrictions on Hodge numbers. Our main idea is to study
the local system of numerical classes of invertible sheaves. Among other things,
our result also hinges on counting rational points, Lang’s classification of rational
elliptic surfaces in characteristic two, the theory of exceptional Enriques surfaces
due to Ekedahl and Shepherd-Barron, some recent results on the base of their
versal deformation, Shioda’s theory of Mordell–Weil lattices, and an extensive
combinatorial study for the pairwise interaction of genus-one fibrations.
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Introduction

Which smooth proper morphism X → Spec(Z) do exist? This tantalizing question
seems to go back to Grothendieck ([43], page 242), but it is rooted in algebraic
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number theory: By Minkowski’s discriminant bound, for each number field K 6= Q
the corresponding number ring is not étale over the ring R = Z, so the only examples
in relative dimension n = 0 are finite sums of Spec(Z). Moreover, this reduces
the general question to the case Γ(X,OX) = Z, such that the structure morphism
X → Spec(Z) is a contraction of fiber type.

A result of Ogg [50], which he himself attributes to Tate, asserts that each Weier-
straß equation with integral coefficients has discriminant ∆ 6= ±1. Thus there is no
family of elliptic curves E → Spec(Z). In other words, the Deligne–Mumford stack
M1,1 of smooth pointed curves of genus one has fiber category M1,1(Z) = ∅. This
was generalized by Fontaine [21], who showed that there are no families A→ Spec(Z)
of non-zero abelian varieties. In other words, the fiber category MAb(Z) for the stack
of abelian varieties contains only trivial objects. This was independently established
by Abrashkin [3], who also settled the case of abelian surfaces and threefolds earlier
([1], [2]).

The theory of relative Picard schemes [23] then shows that there is no family
of smooth curves C → Spec(Z) of genus g ≥ 2. In other words, the Deligne–
Mumford stack Mg of smooth curves of genus g has fiber category Mg(Z) = ∅.
Since the ring of integers has trivial Picard and Brauer groups, the only example in
relative dimension n = 1 are finite sums of the projective line P1

Z. Abrashkin [4] and
Fontaine [22] also established that for each smooth proper X → Spec(Z), the Hodge
numbers of the complex fiber V = XC are very restricted, namely Hj(V,Ωi

V/C) = 0
for i + j ≤ 3 and i 6= j. Note that this ensures that the stack MHK of hyperkähler
varieties has fiber category MHK(Z) = ∅.

The only examples for smooth proper schemes over the integers that easily come
to mind are the projective space Pn and schemes stemming from this, for example
sums, products, blowing ups with respect to linear centers, or the Hilbert scheme
X = HilbnP2/Z. Similar examples arise from G/P , where G is a Chevalley group and
P is a parabolic subgroup, and from torus embeddings Temb∆, stemming from a
fan of regular cones σ ∈ ∆. I am not aware of any other construction. It would be
interesting to understand the case of elliptic surfaces over P1.

In light of the Enriques classification of algebraic surfaces, it is natural to con-
sider families Y → Spec(Z) of smooth proper surfaces with c1 = 0. These are the
abelian surfaces, bielliptic surfaces, K3 surfaces and Enriques surfaces. They can be
distinguished by their second Betti number, which takes the values b2 = 6, 2, 22, 10.
The former two are ruled out by the Hodge numbers h0,1 ≥ 1 of the complex fiber.
Similarly, K3 surfaces do not occur, by h2,0 = 1. So only the Enriques surfaces
remain, which over the complex numbers indeed have hi,j = 0 for i + j ≤ 3 and
i 6= j.

At first glance, the family of K3 coverings X → Y seems to show that there is no
family of Enriques surfaces. There is, however, a crucial loophole: At prime p = 2,
the K3 cover can degenerate into a K3-like covering, and then the fiber X ⊗ F2

becomes singular. In light of this, it actually seems possible that such families
of Enriques surfaces exist. The main result of this paper asserts that it does not
happen:
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Theorem. (see Thm. 5.1) The stack MEnr of Enriques surfaces has fiber category
MEnr(Z) = ∅. In other words, there is no smooth proper family of Enriques surfaces
over the ring R = Z.

Note that the finiteness of the fiber categories MEnr(R) for rings of integers R in
number fields was recently established by Takamatsu [63]. A similar finiteness holds
for abelian varieties by Faltings [19] and Zarhin [69], and also for K3 surfaces by
André [5]. Results of this type are often refereed to as the Shafarevich Conjecture
[59]

The proof of our non-existence result is long and indirect, and is given in the final
Section 15. It is actually a consequence of the following:

Theorem. (see Thm. 15.1) There is no Enriques surface Y over k = F2 that is
non-exceptional and has constant Picard scheme PicY/k = (Z⊕10 ⊕ Z/2Z)k.

The exceptional Enriques surfaces where introduced by Ekedahl and Shepherd-
Barron [17]. They indeed can be discarded from our considerations, as I recently
showed in [57] that they do not admit a lifting to the ring W2(F2) = Z/4Z. The
above result will be deduced from an explicit classification of geometrically rational
elliptic surfaces φ : J → P1 over k = F2 that have constant Picard scheme, and
satisfy certain additional technical conditions stemming from the theory of Enriques
surfaces:

Theorem. (see Thm. 10.4 and Thm. 10.5) Up to isomorphisms, there are exactly
eleven Weierstraß equations y2+a1xy+. . . = x3+a2x

2+. . . with coefficients ai ∈ F2[t]
that define a geometrically rational elliptic surface φ : J → P1 with constant Picard
scheme PicJ/F2 having at most one rational point a ∈ P1 where Ja is semistable or
supersingular.

For our Enriques surfaces Y over the prime field k = F2 with constant Picard
scheme, this narrows down the possible configurations of fibers over the three rational
points t = 0, 1,∞ in genus-one fibrations ϕ : Y → P1, by passing to the jacobian
fibration φ : J → P1 and using a result of Liu, Lorenzini and Raynaud [42].

It turns out that there are fifteen possible configurations, where the additional four
cases come from quasielliptic fibrations. In all but one situation there is precisely
one “non-reduced” Kodaira symbol, from the list II∗, III∗, IV∗, I∗4, I

∗
2, I
∗
1. We then

make an extensive combinatorial analysis for the possible interaction of pairs of
genus-one fibrations ϕ, ψ : Y → P1 whose intersection number takes the minimal
value ϕ−1(∞) ·ψ−1(∞) = 4, in the spirit of Cossec and Dolgachev [11], Chapter III,
§5. This only becomes feasible after discarding the exceptional Enriques surfaces,
which roughly speaking have “too few” fibrations and “too large” degenerate fibers.

The paper is organized as follows: In Section 1 we treat the group of numerical
classes of invertible sheaves as a local system NumX/k, that is, a sheaf on the étale
site of the ground field k. Here the main result is that if it is constant, then every
projective contraction of the base-change to kalg descends to a contraction of X.
Geometric consequences for smooth surfaces X = S are examined in more detail
in Section 2. Then we analyze curves of canonical type in Section 3. They occur
in genus-one fibrations, and we stress arithmetical aspects. In Section 4 we review
the theory of Enriques surfaces over algebraically closed fields, including the notion
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of exceptional Enriques surfaces. Section 5 contains a detailed study of families of
Enriques surfaces, in particular over the ring of integers. In Section 6 we collect ba-
sic facts on geometrically rational elliptic surfaces, again from an arithmetical point
of view. In Section 7 we turn to counting points over finite fields with the Weil
Conjectures, and give some formulas that apply to Enriques surfaces and geomet-
rically rational elliptic surfaces whose local system NumX/k is constant. Section 8
contains an observation on the behavior of reduced fibers in passing from an elliptic
fibration to its jacobian fibration. Section 9 contains a main technical result: If Y
is an Enriques surface over k = F2 with constant Picard scheme, then the result-
ing geometrically rational surfaces J , arising as jacobian for elliptic fibrations, also
has constant Picard scheme. Using this, we classify in Section 10 all Weierstraß
equations with coefficients from F2[t] that possibly could describe such J . In Sec-
tion 11, we make a list of the possible fiber configurations over the rational points
t = 0, 1,∞ that could arise for the Enriques surface Y , where we also take into
account quasielliptic fibrations. This list is narrowed down to two configurations in
Sections 12 and 13. In Section 14 we work again over arbitrary algebraically closed
ground fields k, and show that Enriques surfaces all whose genus-one fibrations are
subject to certain severe combinatorial restrictions do not exist. In the final Section
15 we combine all these observations and deduce our main results.

Acknowledgement. The research was supported by the Deutsche Forschungsge-
meinschaft by the grant SCHR 671/6-1 Enriques-Mannigfaltigkeiten. It was also
conducted in the framework of the research training group GRK 2240: Algebro-
geometric Methods in Algebra, Arithmetic and Topology. I wish to thank Will Sawin
for useful remarks, and Matthias Schütt for helpful comments, in particular for
pointing out [61] and [58], which correct two entries in the classification of Mordell–
Weil lattices for rational elliptic surfaces. I would also like to thank the referees for
very careful and thorough reading and many valuable suggestions, which helped to
improve the paper and remove mistakes. In particular, for pointing out a defective
argument in the first version concerning two-sections in what are now Propositions
12.2 and 12.3.

1. The local system of numerical classes

Throughout, k denotes a ground field of characteristic p ≥ 0. Let X be a proper
scheme, PicX/k the Picard scheme, and PicτX/k be the open subgroup scheme param-
eterizing numerically trivial invertible sheaves (see for example [10], Exposé XII,
Corollary 1.5 and Exposé XIII, Theorem 4.7, compare also [41], Section 2). The
latter is algebraic, which means that the structure morphism is of finite type and
separated, and the resulting quotient

NumX/k = (PicX/k)/(PicτX/k)

is an étale group scheme. As such, it corresponds to the Galois representation on
the stalk

NumX/k(k
alg) = NumX/k(k

sep) = Z⊕ρ,
where ksep ⊂ kalg are chosen separable and algebraic closures, and ρ ≥ 0 denotes the
Picard number for the base-change X̄ = X ⊗ kalg. The case ρ = 0 is also allowed,
it may occur for schemes without ample sheaves ([54], Section 3). One may call



ENRIQUES SURFACES OVER THE INTEGERS 5

NumX/k the local system of numerical classes. Note that all these group schemes
exist, even if X fails to be reduced, irreducible, or equidimensional.

We say that NumX/k is a constant local system if the corresponding Galois rep-
resentation Gal(ksep/k) → GLρ(Z) is trivial. In other words, the group scheme
NumX/k is isomorphic to (Z⊕ρ)k =

⋃
Spec(k), where the disjoint union runs over all

elements l ∈ Z⊕ρ.
In this section, we collect some noteworthy consequences of this condition. It can

be solely characterized in terms of invertible sheaves as follows:

Lemma 1.1. The group scheme NumX/k is constant if and only if there is an integer
d ≥ 0 with the following property: For every invertible sheaf L on X̄ there is a
numerically trivial invertible sheaf N on X̄ such that L ⊗d ⊗N is the pullback of
some invertible sheaf on X.

Proof. The condition is sufficient: It ensures that the Galois action on the stalk
NumX/k(k

alg) = Z⊕ρ becomes trivial on some subgroup of finite index. Hence it is
trivial after tensoring with Q, and thus on the torsion-free group Z⊕ρ.

The condition is also necessary: Each rational point l ∈ NumX/k can be seen
as a representable torsor T ⊂ PicX/k for the algebraic group scheme P = PicτX/k.
Fix a closed point a ∈ T . The torsor becomes trivial after base-changing to the
finite extension field E = κ(a). So we may regard the isomorphism class of T as an
element in l ∈ H1(k, P ), where the cohomology is taken with respect to the finite
flat topology.

Such classes have finite order, which follows from general principles: Set X ′ =
X ⊗ E and P ′ = PicX′/E, and view them as k-schemes. First note that for each
k-algebra A, the projection pr : X ′ ⊗A→ X ⊗A is locally free of rank n = [E : k],
so besides the pull-back pr∗ : Pic(X ⊗A)→ Pic(X ′ ⊗A) we also have a norm map
N in the other direction, where N ◦ pr∗ is multiplication by n (for details see [25],
Section 6.5). Now consider the diagram

H1(k, P )

0 H1(k, pr∗ P
′) H1(E,P ′) H0(k,R1 pr∗ P

′).

pr∗
pr∗

N

Here the lower sequence is exact, coming from the Leray–Serre spectral sequence.
Note that the term on the right is zero, because the coefficient sheaf R1 pr∗ P

′

vanishes, by the arguments for Lemma 1.4 below. Our class l ∈ H1(k, P ) becomes
trivial in H1(E,P ′), hence n · l = N(pr∗(l)) = 0.

Summing up, there is some n ≥ 1 such that nl comes from a rational point
l′ ∈ PicX/k. We next show that some multiple of l′ comes from an invertible sheaf.
Set S = Spec(k). The Leray–Serre spectral sequence for the structure morphism
h : X → S yields an exact sequence

H1(X,Gm) −→ H0(S,R1h∗(Gm)) −→ H2(S, h∗(Gm,X)).

The arrow on the left coincides with the canonical map Pic(X) → PicX/k(k). The
term on the right is a torsion group by Lemma 1.4 below. Consequently there is
some integer n′ ≥ 1 so that the point n′l′ comes from some invertible sheaf L on X.
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Applying the above reasoning for the members of some generating set l1, . . . , lr ∈
NumX/k(k), we conclude that the composite map Pic(X)→ NumX/k(k

alg) has finite
cokernel, and the assertion follows. �

Attached to any noetherian scheme Z is the dual graph Γ = Γ(Z). Its finitely
many vertices vi ∈ Γ correspond to the irreducible components Zi ⊂ Z, and two
vertices vi 6= vj are joined by an edge if Zi ∩ Zj 6= ∅. Any morphism Z ′ → Z that
sends irreducible components to irreducible components, in particular flat maps,
induces a map Γ(Z ′) → Γ(Z) between vertex sets that sends edges to edges. Such
maps are termed graph morphisms. They are called graph isomorphism if the maps
on vertex and edge sets are bijective.

Proposition 1.2. Suppose X is one-dimensional. Then the local system NumX/k

is constant if and only if Γ(X̄)→ Γ(X) is a graph isomorphism.

Proof. Let C1, . . . , Cr ⊂ X be the irreducible components, endowed with reduced
scheme structure. First note that an invertible sheaf L is numerically trivial if and
only if (L · Ci) = 0 for 1 ≤ i ≤ r.

We now show that our condition is sufficient: If Γ(X̄)→ Γ(X) is a graph isomor-
phism, the stalk NumX/k(k

alg) has rank ρ = r. For each 1 ≤ i ≤ r, choose a closed
point ai ∈ X not contained in Ass(OX) and the union of the Cj, j 6= i, and some
effective Cartier divisor Di ⊂ X supported by ai. Recall that Ass(OX) is the set
of all points where the local ring OX,ζ admits a copy of the residue field κ(ζ) as a
submodule. Here it comprises the generic points, together with closed points that
give embedded components. The invertible sheaves Li = OX(Di) define elements
li ∈ NumX/k(k

alg) that generate a subgroup of finite index. In turn, the Galois
representation must be trivial.

The condition is also necessary: Let E1, . . . , Es ⊂ X̄ be the irreducible com-
ponents. Fix some 1 ≤ i0 ≤ s, and choose some effective Cartier divisor on X
supported by Ei0 but disjoint from the other components. Using Lemma 1.1, we
find some invertible sheaf L on X with (LX̄ · Ei) ≥ 0, with inequality if and only
if i = i0. It follows that (L ·Cj) ≥ 0, with inequality for precisely one index j = j0,
such that Cj0 ⊗ kalg = Ei0 as closed sets. Consequently Γ(X̄) → Γ(X) is bijective,
whence a graph isomorphism. �

Let us use the following terminology: A contraction of X is a proper scheme Z
together with a morphism f : X → Z with OZ = f∗(OX).

Theorem 1.3. Suppose the local system NumX/k is constant. Then every contrac-
tion X̄ → Ȳ to some projective scheme Ȳ is isomorphic to the base-change of a
contraction X → Y .

Proof. First note that each invertible sheaf L on X yields the graded ring

R(X,L ) =
∞⊕
t=0

H0(X,L ⊗t),

and the resulting homogeneous spectrum P (X,L ) = ProjR(X,L ). If L is semi-
ample, then Z = P (X,L ) is projective and yields a contraction, and each contrac-
tion with Z projective is of this form. The sheaf L is unique up to preimages of
semiample sheaves on Z.
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According to [28], Theorem 8.8.2 there is a finite extension k ⊂ k′ such that the
given contraction X̄ → Ȳ is the base-change of some contraction f ′ : X ′ → Y ′ with
Y ′ projective, where X ′ = X ⊗ k′. Choose some semiample invertible sheaf L ′ on
X ′ defining the contraction, as discussed in the preceding paragraph. Enlarging k′,
we may assume that it is a splitting field. Then it is the composition of a Galois
extension by some purely inseparable extension, and it suffices to treat these cases
individually.

Suppose first that k′ is Galois, with Galois group G = Gal(k′/k). For each σ ∈ G,
the pullback L ′

σ = σ∗(L ′) is semiample, and also numerically equivalent to L ′

because NumX/k is constant. Replacing L ′ by the tensor product
⊗

σ L ′
σ, we may

assume that the k′-valued point PicX/k(k
′) corresponding to L ′ is Galois-invariant,

hence defines a rational point l ∈ PicX/k. Passing to a multiple, it comes from an
invertible sheaf L on X, and the assertion follows.

It remains to treat the case that k′ is purely inseparable. In this setting we can
prove a stronger statement: Any contraction X ′ → Y ′ to a proper scheme Y ′ is
the base-change of some contraction X → Y . To see this, recall that our scheme
X = (|X|,OX) comprises an underlying topological space and a structure sheaf, and
that the given contraction is a pair (f ′, ϕ′) where f : |X ′| → |Y ′| is a continuous
map and ϕ′ : OY ′ → OX′ is an f ′-homomorphism ([24], Chapter 0, Section 3.5.1).
Since pr : X ′ → X is a homeomorphism, we are forced to set |Y | = |Y ′| and f = f ′

and OY = f∗(OX). Define Y = (|Y |,OY ) and write ϕ : OY → OX for the canonical
f -homomorphism. This gives a morphism of ringed spaces (f, ϕ) : X → Y .

It remains to verify that this is the desired contraction. Obviously, the topological
space |Y | is quasicompact, and f∗(OX) = OY . The rest of the problem is essentially
local: Let V ′ ⊂ Y ′ be an affine open subscheme, U ′ = f ′−1(V ) the preimage, and
U ⊂ X the corresponding open subscheme. The condition f ′∗(OX′) = OY ′ ensures
that V ′ = Spec Γ(U ′,OX′). In other words, U ′ → V ′ is the affine hull, and this
morphism is proper. Consider the affine hull V = Spec Γ(U,OX). Then U ′ → V ′

is the base-change of U → V , according to [26], Proposition 1.4.15. Using that
V ′ → V is a homeomorphism, we get an identification (|V |,OY ||V |) = V , compatible
with the morphisms from U . It follows that the ringed space Y = (|Y |,OY ) is
a scheme and that f : X → Y is a morphisms of schemes. Moreover, we infer
Y ′ = Y ⊗ k′ and f ′ = f ⊗ k′. Applying [27], Proposition 2.7.1 to the structure
morphism Y → Spec(k), we see that Y is proper. �

Note that the part in the previous proof that deals with purely inseparable ex-
tensions k ⊂ k′ works without any assumptions on NumX/k. The proof of Lemma
1.1 relies on the following observation:

Lemma 1.4. Write S = Spec(k), and let h : X → S be the structure morphism.
Then we have an identification H2(S, h∗(Gm,X)) = Br(Xaff), and this is a torsion
group.

Proof. For any k-algebra A, we have Γ(X ⊗A,Ga) = Γ(Xaff⊗A,Ga), because X is
quasicompact and separated, and k → A is flat. It follows that the multiplicative
groups on X and Xaff have the same direct image on S, and it suffices to treat
the case that X = Spec(R) is finite. One easily checks that the restriction map
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H2(X,Gm) → H2(Xred,Gm) is bijective. The term on the right is the sum of
Brauer groups for fields, which is torsion.

Consider the Leray–Serre spectral sequence H i(S,Rjh∗(Gm)) ⇒ H i+j(X,Gm).
We show that the edge map H2(X,Gm) → H2(S, h∗(Gm)) is bijective by checking
that Rih∗(Gm) = 0 for i = 1, 2. Let A be a finite k-algebra. Then X⊗A is semilocal,
hence its Picard group vanishes, and we immediately see the vanishing for i = 1.
Now suppose we have a class α ∈ H2(X⊗A,Gm). Let ksep be some separable closure.
The base-change A ⊗k ksep is the product of finitely many strictly henselian local
Artin rings, so the pullback of α vanishes. Then there is already a finite extension
k ⊂ k′ on which the pullback vanishes. This shows R2h∗(Gm) = 0. �

2. Contractions of surfaces

We now examine in dimension two the results of the preceding section. Let k
be a ground field of characteristic p ≥ 0, and S be a smooth proper surface with
h0(OS) = 1. Let C ⊂ X be a curve. Decompose it into irreducible components
C = m1C1 + . . .+mrCr with multiplicities mi ≥ 1, and let

N = N(C) = (Ci · Cj)1≤i,j≤r ∈ Matr(Z)

be the resulting intersection matrix. We say that the curve C is negative-definite
or negative-semidefinite if the intersection matrix N has the respective property.
One may use the intersection numbers to endow Γ = Γ(C) with the structure of
an edge-labeled graph, where the labels attached to the edges are the intersection
numbers (Ci · Cj) > 0 for i 6= j

Now let f : S → Z be a contraction. Then either Z is a geometrically normal
surface and the morphism is birational, or Z is a smooth curve and the morphism
is of fiber type. Let ā : Spec(Ω) → Z be a geometric point, for some algebraically
closed field Ω, with image point a ∈ Z. Write Sā = X ×Z Spec(Ω) = f−1(ā) and
Sa = S ×Z Specκ(a) = f−1(a) for the resulting geometric and schematic fibers,
respectively. The goal of this section is to establish the following:

Theorem 2.1. Suppose the geometric fiber Sā is one-dimensional. If the group
scheme NumS/k is constant, the following holds:

(i) The map Γ(Sā)→ Γ(Sa) is a graph isomorphism.
(ii) The above graph isomorphism respects edge labels, provided that the reduced

scheme (Sa)red is geometrically reduced over the residue field κ(a).
(iii) If the geometric fiber Sā is reducible, the residue field extension k ⊂ κ(a) is

purely inseparable.

Proof. Assertion (ii) is an immediate consequence from (i) and the definitions, and
left to the reader. To verify (i) and (iii) we write E = κ(a). Without restriction, it
suffices to treat the case that Ω = Ealg. The geometric fiber Sā = Sa⊗EΩ ⊂ Sa⊗kΩ
is a curve on the base-change S ⊗k Ω. This curve is connected, by the condition
OZ = f∗(OS). Let Ci ⊂ Sā, 1 ≤ i ≤ r be the irreducible components, and write
N = (Ci · Cj)1≤i,j≤r for the resulting intersection matrix.

We first consider the case that f : X → Z is birational. Then N is negative-
definite, in particular the canonical map

⊕
ZCi → NumS/k(Ω) is injective. It follows

that the Galois action on the set {C1, . . . , Cr} is trivial. In turn, Γ(Sā) → Γ(Sa) is
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a graph isomorphism. Now suppose that r ≥ 2. Seeking a contradiction, we assume
that k ⊂ E is not purely inseparable. Then Sa ⊗k Ω is disconnected. On the other
hand, the fiber Sa is connected, by the condition OZ = f∗(OS). It follows that the
Galois action on the irreducible components Ei ⊂ Sa ⊗k Ω is non-trivial. As above,
the canonical map

⊕
ZEi → NumS/k(Ω) is injective, so the Galois action on the set

{E1, . . . , Es} must be trivial, contradiction.
It remains to treat the case that f : X → Z is of fiber type. Then the matrix

N is negative-semidefinite. For r = 1 our graphs have but one vertex, and the map
Γ(Sā) → Γ(Sa) is obviously a graph isomorphism. Now suppose r ≥ 2. Then the
curves C1 + . . . + Cr−1 and C2 + . . . + Cr are negative-definite. Using the previous
paragraph, we infer that Γ(Sā) → Γ(Sa) is again a graph isomorphism. Likewise,
one shows that k ⊂ E is purely inseparable. �

3. Curves of canonical type

Let k be a ground field of characteristic p ≥ 0, and S be a smooth proper surface
with h0(OS) = 1. In this section we apply Theorem 2.1 to fibers in genus-one
fibrations, and collect additional facts for the situation that k = Fq is finite.

We start with some useful general terminology: Let C ⊂ S be a curve, and
C = m0C0 + . . .+mrCr be the decomposition into irreducible components, together
with their multiplicities. We say that C is of fiber type if (C · Ci) = 0 for all
indices 0 ≤ i ≤ r. Obviously, this condition transfers to multiples and connected
components of the curve. If C is connected and gcd(m0, . . . ,mr) = 1, we say that
C is an indecomposable curve of fiber type. Then the intersection matrix N =
(Ci · Cj)1≤i,j≤r is negative-semidefinite, and the radical of the intersection form on
the lattice L =

⊕r
i=0 ZCi is generated by m0C0 + . . .+mrCr.

Given a connected curve of fiber type C =
∑
miCi, we call m = gcd(m0, . . . ,mr)

its multiplicity. We say that C is simple if m = 1, and multiple otherwise. Setting
ni = mi/m, we call Cind =

∑
niCi the underlying indecomposable curve of fiber type.

Suppose now that we have a contraction f : S → B of fiber type onto some curve
B. For each geometric point ā : Spec(Ω)→ B, the geometric fiber Sā = f−1(ā) is a
connected curve of fiber type on the base-change S⊗k Ω. It is useful to write f−1

ind(ā)
for the underlying indecomposable curve of fiber type, and f−1

red(ā) for its reduction.
An analogous notation will be used for the schematic fiber Sa = f−1(a) over the
image point a ∈ B.

We are mainly interested in curves of canonical type. By definition, this means
(C · Ci) = (KS · Ci) = 0 for all indices 0 ≤ i ≤ r. The above locutions for curves of
fiber type are used in an analogous way for curves of canonical types.

Suppose now that f : S → B is a genus-one fibration that is relatively minimal.
Then every geometric fiber f−1(ā) is a connected curve of canonical type. The
underlying indecomposable curves of canonical type f−1

ind(ā) were classified by Néron
[46] and Kodaira [36]. Throughout, we denote the Kodaira symbols

(1) Im, I∗n, II, III, IV, IV∗, III∗, II∗

to designate the geometric fibers. The symbols Im, m ≥ 1 are also called semistable
or multiplicative, whereas I∗n, II, . . . , II

∗, are referred to as unstable or additive. Here
n ≥ 0. As customary, the symbol I0 indicates that f−1

ind(ā) is an elliptic curve; we
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then distinguish the cases that the smooth curve is ordinary or supersingular. By
abuse of terminology we say that a geometric fiber is reducible or singular if the
scheme f−1

ind(ā) has the respective property. If this curve is singular with f elliptic,
or reducible with f quasielliptic, or multiple, we say that the geometric fiber is
degenerate.

The classification of geometric fibers f−1(ā) was extended to schematic fibers
f−1(a) by Szydlo [62], where the situation becomes considerably more involved. If all
irreducible components of Sa = f−1(a) are birational to P1, the map Γ(Sā)→ Γ(Sa)
is a graph isomorphism respecting edge labels, and we also use the Kodaira symbols
in (1) to designate f−1

ind(a) = m1C1 + . . . + mrCr. We need, however, the following
modifications for r ≤ 2, which play an important role in our later applications:

For r = 1 the curve C = C1 has h0(OC) = h1(OC) = 1, and the normalization
ν : P1 → C is described by a conductor square

Spec(R) −−−→ P1y yν
Spec(k) −−−→ C,

which is both cartesian and cocartesian, see [20], Appendix A for more details.
Geometrically speaking, the closed subscheme Spec(R) ⊂ P1 is contracted to a
rational point Spec(k) ⊂ C. Here R is a finite k-algebra of length two. If R = k× k
or R = k[ε] with ε2 = 0 then C is the rational nodal curve or the rational cuspidal
curve and we use the standard Kodaira symbol I1 and II, respectively. If R = E is a

field, then C is a twisted form, and we use twisted Kodaira symbols Ĩ1 and ĨI instead.
Note that in the twisted situation, a non-rational point on P1 gets identified with a
rational point on C, with consequences for the size of C(k).

A similar situation appears for r = 2: Then C = C1 + C2 sits in the conductor
square

Spec(R×R) −−−→ P1 q P1y yν
Spec(R) −−−→ C,

where R is a k-algebra of length two. For R = k × k or R = k[ε], where ε2 = 0,
we again use the standard Kodaira symbols I2 and III, respectively. If R = E is a

field extension, we have twisted forms and use Ĩ2 and ĨII instead. Again, the twisted
situation has consequence for the size of C(k).

Note that over perfect ground fields, and in particular over finite ground fields, for

r ≤ 2 the cases ĨI and ĨII do not occur, and we only have Ĩ1 and Ĩ2 as twisted Kodaira
symbols. One then says that C is a non-split semistable fiber. For r ≥ 3 there are
further possible twists, but then Γ(Sā) → Γ(Sa) is not a graph isomorphism. We
record the following consequence of Theorem 2.1:

Proposition 3.1. Suppose the ground field k = Fq is finite and that the group
scheme NumS/k is constant. Then Γ(Sā) → Γ(Sa) is a graph isomorphism respect-
ing edge labels, and the implications (i)⇒(ii)⇔(iii) hold among the following three
conditions:
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(i) The geometric fiber Sā is reducible.
(ii) The closed point a ∈ B is a rational point.

(iii) The irreducible components of the schematic fiber Sa are birational to P1.

Proof. The assertion on Γ(Sā) → Γ(Sa) immediately follows from Theorem 2.1,
which also ensures that k = κ(a) provided that Sa is reducible. This already gives
(i)⇒(ii). The implication (ii)⇐(iii) is trivial. For the converse, let C ⊂ Sa be an
irreducible component, and C ′ → C be its normalization. Then C ⊗ Ω is reduced,
with normalization C ′ ⊗ Ω, because the field extension k ⊂ Ω must be separable.
The curve C⊗Ω is birational to P1

Ω, because Γ(Sā)→ Γ(Sa) is a graph isomorphism.
Hence the same holds for C ′ ⊗ Ω. In other words, C ′ is a one-dimensional Brauer–
Severi variety. By Wedderburn’s Theorem, we must have C ′ ' P1. �

Proposition 3.2. Assumptions as in Proposition 3.1. Let C = f−1(a) be a sche-
matic fiber over a rational point a ∈ P1, and r ≥ 1 be the number of irreducible
components. Suppose the reduced scheme Cred is singular. Then the number of
rational points in the fiber is given by the following table:

Kodaira symbol Ir Ĩ1 Ĩ2 unstable

CardC(Fq) rq q + 2 2q + 2 rq + 1

For the field k = F2 with two elements, the Kodaira symbol I∗0 is impossible.

Proof. The computation of n ≥ 0 follows directly by comparing C = f−1
red(a) with its

normalization C ′ = P1 ∪ . . .∪ P1, and is left to the reader. If the Kodaira symbol is
I∗0, then in C = C0 +C1 + . . .+C4 the terminal components C1, . . . , C4 intersect the
central component C0 = P1 in four rational points. This implies 4 ≤ CardP1(Fq) =
q + 1, which means q 6= 2. �

We now examine the situation that k = F2 and the scheme f−1
ind(a) is smooth. This

genus-one curve contains a rational point ([38], Theorem 2), hence can be regarded
as an elliptic curve E = f−1

ind(a). Let us recall from [33], Chapter 3, §6 that up to
isomorphism, there are five elliptic curves E1, . . . , E5 over the prime field k = F2.
The groups Ei(k) are cyclic, and all 1 ≤ n ≤ 5 occur as orders. Deviating from
loc. cit., we choose indices in a canonical way according to the order of the group of
rational points, and record:

Proposition 3.3. Up to isomorphisms, the elliptic curves Ei over the field k = F2

with CardEi(F2) = i are given by the following table:

elliptic curve Weierstraß equation invariant

E1 y2 + y = x3 + x2 + 1 supersingular with j = 0
E3 y2 + y = x3

E5 y2 + y = x3 + x2

E2 y2 + xy = x3 + x2 + x ordinary with j = 1
E4 y2 + xy = x3 + x
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4. Enriques surfaces and exceptional Enriques surfaces

In this section we collect the relevant facts on Enriques surfaces over algebraically
closed fields. For general information, we refer to the monograph of Cossec and
Dolgachev [11]. Here we are particularly interested in the so-called exceptional
Enriques surfaces, which were introduced and studied by Ekedahl and Shepherd-
Barron [17].

Throughout, we fix an algebraically closed ground field k of characteristic p ≥ 0.
An Enriques surface is a smooth proper scheme Y with

h0(OY ) = 1 and c1 = 0 and b2 = 10.

The first condition means that Y is connected, and the second condition signifies
that the dualizing sheaf ωY is numerically trivial. In the Enriques classification of
algebraic surfaces, Bombieri and Mumford showed in [8], §3 that the Picard scheme
PicτY/k of numerically trivial sheaves is a finite group scheme of order two, whose
group of rational points is generated by the dualizing sheaf ωY . Moreover, Num(Y )
is a free abelian group of rank ρ = 10, the Betti numbers satisfies b1 = b3 = 0
and b2 = ρ. Furthermore, h1(OY ) = h2(OY ), and this number is at most one. The
intersection form on Num(Y ) has signature (1, 9) by the Hodge Index Theorem,
must be even by Riemann–Roch, and is actually unimodular ([34], Corollary 7.3.7).
By the classification of indefinite unimodular forms ([44], Chapter II, Theorem 5.3),
we have Num(Y ) ' U⊕E8, where the first summand has Gram matrix ( 0 1

1 0 ) and the
second summand is the negative-definite E8-lattice. Each curve of canonical type
C ⊂ Y induces a genus-one fibration ϕ : Y → P1, and this leads to the following
fact ([7], Theorem 3 and Proposition 11, combined with [39], Theorem 2.2):

Proposition 4.1. There is at least one genus-one fibration ϕ : Y → P1. Any such
fibration has a multiple fiber mF of multiplicity m = 2, and there is an integral curve
C ⊂ Y with C · ϕ−1(∞) = 2. Such a two-section can be chosen to be a (−2)-curve,
or a half-fiber in some other genus-one fibration ψ : Y → P1.

Here a curve F ⊂ Y is called a half-fiber if 2F is a fiber in some genus-one fibration
ϕ : Y → P1 over some rational point. Another important fact ([7], Proposition 11):

Proposition 4.2. The following four conditions are equivalent:

(i) The dualizing sheaf ωY has order two in the Picard group.
(ii) The cohomology group H1(Y,OY ) vanishes.

(iii) There is a genus-one fibration ϕ : Y → P1 without wild fibers.
(iv) There is a genus-one fibration with two multiple fibers 2F1 and 2F2.

Under these conditions, (iii) and (iv) are valid for all genus-one fibrations, and the
dualizing sheaf is given by ωY ' OY (F1 − F2). Moreover, the above conditions are
automatic for p 6= 2.

Lemma 4.3. Let ϕ : Y → P1 be a genus-one fibration with two multiple fibers
2F1 6= 2F2 in characteristic p = 2. Then each Fi is either an ordinary elliptic curve
or unstable.

Proof. Write C = Fi. The multiple fibers must be tame, hence the sheaf N =
OC(C) has order m = 2 in Pic(C). This Picard group has no element of order two if



ENRIQUES SURFACES OVER THE INTEGERS 13

C is a supersingular elliptic curve. If C is semistable, then Pic0(C) = Gm(k) = k×

likewise has no elements of order two. �

Suppose now that we are in characteristic p = 2. Up to isomorphism, there are
three group schemes of order two, namely µ2 and Z/2Z and α2. In turn, there are
three types of Enriques surfaces Y , which are called ordinary, classical or supersin-
gular, according to the following table:

group scheme P = PicτY/k µ2 Z/2Z α2

Cartier dual G = Hom(P,Gm) Z/2Z µ2 α2

fundamental group π1(Y,Ω) Z/2Z trivial trivial

dualizing sheaf ωY OY OY (F1 − F2) OY

designation of Y ordinary classical supersingular

In case that P = PicτY/k is unipotent, in other words, the Cartier dual G =
Hom(P,Gm) is local, one says that Y is simply-connected. The canonical inclusion of
P into the Picard scheme corresponds to a non-trivial G-torsor ε : X → Y , compare
the discussion in [56], Section 4. If the Enriques surface Y is simply-connected then
ε : X → Y is a universal homeomorphism, and X is called the K3-like covering.
Indeed, the scheme X is an integral proper surface that is Cohen–Macaulay with
ωX = OX and h0(OX) = h2(OX) = 1 and h1(OX) = 0. However, the singular locus
Sing(X) is non-empty.

The simply-connected Enriques surface can be divided into two subclasses de-
pending on properties of the normalization ν : X ′ → X. The induced projection
X ′ → Y is purely inseparable and flat of degree two, hence the ramification locus
for ν is an effective Cartier divisor R′ ⊂ X ′, giving ωX′ = OX′(−R′). Ekedahl and
Shepherd-Barron [17] observed that R′ is the preimage of some effective Cartier di-
visor C ⊂ Y referred to as the conductrix, and 2C is called the biconductrix. They
called an Enriques surface exceptional if it is simply-connected and the biconductrix
has h1(O2C) 6= 0. From this amazing definition, they obtained a complete clas-
sification of exceptional Enriques surfaces. Moreover, Salomonsson [53] described
birational models by explicit equations. The following property of non-exceptional
Enriques surfaces will play an important role later:

Proposition 4.4. Suppose p = 2, and that the Enriques surface Y is non-except-
ional. Then the following holds:

(i) There is no quasielliptic fibration ϕ : Y → P1 having a simple fiber with
Kodaira symbol III∗ or II∗.

(ii) There is no genus-one fibration ϕ : Y → P1 having a multiple fiber with
Kodaira symbol IV∗, III∗ or II∗ that admits a (−2)-curve as two-section.

(iii) For every genus-one fibration ϕ : Y → P1 there is another genus-one fibra-
tion ψ : Y → P1 with intersection number ϕ−1(∞) · ψ−1(∞) = 4.

Proof. The first two assertions are [17], Theorem A. The third result is [11], Theorem
3.4.1. �
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5. Families of Enriques surfaces

In this section we examine arithmetic properties of Enriques surfaces Y over non-
closed ground fields. In fact, we treat them as a special case of the following general
notion: A family of Enriques surfaces over an arbitrary ground ring R is an algebraic
space Y, together with a morphism f : Y → Spec(R) that is flat, proper and of
finite presentation such that for each geometric point Spec(Ω) → Spec(R), the
base-change Y is an Enriques surfaces over k = Ω. Let MEnr be the resulting stack
in groupoids whose fiber categories MEnr(R) consists of the families of Enriques
surfaces f : Y→ Spec(R). This stack lies over the site (Aff/Z) of all affine schemes,
endowed with the fppf topology. We already can formulate the main result of this
paper:

Theorem 5.1. The fiber category MEnr(Z) is empty. In other words, there is no
family of Enriques surfaces over the ring R = Z.

The proof is long and indirect, and will finally be achieved in Section 15. The
following result ([57], Theorem 7.2) tells us that we do not have to worry about
exceptional Enriques surface:

Theorem 5.2. There is no family of Enriques surfaces over the ring R = Z/4Z
whose geometric fiber is exceptional.

We now collect further preliminary facts. Throughout, f : Y→ Spec(R) denotes
a family of Enriques surfaces over an arbitrary ground ring R. To simplify notation,
we set S = Spec(R). According to [6], Theorem 7.3 the fppf sheafification of the
naive Picard functor A 7→ Pic(Y ⊗R A) is representable by a group object in the
category of algebraic spaces over R. The following observation, which immediately
follows from [18], Corollary 4.3, will be important:

Proposition 5.3. The algebraic space PicY/R is a scheme. The sheaf of subgroups
PicτY/R is representable by an open embedding, and its structure morphism is locally
free of rank two. Moreover, the quotient sheaf NumY/R is representable by a local
system of free abelian groups of rank ρ = 10.

Each triple (L, a, b) where L is an invertible R-module and a ∈ L, b ∈ L⊗−1 are
elements with a⊗ b = 2R yields a finite flat group scheme GL

a,b, characterized by

GL
a,b(A) = {f ∈ L⊗R A | f⊗2 = a⊗ f},

with group law f1?f2 = f1+f2+b⊗f1⊗f2. According to [66], Theorem 2 each group
scheme that is locally free of rank two is isomorphic to some GL

a,b. Cartier duality

corresponds to the involution (L, a, b) 7→ (L⊗−1, b, a). The special case L = R, a = 1,
b = 2 yields the constant group scheme (Z/2Z)R, whereas a = 2, b = 1 defines the
multiplicative group scheme µ2,R.

Write P = PicτY/R, and G = Hom(P,Gm,R) for the Cartier dual. According to
[52], Proposition 6.2.1, the inclusion P ⊂ PicY/R corresponds to a global section
of R1f∗(GY), which we denote by a formal symbol [X]. This notation may be
explained as follows: The Leray–Serre spectral sequence for the structure morphism
f : Y→ S = Spec(R) yields an exact sequence

(2) 0→ H1(S,G)→ H1(Y, GY)→ H0(S,R1f∗(GY))
d→ H2(S,G)→ H2(Y, GY).
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If [X] ∈ H0(S,R1f∗(GY)) maps to zero under the differential d, the section comes
from a GY-torsor ε : X→ Y, which we call a family of canonical coverings.

Proposition 5.4. A family of canonical coverings ε : X → Y exists under any of
the following three conditions:

(i) The pullback map H2(S,G)→ H2(Y, GY) is injective.
(ii) The structure morphism f : Y→ S admits a section.

(iii) The group scheme P → S is étale and Pic(S) = 0.

If a family of canonical coverings exists, it is unique up to isomorphism and twisting
by pullbacks of G-torsors over S.

Proof. The first assertion and the statement about uniqueness immediately follow
from the five-term exact sequence (2). If the structure morphism admits a section,
the map H2(S,G)→ H2(Y, GY) has a retraction and is thus injective, which gives
(ii).

Finally, suppose that P → S is étale. Suppose first that R is noetherian. Consider
the invertible sheaf L = Ω2

Y/R. For each a ∈ S, the restriction L |Y to the fiber

Y = f−1(a) is the dualizing sheaf, which has order two in Pic(Y ). Moreover, we have
hi(L ⊗2|Y ) = hi(OY ) = 0 for all i ≥ 1. In turn, the formation of the direct image
N = f∗(L ⊗2) commutes with base-change, and we conclude that N is invertible.
With Nakayama, we infer that f ∗(N ) → L ⊗2 is bijective. Using Pic(R) = 0 we
obtain a trivialization ϕ : OY → L ⊗2. We endow the locally free sheaf A = OY ⊕
L ⊗−1 with an algebra structure, by declaring (a, b)·(a′, b′) = (aa′+ϕ−1(bb′), ab′+a′b).
Then the relative spectrum X = Spec(A ) is the desired canonical covering.

It remains to treat general ringsR. Since f : X→ Spec(R) is of finite presentation,
it comes from a family of Enriques surfaces over some noetherian subring R′. We
then can argue as in the previous paragraph, after enlarging the noetherian ring R′

to make N trivial. �

We say that our family of Enriques surfaces has constant local system if the local
system NumY/R is isomorphic to (Z⊕10)R. Likewise, we say that it has constant
Picard scheme if the group space PicY/R is isomorphic to (Z/2Z×Z⊕10)R. Moreover,
we say that it has split Picard scheme if the short exact sequence of group spaces

(3) 0 −→ PicτY/R −→ PicY/R −→ NumY/R −→ 0

splits. Our interest in these notions stems from the following fact:

Proposition 5.5. If the base ring is R = Z, then our family of Enriques surfaces
f : Y→ Spec(R) has constant Picard scheme.

Proof. Choose a geometric point Spec(Ω) → S. The local system NumY/R comes
from a representation of the algebraic fundamental group π1(S,Ω) on the stalk
NumY/k(Ω) = Z⊕10. According to Minkowski’s theorem (see for example [47], The-
orem 2.18), the scheme S = Spec(Z) is simply-connected, so our family of Enriques
surfaces has constant local system.

For the ring R = Z, up to isomorphism the possible triples describing the group
scheme P = PicτY/R are either (R, 1, 2) or (R, 2, 1). In other words, we either have
P = (Z/2Z)R or P = µ2,R. Seeking a contradiction, we assume the latter holds. The
Picard group Pic(R) vanishes, because the ring R = Z is a principal ideal domain.
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Furthermore, we have Br(R) = 0. Indeed, the Hasse principle (see for example [48],
Theorem 8.1.17) gives a short exact sequence

0 −→ Br(Q) −→
⊕

Br(Qp)
δ−→ Q/Z −→ 0,

where the sum runs over all places p including the Archimedean one. Since we have
Br(Zp) = Br(Fp) = 0 for all primes p > 0 by Wedderburn, one sees that Br(Z) is
contained in the Brauer group Br(R) ∩Ker(δ) = 0.

Over the localization R′ = R[1/2], the group scheme µ2,R becomes étale, hence
there is a canonical covering X⊗R′ → Y⊗R′, by Proposition 5.4. Now consider the
generic fiber X = X ⊗ Q, which is a K3 surface. In particular, the Hodge number
h2,0(X) = h0(Ω2

X) is non-zero. By construction, X has good reduction over the
localization Z(p) for all primes p ≥ 3. We now consider the ring of Witt vectors
A = W (Fsep

2 ), which is the maximal unramified extension of the local ring Z2.
Recall that Fontaine showed that for each proper smooth scheme over Q that has

good reduction over W (Fsep
p ) for all primes p > 0, the Hodge numbers hi,j must

vanish for i 6= j and i + j ≤ 3 ([22], Theorem 1 on page 44, and first remark
afterwards). Essentially the same result was independently obtained by Abrashkin,
who showed that for each smooth proper scheme over Z, the Hodge numbers hi,j of
the complex fiber vanish for i 6= j and i+ j ≤ 3 ([4], §7, Section 6, Theorem on page
516. Note that the formulation given there contains an obvious misprint, confer the
Theorem on page 514).

Since our K3 surface X = X⊗Q has Hodge number h2,0 = 1 and good reduction
over W (Fsep

p ) for all p 6= 2, it follows that the base-change XF to the field of fractions
F = Frac(A) must have bad reduction over A.

One the other hand, using Hensel’s Lemma, any Falg
2 -valued point for Y→ S can

be extended to an A-valued point. Again with Proposition 5.4 we conclude that a
family of canonical covering X⊗A→ Y⊗A exists, whence XF has good reduction
over A, contradiction.

Summing up, the Picard scheme sits in a short exact sequence

(4) 0 −→ (Z/2Z)R −→ PicY/R
pr−→ (Z⊕10)R −→ 0.

For each global section l on the right, the preimage T = pr−1(l) is a representable
torsor for the group scheme H = (Z/2Z)R. In particular, the structure morphism
T → Spec(R) is finite étale, of degree two. Since π1(S,Ω) = 0, the total space
T is the disjoint union of two copies of S = Spec(Z). From this we infer that the
short exact sequence (4) splits. In turn, our family of Enriques surfaces has constant
Picard scheme. �

When combined with suitable assumptions on the Picard group or the Picard
group of the base ring R, our constancy condition on the Picard scheme have re-
markable consequence for the fibers of the morphism f : Y → Spec(R). In what
follows, let R → k be a homomorphism to a field, choose an algebraic closure
k̄ = kalg, and write Y = Y⊗R k and Ȳ = Y⊗R k̄ for the resulting Enriques surfaces.

Theorem 5.6. Suppose that the family of Enriques surfaces f : Y → Spec(R) has
constant Picard scheme. Assume furthermore that Pic(R) and Br(R) vanish. Then
there is at least one canonical covering ε : X → Y, and the set of isomorphism
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classes of such coverings is a principal homogeneous space for the group R×/R×2.
Furthermore, the induced Enriques surfaces Y and Ȳ enjoy the following properties:

(i) The dualizing sheaf ωY has order two in the Picard group.
(ii) Every class l ∈ NumY/k(k̄) comes from an invertible sheaf L on Y , which

is unique up to twisting by ωY .
(iii) Every (−2)-curve Ē ⊂ Ȳ is the base-change of a (−2)-curve E ⊂ Y , which

is isomorphic to the projective line P1
k.

(iv) Every genus-one fibration Ȳ → P1
k̄

is the base-change of a genus-one fibra-
tion Y → P1

k. The latter has exactly two multiple fibers, both of which are
tame and lie over k-rational points.

(v) There is at least one genus-one fibration ϕ : Y → P1.

Proof. By assumption we have PicτY/R = (Z/2Z)R. Write S = Spec(R). The Kum-

mer sequence 0→ µ2 → Gm
2→ Gm → 0 gives an exact sequence

Pic(S)
2−→ Pic(S) −→ H2(S, µ2) −→ Br(S)

2−→ Br(S).

Our assumptions ensure that the term in the middle vanishes. According to Propo-
sition 5.4, there is at least one canonical covering ε : X → Y. Moreover, the set
of isomorphism classes is a principal homogeneous space for the group H1(S, µ2).
Again by the Kummer sequence we obtain an identification H1(S, µ2) = R×/R×2.
This establishes the statements on the family of canonical coverings.

From PicτY/R = (Z/2Z)R we immediately get (i). To see (ii), we may regard the

element l as a section of R1f∗(Gm,Y). The Leray–Serre spectral sequence for the
structure morphism f : Y→ S yields

H1(Y,Gm,Y) −→ H0(S,R1f∗(Gm,Y)) −→ H2(S,Gm,S).

The arrow on the right is the zero map by assumption, hence the section l comes
from an invertible sheaf on Y. Base-changing along R → k, we find the desired
invertible sheaf L on Y .

We now check (iii). Let Ē ⊂ Ȳ be a (−2)-curve, and consider the invertible sheaf
L̄ = OȲ (Ē). We just saw that it is the base-change of some invertible sheaf L on
Y . Using h0(L̄ ) = 1 we infer that there is a unique curve E ⊂ Y inducing Ē ⊂ Ȳ ,
and therefore E2 = −2. This curve is a twisted form of the projective line. Since its
class in Num(Y ) must be primitive in light of the self-intersection number, and the
intersection form is unimodular, there is an invertible sheaf N with (N · E) = 1,
hence E ' P1.

It remains to verify (iv). Let Ȳ → P1
k̄

be a genus-one fibration. According to
Theorem 1.3, it is the base-change of a fibration Y → B, where B is a twisted form
of the projective line. Consider the invertible sheaf L̄ = OȲ (F̄ ), where F̄ ⊂ Ȳ is a
half-fiber. It arises from some invertible sheaf L on Y . Using h0(L̄ ) = 1 we infer
that there is a unique curve F ⊂ Y inducing F̄ ⊂ Ȳ . This curve is a half-fiber for
Y → B. If F̄ is reducible, it contains a (−2)-curve. By the previous paragraph,
this gives an inclusion P1 ⊂ F . In particular, Y contains a rational point, hence
B = P1. Now suppose that F̄ is irreducible. Then F is an integral curve with
h0(OF ) = h1(OF ) = 1. Since Num(Y ) is unimodular, there is an invertible sheaf N
on Y with (N ·F ) = 1. With Riemann–Roch we conclude that there is an effective
Cartier divisor of degree one on F . Again there is a rational point, and B = P1.
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Summing up, we have shown that each half-fiber on Ȳ induces a half-fiber on Y
that lies over a rational point. Since there are exactly two half-fibers on Ȳ , both of
which are tame, the same holds for Y . �

6. Geometrically rational elliptic surfaces

In this section we discuss the relation between Enriques surfaces and geometri-
cally rational surfaces. The results are well-known, but I could not find suitable
references in the required generality. Let k be an arbitrary ground field of arbitrary
characteristic p ≥ 0. A proper surface J is called a geometrically rational surface if
it is geometrically integral and the base-change to kalg is birational to the projective
plane. Clearly we have h0(OJ) = 1.

Suppose J is such a surface that is endowed with a genus-one fibration φ : J → P1.
We assume that the fibration is jacobian and relatively minimal, and that the total
space is smooth. Fix a section E ⊂ J , and let J → Z be the contraction of all vertical
curves disjoint from the zero-section E ⊂ J . The normal proper surface Z is called
the Weierstraß model. Write P1 = Spec k[t] ∪ Spec k[t−1] for some indeterminate t.

Proposition 6.1. There are polynomials ai ∈ k[t] of degree deg(ai) ≤ i such that

(5)
y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6,

y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6 with a′i = ai/t

i

are Weierstraß equations for Z over the affine open sets P1 r {∞} = Spec k[t] and
P1 r {0} = Spec k[t−1], respectively.

Proof. To simplify notation we write OX(n) for the pullbacks of the invertible sheaves
OP1(n). The Canonical Bundle Formula [7] gives ωJ = OX(d) for some integer d.
Base-changing to the algebraic closure kalg we can apply [11], Proposition 5.6.1 and
conclude d = −1. The Adjunction formula for E ⊂ J gives the self-intersection
number (E · E) = −1, and we have ωJ/P1 = OX(1).

As explained in [14], Section 1 the sheaves Ei = f∗OX(iE) are locally free, with
rank(Ei) = i for i ≥ 1, and E0 = OP1 . The canonical inclusions of Ei define an
increasing filtration on E = E3 with gr∗(E ) =

⊕
i=0,2,3 OP1(−i). The invertible sheaf

L = OX(3E) is relatively very ample, and yields a closed embedding Z ⊂ P(E ). On
the projective line, we actually may choose splittings E = OP1⊕OP1(−2)⊕OP1(−3).

Write P1 = Proj k[t0, t1], such that t = t0/t1, and consider the global section ω = t1
of the invertible sheaf OP1(1) = Ω1

J/P1|E. Over the affine open set U = Spec k[t],

we choose local sections x = t−2
0 and y = t−3

0 in the second and third summand
of E . As explained in loc. cit., there are polynomials ai ∈ k[t] such that the first
equation in (5) holds in the sheaf of graded rings Sym•(E ) over U . The situation
over U ′ = Spec k[t−1] is similar: Here we choose ω′ = t0 and x′ = t−2

1 and y′ = t−3
1 .

This gives polynomials a′i ∈ k[t−1] with y′2 +a′1x
′y′+ . . . = x′3 + . . .. Now we use that

the coefficients are unique, once the local sections in the summands of E are chosen.
Multiplying the equation over U with t−6 = (t0/t1)6 and comparing coefficients with
the equation over U ′ we get a′i = ai/t

i. This gives the second equation in (5), and
ensures deg(ai) ≤ i. �

Note that at least one of the coefficients ai in (5) is non-constant, and at least one
is not divisible by ti, because otherwise the geometrically rational smooth surface
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J would be isomorphic to the product of P1 and some elliptic curve. Furthermore,
this property of the coefficients remains true after any degree-preserving change of
coordinates.

Now let Y be an Enriques surface, and suppose there is a genus-one fibration
ϕ : Y → P1. Let η ∈ P1 be the generic point, with function field K = k(t).
If the fibration is elliptic, Jη = Pic0

Yη/K is an elliptic curve. If the fibration is

quasielliptic, Pic0
Yη/K is a twisted form of the additive group Ga,K , and we write Jη

for its unique regular compactification. In both cases, Jη is a regular curve with
h0(OJη) = h1(OJη) = 1, and we write φ : J → P1 for the resulting relatively minimal
genus-one fibration. It comes with a zero-section, and is thus a jacobian fibration.

Proposition 6.2. The regular surface J is geometrically rational.

Proof. Let U ⊂ Y be the open set where the coherent sheaf Ω1
Y/P1 is invertible.

It is dense, because the generic fiber Yη is geometrically reduced, hence the image
V = ϕ(U) is a dense open set. For each point b ∈ V , the fibration ϕ : Y → P1

acquires a section after base-changing to the strict henselization OP1,b ⊂ R, and we
get Y ×P1 Spec(R) ' J ×P1 Spec(R). It follows that the scheme J is smooth on the
open set ψ−1(V ), and we infer that the base-change J̄ remains integral.

Moreover, the jacobian for the base-change Ȳ coincides with the base-change of
the jacobian J̄ , at least over some dense open set in P1

kalg
, so we may assume from the

start that k is algebraically closed. The assertion now follows from [11], Theorem
5.7.2. �

In turn, the genus-one fibration ϕ : Y → P1 yields polynomials ai ∈ k[t] of degree
deg(ai) ≤ i such that the two Weierstraß equations in (5) describe the Weierstraß
model Z → P1 of the jacobian fibration φ : Y → P1. We shall see that for k = F2,
the possibilities for these polynomials impose strong restrictions on the Kodaira
symbols occurring for ϕ.

7. Counting points over finite fields

In this section we count the number of rational points on Enriques surfaces with
constant local system over finite fields. The observation has nothing in particular
to do with Enriques surfaces, so we first work in a general setting. Let k = Fq be a
finite ground field, for some prime power q = pν , and X be a smooth proper scheme
of dimension n ≥ 0, with h0(OX) = 1.

Set Ns = CardX(Fqs) for the integers s ≥ 1, such that N1 is the number of
rational points. The Hasse–Weil zeta function is

(6) Z(X, t) =
∏
a

1

1− tdeg κ(a)
= exp

(
∞∑
s=1

Ns

s
ts

)
,

where the product runs over all closed points a ∈ X. This formal power series
actually belongs to the subring Q(t) ⊂ Q[[t]], by Dwork’s Rationality Theorem [16].

Choose some algebraic closure k̄ = kalg, write X̄ = X ⊗ k̄, and fix a prime ` 6= p.
For each i ≥ 0 and each integer j we can form the `-adic cohomology groups

(7) H i(X̄,Q`(j)) =

(
lim←−
r

H i(X̄, µ⊗j`r )

)
⊗Z` Q`.
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Here j ∈ Z refers to the Tate twist in the coefficient sheaves. Note that H i(X̄,Q`(j))
arises from H i(X̄,Q`) by tensoring with the one-dimensional vector space Q`(j) =
(lim←−r µlr(k̄))⊗Z` Q`, which comprises only information on the action of Gal(k̄/k) on

the l-primary roots of unity in k̄. In particular, the Q`-dimensions bi ≥ 0 of the
`-adic cohomology H i(X̄,Q`(j)) do not depend on the Tate twist, and are called the
Betti numbers of X.

The power F ν
X : X → X of the absolute Frobenius is a k-morphism, and induces

by base-change a k̄-morphism Φ = F ν
X ⊗ idk̄ on X̄. Let us write fi,j = Φ∗ for

the induced Q`-linear endomorphism on the cohomology group H i(X̄,Q`(j)). Of
particular interest are the fi = fi,0: The zeta function takes the form

Z(X, t) =
∏

det(1− tfi)(−1)i+1

,

by the Grothendieck–Lefschetz Trace Formula [31]. Here the polynomial factors can
be seen as “reciprocal” characteristic polynomials det(1− fit) = tbi det(t−1 − fi) of
the endomorphisms fi. The characteristic polynomials of fi,j have coefficients from
Q, and the eigenvalues α ∈ Qalg are algebraic integers, of length |α| = qi/2−j in all
complex embeddings, according to the Riemann Hypothesis ([13], Corollary 3.3.9,
see [12], Theorem 1.6 for the projective case).

The following observations explain the effect of the Tate twist: First of all, we
have a canonical identification H i(X̄,Q`(j)) = H i(X̄,Q`) ⊗ Q`(j). Moreover, the
composition (F ν

X⊗ idk̄)◦(idX⊗F ν
k̄

) is a power of the absolute Frobenius of X̄, which
acts trivially on étale cohomology with respect to any coefficient sheaf. Finally, the
Frobenius power F ν

k̄
acts by multiplication with q = pν on Q`(1). Combining these

three observations, we see that fi,j = fi ⊗ q−j, which reveals that the eigenvalues of
fi are obtained from the eigenvalues of fi,j by multiplication with qj.

The Tate twists become relevant in connection with algebraic cycles: Let CHj(X̄)
be the Chow group of j-codimensional cycles modulo linear equivalence, which comes
with a cycle class map CHj(X̄) → H2j(X̄,Q`(j)). We likewise can form Chow
groups and `-adic cohomology on the scheme X, before base-changing to the alge-
braic closure, and have a commutative diagram

(8)

CHj(X) −−−→ H2j(X,Q`(j))y y
CHj(X̄) −−−→ H2j(X̄,Q`(j))

of cycle class maps. For more details on cycle class maps see [15].

Proposition 7.1. Suppose for all integers j ≥ 0 we have H2j+1(X̄,Q`) = 0, and
that the composite map CHj(X)⊗Q` → H2j(X̄,Q`(j)) is surjective. Then the zeta
function is

(9) Z(X, t) =
n∏
j=0

(
1

1− qjt

)b2j
.

In particular, the number of rational points is CardX(Fq) =
∑n

j=0 b2jq
j, and the set

of rational points is non-empty.
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Proof. Suppose that the endomorphism f2j is the homothety with eigenvalue qj.
Then

tb2j det(t−1 − f2j) = tb2j(t−1 − qj)b2j = (1− qjt)b2j ,
and the assertion on the zeta function follows. Expanding (6) and (9) as formal
power series in t and comparing linear terms, we get the statement on the number
of rational points. Since b0 = 1 the set X(Fq) must be non-empty.

It remains to verify the assertion on the endomorphism f2j. Set r = b2j and choose
prime cycles Z1, . . . , Zr ⊂ X whose cycle classes in H2j(X̄,Q`(j)) form a vector
space basis. Obviously, the action of idX ⊗ Fk̄ on the base changes Z̄1, . . . , Z̄r ⊂ X̄
is trivial, so the same holds for the action on H2j(X̄,Q`(j)). The latter action is
inverse to the action of Φ = F ν

X ⊗ idk̄, as observed above. In other words, f2j,j is
the identity map. We also observed above that f2j,j = f2j ⊗ q−j, thus f2j is the
homothety with eigenvalue qj. �

The conditions obviously hold if b2j+1 = 0 and b2j = 1 for all j ≥ 0. One may see
the above result as a generalization of Wedderburn’s Theorem, which states that
every Brauer–Severi variety X contains a rational point, and is thus isomorphic to
projective space Pn. Let us now specialize to surfaces. Recall that ρ = rank Num(X̄)
denotes the Picard number.

Corollary 7.2. Suppose that X is a surface with b1 = 0 and b2 = ρ. If the local
system NumX/k is constant, we have CardX(Fp) = 1 + b2q + q2.

Proof. We have b0 = 1, and with Poincaré Duality get b4 = 1 and b1 = 0. The cycle
class map CH1(X) → H2(X̄,Q`(1)) factors over Num(X), and by the assumptions
the inclusion Num(X)⊗Q` ⊂ H2(X̄,Q`(1)) is an equality. Thus we may apply the
Proposition and the formula on CardX(Fp) follows. �

Corollary 7.3. Suppose that X is either an Enriques surface, or a geometrically
rational surface endowed with a relatively minimal genus-one fibration X → P1. If
the local system NumX/k is constant, we have CardX(Fq) = 1 + 10q + q2.

Proof. In both cases, we have b1 = 0. In light of the previous corollary, we only
have to show that X̄ has Betti number b2 = 10. For Enriques surfaces, this holds
by definition. In the other case, the induced fibration over k̄ remains a relatively
minimal genus one-fibration. We have K2

X̄
= 0 by [11], Proposition 5.6.1. Hence

there is a morphism X̄ → P2
k̄

that can be factored as a sequence of nine blowing
ups, so we also have b2 = 10. �

We shall be particularly concerned with the case q = p = 2. The above formula
then gives CardX(F2) = 25.

8. Multiple fibers and isogenies

In this section we relate multiple fibers in elliptic fibrations with simple elliptic
fibers via isogenies. The general set-up is as follows: Suppose R is an discrete
valuation ring, with field of fractions F = Frac(R) and residue field k = R/mR.
For the sake of exposition, we assume that the local ring R is excellent, which
here means that the field extension Frac(R) ⊂ Frac(R̂) is separable, compare the
discussion in [55], Section 4. Let EF be an elliptic curve over F and XF be a principal
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homogeneous space, representing a cohomology class in H1(F,EF ) with respect to
the flat topology. Suppose that EF has good reduction over R, that is, arises as
generic fiber for some family of elliptic curves E → Spec(R). Furthermore, we
assume that the principal homogeneous space is the generic fiber of some relatively
minimal regular model X → Spec(R), and that the underlying reduced subscheme
Xk,red of the closed fiber Xk is an elliptic curve. We then observe:

Proposition 8.1. Under the above assumptions, the two elliptic curves Ek and
Xk,red over the residue field k are isogeneous.

Proof. Without restriction, we may assume that the discrete valuation ring R is
henselian. Let m ≥ 1 be the multiplicity of the closed fiber for X → Spec(R),
such that Xk = mXk,red. By assumption, the reduction Xk,red is an elliptic curve,
in particular contains a k-rational point d ∈ Xk,red. This is an effective Cartier
divisor, and can be extended to an effective Cartier divisor Dk ⊂ Xk on the fiber.
In light of [29], Theorem 18.5.11 we may extend further, and regard it as the closed
fiber of some effective Cartier divisor D ⊂ X. The scheme D is regular, because
the intersection of Cartier divisors D ∩ Xk,red = Specκ(d) is zero-dimensional and
regular. Writing D = Spec(R′), we get a finite extension of discrete valuation rings
R ⊂ R′. The residue field extension has degree one, hence k′ = R′/mR′ is a copy of
k = R/mR. By construction, the base-change XR′ acquires a section; by abuse of
notation, we use the same symbol for the effective Cartier divisor D ⊂ X and the
resulting section D ⊂ XR′ . Note, however, that the scheme XR′ usually becomes
non-normal, and contains D as a Weil divisor rather than a Cartier divisor. Let
X ′ → XR′ be the normalization. By the valuative criterion for properness, the
inclusion D ⊂ XR′ lifts to an inclusion D ⊂ X ′.

To proceed, consider the base-change E ′ = ER′ , which is a family of elliptic
curves over R′. The section D ⊂ X ′ yields a rational map X ′ 99K E ′, which is
defined on the generic fiber. Choose proper birational maps X ′ ← Y → E ′ that
restrict to identities on the generic fiber, where Y is a normal scheme. According to
[52], Theorem 8.2.1 the morphism Y → Spec(R′) is cohomologically flat, because it
admits a section. In turn, the closed fiber C = Y ⊗R′ k′ has cohomological invariants
h0(OC) = h1(OC) = 1.

Let C1, . . . , Cr ⊂ C be those irreducible components that are strict transforms
of irreducible components in X ′k′ , endowed with reduced scheme structure. Then
each Ci dominates the elliptic curve Xk,red, hence is a curve with cohomological
invariants h0(OCi) ≥ 1 and h1(OCi) ≥ 1, by Lemma 8.4 below. We now claim
that r = 1. Seeking a contradiction, suppose that r ≥ 2. In the exact sequence
OC →

⊕r
i=1 OCi → F → 0, the term on the right is a skyscraper sheaf, whereas the

other sheaves are one-dimensional. From this we infer that the map H1(C,OC) →⊕
H1(Ci,OCi) is surjective. Since each summand is a non-trivial vector space, we

must have r = 1, with h1(OC1) = 1.
Now write C ′1 ⊂ Y for the strict transform of Ek′ . This is an elliptic curve, because

the birational map C ′1 → Ek′ must be an isomorphism. Arguing as in the preceding
paragraph, we see C1 = C ′1. Summing up, the morphism C1 → Ek′ = Ek is an
isomorphism. Using its inverse, we obtain the desired isogeny Ek = C1 → Xk,red. �
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It is easy to construct an example, even in arbitrary dimensions: Suppose for
simplicity that R contains a field of representatives, that is, a subfield that surjects
onto the residue field, for example R = k[[t]]. Let A be an abelian variety over k,
endowed with a finite subgroup G ⊂ A(k), and suppose that there is a finite Galois
extension F ⊂ F ′ with Galois group Gal(F ′/F ) = G such that R ⊂ R′ has trivial
residue field extension. Consider the diagonal action on A × Spec(R′), which is
free, and the resulting quotient X = (A× Spec(R′))/G. Then the generic fiber is a
twisted form of A⊗kF , whereas the closed fiber contains the abelian variety A/G as
reduction. See the dissertation of Zimmermann for more on this construction ([67],
[68]).

In light of general results of Serre, Tate and Honda on isogeny classes of abelian
varieties over finite fields, the above result has the following consequences for finite
fields:

Corollary 8.2. Assumptions as in the proposition. If the residue field k = Fq is
finite, then for each integer r ≥ 1, the number of Fqr-valued points in Ek and Xk

coincide.

Proof. According to [65], Theorem 1 any two isogeneous elliptic curves over the finite
field Fq have the same zeta function, in other words, the same number of Fqr -valued
points, r ≥ 1. �

Corollary 8.3. Assumptions as in the proposition. If the residue field is k = F2,
then the elliptic curve Ek is isomorphic to the scheme Xk,red.

Proof. We recalled in Proposition 3.3 that there are five isomorphism classes of
elliptic curves over k = F2. In each case, the group of rational points is cyclic, and
each of the groups Z/nZ, 1 ≤ n ≤ 5 does occur. Hence the number of rational points
already determines the isomorphism class, and the assertion follows from Corollary
8.2. �

Note that according to the results of Tate [65] and Honda [32], the isogeny classes
of simple abelian varieties A over a finite field k = Fq, q = pν corresponds to the
conjugacy classes of q-Weil numbers π ∈ C.

In the proof for Proposition 8.1, we have used the following observation on alge-
braic curves:

Lemma 8.4. Let k be a ground field, E be an elliptic curve, C be an integral proper
curve, and f : C → E be a dominant morphism. Then h1(OC) ≥ 1. Moreover, if
h1(OC) = 1 then the curve C is regular.

Proof. Let d ≥ 1 be the degree of the dominant morphism f : C → E. The induced
homomorphism Pic(E) → Pic(C) comes with a norm map in the reverse direction
(see [25] Section 6.5), with the property NC/E(L |C) = L ⊗d for all invertible sheaves
L on E.

To check h1(OC) ≥ 1, we may assume that k is separably closed. Seeking a
contradiction, we assume that h1(OC) = 0, such that Pic0

C/k is trivial. We conclude

that the abelian group Pic0(E) = E(k) is annihilated by d. By Bertini’s Theorem
(for example [30], Proposition 4.3 or [35], Chapter I, Theorem 6.3), we find some
smooth divisor D ⊂ E that is disjoint from the scheme E[d] of d-torsion. Each
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point a ∈ D of this subscheme is rational, because k is separably closed. The
corresponding invertible sheaf L = OE(a− 0E) has L ⊗d 6= OE, contradiction.

Now suppose that h1(OC) = 1. It remains to check that C is regular. Let C ′ → C
be the normalization. The short exact sequence 0→ OC → OC′ → F → 0 yields a
long exact cohomology sequence

0→ H0(C,OC)→ H0(C ′,OC′)→ H0(C,F )→ H1(C,OC)→ H1(C ′,OC′)→ 0.

The term on the right does not vanish, by the preceding paragraph, hence the map
on the right is bijective. Thus H1(C,OC) is a one-dimensional vector space over
k = H0(C,OC). It is also a vector space over the field extension k′ = H0(C ′,OC′),
and we infer k = k′. Then the above exact sequence gives h0(F ) = 0, whence the
torsion sheaf F vanishes. Thus the one-dimensional scheme C is normal, hence
regular. �

9. Passage to jacobian fibrations

Throughout this section, Y is an Enriques surface with constant Picard scheme
PicY/k over the field k = F2. According to Theorem 5.6, there is at least one genus-
one fibration ϕ : Y → P1. We now assume that this fibration is elliptic, and let
φ : J → P1 be the resulting jacobian fibration, where J is a geometrically rational
surface. The goal of this section is to establish the following result:

Theorem 9.1. The geometrically rational surface J has constant Picard scheme.

This ensures that the relation between the elliptic fibration on the Enriques surface
and its jacobian is stronger that one might expect. This crucial observation will allow
us in the next sections to use Weierstraß equations to reduce the possibilities for J ,
and thus also for Y .

Choose an an algebraic closure k ⊂ kalg, and write Ȳ = Y ⊗ kalg and J̄ = J ⊗ kalg

for the base-changes. Throughout, ā : Spec(Ω) → P1 denotes a geometric point
whose image point a ∈ P1 is closed.

Proposition 9.2. For each such ā : Spec(Ω) → P1, the geometric fibers Jā and Yā
have the same Kodaira symbols. If Ya is simple, we actually have Ja ' Ya.

Proof. The first assertion follows from a general result of Liu, Lorenzini and Ray-
naud ([42], Theorem 6.6). Now suppose that Ya is simple. In order to check Ja ' Ya
we may base-change to κ(a) = F2ν and assume that a ∈ P1 is rational. If the fiber
contains a rational point y ∈ Ya in the regular locus, the resulting effective Cartier
divisor gives an identification J ⊗R ' Y ⊗R, where R = Oh

P1,a is the henselization,
and in particular Ja ' Ya. It remains to verify the existence of such a rational
point. For smooth fibers, this follows from Lang’s result ([38], Theorem 2). Suppose
now that C = Ya is singular, with irreducible components C1, . . . , Cr. Each Ci is
birational to P1, according to Proposition 3.1. In case r = 1 the description before
Proposition 3.2 reveals that the desired rational point exists. If r ≥ 2, we actually
have Ci ' P1, and the canonical map Γ(C̄)→ Γ(C) is a graph isomorphism respect-
ing edge labels, again by Proposition 3.1. Choose a component Ci corresponding to
a terminal vertex of Γ(C). Then there is exactly one component Cj intersecting Ci,
which has (Ci · Cj) ≤ 2. In turn, from the three rational points in Ci = P1 at least
one is contained in the regular locus of Cred. �
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We now state several facts about the fibers of φ : J → P1, which can be formulated
without referring to the Enriques surface Y :

Proposition 9.3. Let ā : Spec(Ω) → P1 be a geometric point whose image point
a ∈ P1 is closed. Then the following holds:

(i) If a ∈ P1 is non-rational, then the geometric fiber Jā is irreducible.
(ii) The Kodaira symbol of Jā is different from I∗0.

(iii) If Jā is semistable, then the map Γ(Jā)→ Γ(Ja) is a graph isomorphism.
(iv) There is at most one rational point b ∈ P1 whose fiber Jb is semistable or

supersingular.
(v) The canonical inclusion MW(J/P1) ⊂ MW(J̄/P̄1) of Mordell–Weil groups

is an equality.

Proof. Recall from Proposition 9.2 that for all closed points a ∈ P1, the fibers Ja and
Ya have the same Kodaira symbol. Suppose now that k ⊂ κ(a) is not an equality.
Then Yā is irreducible by Theorem 2.1, which settles (i). From Proposition 3.2 we
get (ii). Suppose next that Ja is semistable. Then Ya must be simple, by Lemma
4.3, hence Ja ' Ya, again from Proposition 9.2. Assertion (iii) thus follows from
Theorem 2.1.

By Theorem 5.6 there are two rational points a ∈ P1 where the fiber Ya is multiple.
The corresponding ϕ−1

ind(a) are neither semistable nor supersingular, again by Lemma
4.3. So from the three rational points, there is only one b ∈ P1 where ϕ−1

ind(b) and
hence Jb can be semistable or supersingular, which gives (iv).

It remains to verify the last assertion (v). According to the definition of Mordell–
Weil groups we have

MW(J/P1) = J(F ) = Pic0
YF /F

(F ) = Pic0(YF ),

where F is the function field of the projective line. The latter equality holds because
Br(F ) = 0, by Tsen’s Theorem. Choose a two-section R ⊂ Y , and consider the
surjective homomorphism

Pic(Y ) −→ Pic0(YF ), L 7−→ L (−nR)|YF ,

where 2n = deg(L |YF ). The kernel T (Y/P1) of this map is generated by the irre-
ducible components of the closed fibers for ϕ : Y → P1, together with R. Consider
the commutative diagram

T (Y/P1) −−−→ Pic(Y )y y
T (Ȳ /P̄1) −−−→ Pic(Ȳ )

induced by base-change. By assumption, the vertical map on the right is bijective.
According to Theorem 2.1, the same holds for the vertical map on the left. In turn,
the induced vertical map between cokernels is bijective, thus (v) holds. �

The number of irreducible components of the geometric fiber Jā depends only
on the image point a ∈ P1; we denote this integer by ra ≥ 1. It coincides with
the number of irreducible components in both Yā and Ya. If a ∈ P1 is rational, we
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furthermore set

na =


i if Ja is smooth and isomorphic to Ei;

2ra if Ja is split semistable;

2ra + 2 if Ja is non-split semistable;

2ra + 1 if Ja is unstable.

Recall from Proposition 3.3 that the Ei denote the five elliptic curves over the prime
field k = F2, indexed by the order of the group of rational points. Also note that
na = |Ya(k)|, and thus

∑
na = 25 by Corollary 7.3, where the sum runs over the

three rational points a ∈ P1. The numbers na ≥ 1 are defined, however, in terms of
the irreducible components of the schematic and geometric fibers Ja and Jā, and it
is a priori not clear how they are related to |Ja(k)|.

We now forget that J comes from an elliptic Enriques surface, and only demand
that it satisfies the properties observed above. Theorem 9.1 becomes a consequence
of the following more general statement:

Theorem 9.4. Let J be a geometrically rational surface, endowed with an elliptic
fibration φ : J → P1 that is relatively minimal and jacobian. Suppose that conditions
(i)–(v) of Proposition 9.3 and the equation

∑
na = 25 hold. Then J has constant

Picard scheme.

The elliptic surface J is geometrically rational, so the Picard scheme PicY/k is a
local system of free abelian groups. Their rank is ρ = 10, by the minimality of the
fibration. We have to show that the Galois group G = Gal(kalg/k) acts trivially
on PicJ/k(k

alg) = Pic(J̄) = Z⊕10. Since there is no torsion part, it suffices to find
a subgroup of finite index for which this holds. The group Pic(J̄) is generated by
a fiber, the vertical curves Θ disjoint from the zero-section, and the sections. The
former is obviously defined over k, and the latter by condition (v). According to
condition (i), each Θ ⊂ J̄ projects to a fiber Ja over some rational point a ∈ P1.
Thus it suffices to prove the following:

Proposition 9.5. Let ā : Spec(Ω) → P1 be a geometric point. Assume that the
image a ∈ P1 is rational and that the fiber Ja is singular. Then the canonical map
Γ(Jā)→ Γ(Ja) is a graph isomorphism.

Proof. The assertion is trivial if Jā has Kodaira symbol I1 or II. Condition (iii)
ensures that it also holds for In with n ≥ 2. Now suppose that Jā has one of
the Kodaira symbol III, IV, . . . , II∗. Our task is to verify that the Galois action of
G = Gal(Falg

2 /F2) on the dual graph Γ = Γ(Jā) is trivial. Since it is a tree, it suffices
that check that all terminal vertices are fixed. This obviously holds for the terminal
vertex v0 ∈ Γ that corresponds to the irreducible component that intersects the
base-change of the zero-section O ⊂ J . If there is at most one further terminal
vertex, it must be fixed as well. This already settles the cases where the Kodaira
symbol is III, III∗ or II∗.

If the Kodaira symbol is I∗m, we must have m ≥ 1 by condition (ii). Besides
v0 ∈ Γ, there are three other terminal vertices. One has a shorter distance to v0

than the others, and thus must be fixed, and we have to deal with the remaining two
terminal vertices. For Kodaira symbols IV and IV∗ there are also two remaining
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terminal vertices besides v0 ∈ Γ. In all these cases, we shall check that there is
a section P ⊂ J whose base-change intersects an irreducible component Θ ⊂ Jā
corresponding to one of the two remaining terminal vertices.

To achieve this, first note that Num(J̄) is unimodular, because the minimal model
of J̄ is the projective plane. Consider the orthogonal complement W ⊂ Num(J̄) of
the fiber Jā and the zero-section O. These two curves have Gram matrix ( 0 1

1 −1 ),
and we infer that W is unimodular. It is generated by the vertical curves disjoint
from the zero-section, together with the combinations (P − O) − (1 + (P · O))Jā
for P ∈ MW(J̄/P̄1). The latter have self-intersection −1− 2(P · O)− 1, hence the
lattice W is even. Furthermore, we consider the sublattice Wā ⊂ W generated by
the components Θ1, . . . ,Θr ⊂ Jā disjoint from the zero-section. Note that this is a
root lattice, endowed with a canonical basis.

Suppose now that Jā has Kodaira symbol IV or IV∗, and that all sections P ⊂ J
have a base change that passes through the component Θ0 ⊂ Jā corresponding
to v0 ∈ Γ. Then Wā ⊂ W is an orthogonal direct summand, hence unimodular.
On the other hand, this root lattice has type A2 or E6, with discriminant d = 3,
contradiction.

It remains to treat the symbols I∗m with 1 ≤ m ≤ 4. Now Wā is a root lattice of
type Dm+4, which again is not unimodular. Our lattices and their dual lattices are
related by a commutative diagram

(10)

Wā −−−→ W −−−→ Num(J̄)y y y
W ∗
ā ←−−− W ∗ ←−−− Num(J̄)∗,

where the vertical maps are given by x 7→ (y 7→ (x · y)). Seeking a contradiction,
we now assume that each section P ⊂ J passes through the component Θ0 ⊂ Jā
corresponding to v0 ∈ Γ, or the component Θ1 ⊂ Jā corresponding to the terminal
vertex v1 ∈ Γ that has shorter distance to v0. The latter indeed happens, because
otherwise Wā ⊂ W would be an orthogonal direct summand, hence unimodular,
contradiction. Now fix some P passing through Θ1. Under the maps in (10), the
combination (P −O)− (1 + (P ·O))Jā ∈ W maps to the dual basis vector Θ∗1 ∈ W ∗

ā .
Since the maps respect the intersection pairing, we conclude that (Θ∗1 · Θ∗1) ∈ Q
actually belongs to 2Z. On the other hand, a direct computation with the root
lattice Wā of type Dm+4 reveals (Θ∗1 ·Θ∗1) = ±1, contradiction. �

My original arguments for the cases IV, IV∗ and I∗m in the above proof relied on
Lang’s Classification [40], which gives the possible configuration of singular fibers
for J̄ , together with the Oguiso–Shioda Table [51] for Mordell–Weil lattices and the
Shioda’s explicit formula [60] for the height pairing 〈P,Q〉 ∈ Q. This method was
already used in [56], Section 15. The above more elegant and conceptual argument
was suggested by one referee.

10. Classification of certain jacobian fibrations

Throughout, we work over the ground field k = F2. Let Y be a geometrically
rational surface, and φ : Y → P1 be an elliptic fibration that is relatively minimal
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and jacobian. It is then described by some Weierstraß equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the coefficients ai ∈ F2[t] are polynomials of degree deg(ai) ≤ i, and the
discriminant does not vanish. The goal of this section is to classify those Weierstraß
equations that might arise from an Enriques surface with constant Picard scheme.
It turns out that there are exactly eleven such Weierstraß equations, up to change
of coordinates and automorphism of the projective line. This is quite remarkable,
because all in all there are 221 = 2097152 possible Weierstraß equations.

We make the following assumptions on the surface J and the jacobian fibration
φ : J → P1:

(i) The proper scheme J has constant Picard scheme PicJ/k.
(ii) There is at most one rational point a ∈ P1 whose fiber Ja is semistable or

supersingular.

The first condition arises from Theorem 9.1, and the second from Proposition 9.3.
With Propositions 3.1, 3.2 and 7.3 we see that the following holds as well:

(iii) The fibers Jā over non-rational points a ∈ P1 have Kodaira I0, I1 or II.
(iv) There is no fiber Jā with Kodaira symbol I∗0.
(v) The number of rational points is CardY (F2) = 25.

For each rational point a ∈ P1, let ra ≥ 1 and na ≥ 1 be the respective numbers of
irreducible components and rational points in Ja. We start our analysis by observing
that there is a large fiber, in the sense that there are many irreducible components:

Proposition 10.1. There is a rational point a ∈ P1 whose fiber Ja contains at least
six irreducible components.

Proof. Seeking a contradiction, we assume that ra ≤ 5 for the three rational points
a ∈ P1. If Ja is unstable we actually have ra ≤ 3, because the Kodaira symbol
I∗0 is impossible, and get na ≤ 7. The same estimate holds if the fiber is smooth,
because it is then isomorphic to one of the elliptic curves Ei, with 1 ≤ i ≤ 5.
In the semistable case we get na ≤ 10, and there is at most one rational point
with semistable fiber. Writing a, b, c ∈ P1 for the three rational points, we get the
contradiction 25 = CardY (F2) = na + nb + nc ≤ 10 + 7 + 7 = 24. �

We shall see that this large fiber must be unstable. The next result is a first step
into this direction:

Proposition 10.2. There is a rational point a ∈ P1 whose fiber Ja is reducible and
unstable.

Proof. Seeking a contradiction, we assume that all reducible fibers are semistable.
According to Proposition 10.1, there is a reducible fiber with at least six components,
say Ja. It follows that Ja has Kodaira symbol Ir for some r ≥ 6, contributing
n = 2r ≥ 12 rational points. We also have the upper bound r ≤ 9, because of the
Picard number ρ(J) = 10.

For each of the two other rational points b, c ∈ P1, it follows that the fiber is either
ordinary or with Kodaira symbol II. In the former case, the number of rational points
is even, in the latter case it is odd. Since CardY (F2) = 25 is odd, we may assume
without restriction that Jb = E2i for 1 ≤ i ≤ 2, and Jc has Kodaira symbol II. This
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gives 25 = CardY (F2) = 2r + 2i+ 3. The only possible solution is r = 9 and i = 2.
But by Lang’s Classification [40], the configuration of singular fibers II+I9 does not
occur. �

The generic fiber of the jacobian fibration φ : J → P1 has a certain invariant
j(J/P1) in the function field k(P1) = F2(t), which is also called the functional j-
invariant and can be seen as a morphism j : P1 → P1. It is now convenient to
distinguish the cases that the invariant is zero or non-zero.

Proposition 10.3. Suppose the functional j-invariant is non-zero. Then there is
exactly one unstable fiber. If this fiber contains r ≤ 5 irreducible components, the
configuration of fibers over rational points must be III + E4 + I8.

Proof. First note that by Proposition 10.2 there is a rational point a ∈ P1 whose fiber
Ja is unstable. As observed by Lang, there is no other unstable fiber ([40], beginning
of Section 1). Indeed, a fiber Jx is unstable if and only if c4 ∈ F2[T ] vanishes at
the point x ([14], Proposition 5.1), and in our situation c4 = a4

1 with deg(a1) ≤ 1.
Assume now that Ja contains at most five irreducible components. Since the Kodaira
symbol I∗0 does not occur, Ja has at most three irreducible components. According
to Proposition 10.1, there must be a semistable fiber Jb over some rational point
b ∈ P1, with 6 ≤ m ≤ 9 irreducible components. In light of Lang’s Classification [40],
Section 2 the only possible configuration of singular fibers is III + I6 and III + I8.
Consequently, the fiber over the last rational point c ∈ P1 is ordinary, whence
Jc = E2n with 1 ≤ n ≤ 2. The respective number of rational points in the fiber is
thus na = 5 and nb = 2m and nc = 2n. From 25 = CardY (F2) = na + nb + nc we
get m+ n = 10. The only solution is m = 8 and n = 2. �

We now can state the first half our our classification result:

Theorem 10.4. Suppose the functional j-invariant is non-zero. Up to coordinate
changes and automorphisms of the projective line, the fibration φ : J → P1 is given
by exactly one of the following eight Weierstraß equations:

Weierstraß equation fibers over t = 0, 1,∞ j-invariant

y2 + txy + t2y = x3 + tx2 + t4x+ t5(1 + t) I∗1 + E4 + I4 t4

y2 + txy = x3 + t3x+ t5(1 + t) III∗ + E4 + E4 t2/(t2 + t+ 1)

y2 + txy = x3 + t3x III∗ + E4 + I2 t2

y2 + txy = x3 + t2x2 + t3x III∗ + E2 + Ĩ2

y2 + txy = x3 + t5 II∗ + E4 + I1 t

y2 + txy = x3 + t2x2 + t5 II∗ + E2 + Ĩ1

y2 + txy = x3 + tx2 + t4x I∗4 + E2 + E4 1

y2 + txy + ty = x3 + tx2 + tx III + E4 + I8 t8

For the invariant j = t2/(t2 + t + 1), there is an additional singular fiber, which
occurs over the point x ∈ P1 with κ(x) ' F4 and has Kodaira symbol I1. In all other
cases, the fibers over the non-rational points are smooth.
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Proof. Let Ja be the unstable fiber, with 1 ≤ ra ≤ 9 irreducible components and
na = 2ra + 1 rational points. Note that the latter is odd. Without restriction, we
may assume that a is given by t = 0. Write b, c ∈ P1 for the remaining two rational
points, whence

(11) 25 = CardY (F2) = na + nb + nc.

First, assume that ra ≥ 6. To start with, we consider the situation that both
fibers Jb and Jc are smooth. Applying an automorphism of the projective line, we
may assume that the first is ordinary. Then nb is even. By (11) the number nc is
also even, hence Jc is also ordinary. Write Jb = E2i and Jc = E2j. Applying another
automorphism of the projective line, we may assume that b is given by t = 1. Recall
that ra ≥ 1 is the number of irreducible components in Ja. From (11) one infers
ra + i + j = 12. Using i + j ≤ 4 we obtain ra ≥ 8. Consequently, the possible
configurations of fibers over rational points are

II∗ + E2 + E4, I∗4 + E2 + E4, III∗ + E4 + E4, I∗3 + E4 + E4.

In the first and last cases, Lang’s Classification [40] tells us that there must be an
additional singular geometric fiber, which is unique and has Kodaira symbol I1. This
uniqueness ensures that it comes from a fiber over a rational point, contradiction.

We now analyze the case that Ja has Kodaira symbol I∗4. We are thus in Lang Case
5D from [40], and the Weierstraß equation takes the form y2 +txy = x3 +td1x

2 +t4x,
where t - d1. In this context, symbols like di, ei, . . . denote polynomials in the variable
t of degree ≤ i. Here we have the two cases d1 = 1 and d1 = 1 + t. The former
is transformed into the latter, by the automorphism t 7→ t/(1 + t) of the projective
line, followed by the change of coordinates x = u2x′ and y = u3y′ with u = 1/(1+ t).
For d1 = 1 the fibers, the Weierstraß equation and the ensuing j-invariant are as in
the table.

Suppose now that Ja has Kodaira symbol III∗. Here we are in Lang Case 7, and
the configuration of singular geometric fibers must be III∗+ I1 + I1. The Weierstraß
equation is of the form y2 + txy + t3c0y = x3 + t2d0x

2 + t3e1x + t5f1 with t - e1.
Making a change of variables we achieve c0 = 0 and e1 = 1. The discriminant
becomes ∆ = t10(tf1 + 1). Since the fiber over the unique point x ∈ P1 with residue
field κ(x) ' F4 is singular, we must have f1 = 1 + t. The case d0 = 1 yields
Jb = E2, contradiction. Thus d0 = 0. Again the Weierstraß equation and the
ensuing j-invariant are as in the table.

We next consider the situation that one of the fibers over rational points is
semistable. Applying an automorphism of the projective line, we may assume that
this happens over c ∈ P1, and that this point is given by t =∞. Recall that rc ≥ 1
is the number of irreducible components in Jc. The remaining fiber is ordinary, and
we write Jb = E2i for some 1 ≤ i ≤ 2, such that nb = 2i. Suppose first that the
semistable fiber is untwisted. Then nc = 2rc, and (11) gives ra + i + rc = 12. In
particular, we have

rc = 12− i− ra ≥ 10− ra.
For ra = 6 this estimate gives rc ≥ 4. By Lang’s Classification, the configuration
of fibers over rational points must be I∗1 + E4 + I4. For ra = 7 we get ra ≥ 3,
and now the classification ensures that the configuration must be IV∗ +E4 + I3. In
this case, however, there is a unique additional degenerate fiber, which has Kodaira
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symbol I1. The uniqueness ensures that it lies over a rational point, contradiction.
For ra = 8 we obtain rc ≥ 2, and the configuration is III∗ + E4 + I2. Finally, for
ra = 9 the possible configuration is II∗ + E4 + I1. If the semistable fiber is twisted,
we have rc ≤ 2 and nc = 2rc + 2. Now (11) becomes ra + i + rc = 11 and thus
rc ≥ 11−i−ra ≥ 7, and the argument is similar. Summing up, we have the following
possibilities:

I∗1 + E4 + I4, III∗ + E4 + I2, III∗ + E2 + Ĩ2, II∗ + E4 + I1, II∗ + E2 + Ĩ1.

Let me give the details for the first case: Here we are in Lang Case 5A, with a
Weierstraß equation of the form y2 + txy+ t2c1y = x3 + td1x

2 + t3e1x+ t4c2, subject
to the conditions t - c1 and t - d1. Making a change of coordinates, we may assume
c1 = 1 and e1 = t. Now the discriminant becomes

∆ = t8(t2c2 + t3 + td1 + t4 + 1 + t).

The second factor is a unit, hence equals one, because we assume that the semistable
fiber is at t =∞. Comparing coefficients yields the solutions c2 = t+ t2, d1 = 1 and
c2 = 1 + t+ t2, d1 = 1 + t. For the latter solutions, the semistable fiber is twisted, as
revealed by the Tate Algorithm at t =∞. Hence we are in the former case, and the
Weierstraß equation and the resulting j-invariant is as in the Table. The remaining
cases are even simpler, and handled in the same fashion. We leave the details to the
reader. Summing up, this settles the case ra ≥ 6.

It remains to treat the case that ra ≤ 5. According to Proposition 10.3, the
configuration over the singular fibers is III + E4 + I8, and we are in Lang Case 2A,
with Weierstraß equation y2+txy+tc2y = x3+tc1x

2+tc3x+t2c4, with t - c2 and t - c3

and ∆ = t4. Making successive changes of coordinates x = x′ + R and y = y′ + T
where the indeterminate t divides R and T , we may assume that c2 = c3 = 1. Then
1 = ∆/t4 = c4t

4 + t3 + c1t
3 + 1. It follows c1 = 1 + αt and c4 = α for some scalar

α ∈ F2. In case α = 1 we have Jb = E2, contradiction, hence α = 0. �

It remains to understand the situation with trivial functional j-invariant:

Theorem 10.5. Suppose the functional j-invariant is zero. Up to some coordinate
changes and automorphisms of the projective line, the fibration φ : J → P1 is given
by exactly one of the following three Weierstraß equations:

Weierstraß equation fibers over t = 0, 1,∞
y2 + t2y = x3 + tx2 I∗1 + E5 + IV

y2 + t2y = x3 + t3x IV∗ + E5 + III

y2 + t2y = x3 IV∗ + E3 + IV

In all three cases, the fibers over non-rational points x ∈ P1 are smooth.

Proof. There are neither ordinary nor semistable fibers, because the map j : P1 → P1

misses the values t = 1 and t =∞. In particular, each smooth fiber over a rational
point is isomorphic to one of the elliptic curves E1, E3 or E5. So there are at
least two rational points a 6= c on P1 such that Ja and Jc are unstable. By Lang’s
Classification, there are at most three singular geometric fibers. If present, the third
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singular geometric fiber must be Galois invariant, whence occurs over the remaining
rational point b ∈ P1. Thus all fibers over non-rational points are smooth.

Suppose first that all fibers of φ : J → P1 are reduced, such that the Kodaira
symbols for the singular fibers are II, III or IV. Then each fiber over a rational
point contains at most seven rational points, which gives the contradiction 25 =
CardY (F2) ≤ 3 · 7. Thus there is a non-reduced rational fiber.

Recall that Ja and Jc are unstable. Let ra, rc ≥ 1 be the respective number of
irreducible components. After applying an automorphism of the projective line, we
may assume that Ja is non-reduced. By Lang’s Classification ([40], page 5829), the
remaining fiber Jb must be smooth (one referee pointed out that this also follows
from the fact that the valuation of the discriminant in characteristic p = 2 is at least
four at an additive fiber, and at least eight at a non-reduced fiber). Write Jb = E2i−1

for some 1 ≤ i ≤ 3. Then 25 = CardY (F2) = (2ra + 1) + (2i − 1) + (2rc + 1), or
equivalently ra + i + rc = 12. Since Ja is non-reduced and the Kodaira symbol I∗0
does not occur, we have 6 ≤ ra ≤ 9. In particular, rc ≤ 5, so the unstable fiber Jc is
reduced, such that actually 1 ≤ rc ≤ 3. The case ra = 6 implies rc = i = 3. In case
ra = 7 we get rc = 3, i = 2 or rc = 2, i = 3. Going through Lang’s Classification,
we see that these are the only possibilities, which already give the second column of
the table.

Suppose the configuration of fibers over rational points is I∗1 + E5 + IV. Then
we are in Lang Case 13A, and the Weierstraß equation takes the form y2 + t2c1y =
x3 + td1x

2 + t3e1x + t4d2 with t - d1 and t - c1. The discriminant is ∆ = t8c4
1, thus

c1 = 1. Making a change of coordinate y′ = y + sx, we achieve d1 = 1. Making a
further change of coordinates, we may assume that e1 has no linear term, and that
d2 has neither constant nor quadratic term. Now the Weierstraß equation becomes
y2 + t2y = x3 + tx2 + t3e0x+ t5d0. One checks that only e0 = d0 = 0 yields Jb = E5.

Next, suppose the configuration is IV∗ + E5 + III. Now we are in Lang Case
14, with y2 + t2c1y = x3 + t2d0x

2 + t3e1x + t4d2 subject to the condition t - c1.
The discriminant is ∆ = t8c4

1, whence c1 = 1. Making a suitable change of variables
y = y′+sx′ we achieve d0 = 0. As in the preceding paragraph, we put the Weierstraß
equation into the form y2 + t2y = x3 + t3e0x+ t5d′0. Only the case e0 = 1 and d′0 = 0
yields Jb = E5.

Finally, consider the configuration IV∗ + E3 + IV. We argue as in the preceding
paragraph to reduce to the very same Weierstraß equation. Now only e0 = d′0 = 0
yields the fiber Jb = E3. �

11. Possible configurations for Enriques surfaces

Let Y be an Enriques surface over the prime field k = F2 with constant Picard
scheme. According to Theorem 5.6, it admits at least one genus-one fibration. Let
us collect the information on fibers we have gathered so far:

Proposition 11.1. Let ϕ : Y → P1 be a genus-one fibration. Up to automorphisms
of the projective line, the possible configurations of fibers over the the rational points
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t = 0, 1,∞ are given by the following table:

(12)

elliptic quasielliptic

II∗ + E4 + I1 II∗ + II + II

II∗ + E2 + Ĩ1 III∗ + III + II
III∗ + E4 + I2

III∗ + E2 + Ĩ2

III∗ + E4 + E4

IV∗ + E3 + IV
IV∗ + E5 + III

I∗4 + E4 + E2 I∗4 + II + II
I∗1 + E5 + IV I∗2 + III + III
I∗1 + E4 + I4

III + E4 + I8

If moreover the Enriques surface Y is non-exceptional, the following holds:

(i) Each fiber with Kodaira symbol IV, IV∗, II∗, I∗1 is multiple.
(ii) If there is a simple fiber with Kodaira symbol III∗, the fibration is elliptic,

and the configuration of fibers over rational points is III∗ + E4 + E4.
(iii) For each multiple fiber ϕ−1(a) with Kodaira symbol IV∗, III∗ or II∗, there is

no (−2)-curve R ⊂ Y with intersection number ϕ−1
ind(a) ·R = 1.

Proof. The main task is to verify the table. Let ā : Spec(Ω) → P1 be a geometric
point, with image a ∈ P1. If this image point is non-rational, the geometric fiber
Yā is irreducible, according to Theorem 2.1. In any case, the map Γ(Yā) → Γ(Ya)
between dual graphs is a graph isomorphism. Moreover, the Kodaira symbol I∗0 is
impossible, according to Proposition 3.2. In particular, Ya and Yā have the same
number of irreducible components. Write ra ≥ 1 for this number. Then we have the
inequality 2 +

∑
(ra − 1) ≤ ρ(Y ) = 10, and thus r0 + r1 + r∞ ≤ 11.

Suppose first that the fibration is quasielliptic. Since the Picard group Pic0(YF )
for the generic fiber is annihilated by p = 2, we actually have r0 +r1 +r∞ = 11. The
possible Kodaira symbols and the corresponding number of irreducible components
are as follows ([11], Theorems 5.7.4–5.7.6):

Kodaira symbol II III I∗2 III∗ II∗ I∗4

number of irr. comp. 1 2 7 8 9 9

Since 9 + 1 + 1 = 8 + 2 + 1 = 7 + 2 + 2 = 11 are the only possible solutions, the
second column of table (12) follows.

Now suppose that ϕ : Y → P1 is elliptic, and consider the resulting jacobian
fibration φ : J → P1. Then the smooth proper surface J is geometrically ra-
tional (Proposition 6.2), with constant Picard scheme (Theorem 9.1). As above,
the geometric fibers Jā are irreducible if a ∈ P1 is non-rational, and in any case
Γ(Jā) → Γ(Ja) is a graph isomorphism. According to Theorems 10.4 and 10.5, the
first column of table (12) gives the possible configurations of singular fibers over the
rational points for φ : J → P1. By Proposition 9.2 the fibers Yā and Jā have the
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same Kodaira symbols. Moreover, we actually have Ja ' Ya if the fiber Ya is simple.
In particular, this holds for all semistable fibers. According to Proposition 8.3, we
also have Ja ' (Ya)red provided that Ya is multiple with smooth reduction. In turn,
the first column of table (12) indeed describes the configuration of degenerate fibers
for ϕ : Y → P1.

Now suppose that Y is non-exceptional. If ϕ : Y → P1 is elliptic having some
ϕ−1(a) with Kodaira symbol IV, IV∗, II∗, I∗1 there must be some ϕ−1

ind(b) that is su-
persingular or semistable, in light of the table, so ϕ−1(a) is multiple by Lemma 4.3.
If ϕ : Y → P1 is quasielliptic, fibers with Kodaira symbol II∗ are multiple according
to Proposition 4.4. This establishes (i).

Next assume that ϕ−1(a) is simple with Kodaira symbol III∗. Again by Proposi-
tion 4.4 the fibration must be elliptic. By the table, the configuration of fibers over
rational points is III∗ + E4 + I2 or III∗ + E2 + Ĩ2 or III∗ + E4 + E4. The former are
impossible by Lemma 4.3, which gives (ii). Finally, assertion (iii) is a consequence
of Proposition 4.4. �

Starting from the above information, we rule out step by step each possible Ko-
daira symbol, mostly from combinatorial considerations. In this section, we will
reduce from fifteen to eight possible configurations for ϕ : Y → P1.

Proposition 11.2. Assumption as in Proposition 11.1. Then there are no fibers
with Kodaira symbol I8.

Proof. Seeking a contradiction, we assume that ϕ−1(∞) has Kodaira symbol I8, and
ϕ−1(0) has symbol III. Then the configuration of reducible fibers has dual graph:

C0

C1

C2

C3

C4

C5

C6

C7

D1D0

Here the double edge indicates that the scheme D0 ∩ D1 has length two. The
semistable fiber ϕ−1(∞) is simple whereas the unstable fiber ϕ−1(0) is multiple.
Moreover, there is a genus-one fibration ψ : Y → P1 so that the multiple fibers 2F
have F · ϕ−1

ind(0) = 1. After renumeration, we may assume (F · D1) = 1, hence D0

is vertical with respect to ψ. Without restriction, we may assume that ψ−1(∞) is
simple, whereas the ψ-fibers over a = 0, 1 are multiple. Write ψ−1

ind(0) =
∑r

i=0 miΘi.
After renumeration, we may assume (D1 ·Θ0) > 0. From

1 = ϕ−1
ind(0) · ψ−1

ind(0) = D1 ·
r∑
i=0

miΘi = m0(D1 ·Θ0) +
r∑
i=1

mi(D1 ·Θi)

we see that (D1 ·Θ0) = m0 = 1, and that the curve Θ1 + . . .+Θr is disjoint from D1.
Furthermore, D0 does not belong to ψ−1(0), because D0 = Θj gives the contradiction

1 = ϕ−1
ind(0) · ψ−1

ind(0) = D1 · ψ−1
ind(0) ≥ D1 ·mjΘj ≥ 2mj ≥ 2.
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Consequently Θ1 + . . .+ Θr ⊂ ϕ−1(∞). From m0 = 1 we infer that Θ1 + . . .+ Θr is
connected, hence is a chain. So the multiple fiber ψ−1

ind(0) is either ordinary or has
Kodaira symbol II, III or IV. The same analysis applies to the other multiple fiber
ψ−1

ind(1). From Proposition 11.1, we see that the possible Kodaira symbols for the
simple fiber ψ−1(∞) are I8 or II∗, III∗, I∗4, I

∗
2.

To proceed write ψ−1(∞) =
∑s

i=0 niΥi. Then s ≥ 6 and (Υi · Υj) ≤ 1. After
renumeration Υ0 = D0. From

2 = ϕ−1
ind(0) · ψ−1(∞) = D1 ·

s∑
i=0

niΥi = 2n0 +
s∑
i=1

ni(D1 ·Υi)

we infer n0 = 1, and that Υ1+. . .+Υs is disjoint fromD1. Seeking a contradiction, we
now assume that ψ−1(∞) is additive. By inspection, one sees that Υ0 has exactly
one neighbor in the dual graph, say Υ1, and that Υ = Υ2 + . . . + Υs is not a
disjoint union of chains. Moreover, Υ is disjoint from ϕ−1(0), hence must be strictly
contained in ϕ−1(∞). The latter is multiplicative, and it follows that Υ is a union
of chains, contradiction. We conclude that ψ−1(∞) has Kodaira symbol I8.

Summing up, the configuration of rational fibers for ψ must be III + E4 + I8,
according to the table in Proposition 11.1. Without restriction we may assume that
ψ−1

ind(0) = Θ0 + Θ1 is reducible. We saw above that Θ1 belongs to ϕ−1(∞), so after
renumeration Θ1 = C0. To simplify notation set E = Θ0, such that ψ−1

ind(0) = E+C0

with (E ·D1) = 1 and (E · C0) = 2. It follows that D0 and C2 + . . .+ C6 belong to
ψ−1(∞). Let E1, E7 be the additional components. The dual graph for our curves
takes the following form:

C0

C1

C2

C6

C7

E

D1
D0

E7

E1

Here the dashed edges indicate potential intersections. Using

2 = (D0 +D1) ·
∑

ψ−1(∞) = (D0 +D1) · (E1 + E7) = 1 + 1 +D1 · (E1 + E7)

we conclude that D1 is actually disjoint from E1 ∪ E7. Then

2 = 2(D0 +D1) · E1 = (C0 + . . .+ C7) · E1 = (C1 + C7) · E1 + 1

ensures that either (E1 · C1) = 1, (E1 · C7) = 0 or (E1 · C7) = 1, (E1 · C1) = 0.
In the former case we get a curve E1 + C2 + C1 of canonical type I3, in the letter
E1 + C2 + . . .+ C7 of canonical type I7, contradiction. �

For the next observation it is crucial to exclude exceptional Enriques surfaces.

Proposition 11.3. Assumption as in Proposition 11.1. Assume Y is non-exceptional.
Then there are no fibers with Kodaira symbol II∗, IV∗ or IV. Furthermore, there are
no multiple fiber with Kodaira symbol I∗4.
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Proof. According to Proposition 11.1, all fibers with Kodaira symbol II∗, IV∗, IV
are multiple. Seeking a contradiction, we thus assume that ϕ−1(∞) is a multiple
with Kodaira symbol II∗, IV∗, IV or I∗4.

By Proposition 4.4, there is another genus-one fibrations ψ : Y → P1 such that
ϕ−1(∞) ·ψ−1(∞) = 4. Without restriction, we may assume that ψ−1(∞) is the fiber
having the maximal number of irreducible components. Let 2F a multiple fiber for
ψ, such that F · ϕ−1

ind(∞) = 1.
We first treat the case that ϕ−1(∞) is multiple with Kodaira symbol II∗. With

enumeration as in the Bourbaki tables [9], the dual graph for such a fiber is:

C1 C3 C4

C2

C5 C6 C7 C8 C0

We also denote this dual graph by T2,3,6. In general, the symbol Tl,m,n refers to
a star-shaped graph with three terminal chains of length l,m, n, where the central
vertex belongs to each of the terminal chains.

We have ϕ−1
ind(∞) = C0 + 2C1 + 3C2 + . . . + 2C8, and C0 is indeed the only

component with multiplicity m = 1. Thus (C0 ·F ) = 1. In turn, the connected curve
C1 + . . .+C8 has dual graph T2,3,5 and is necessarily contained in the fiber ψ−1(∞),
which therefore must have Kodaira symbol II∗. This is multiple by Proposition 11.1.
Let R ⊂ ψ−1(∞) be the additional component, with (R · C8) = 1. Then

1 = ϕ−1
ind(∞) · ψ−1

ind(∞) = ϕ−1
ind(∞) ·R = (C0 + 2C8) ·R ≥ 2(C8 ·R) = 2,

contradiction. Summing up, there are no fibers with Kodaira symbol II∗.
Suppose next that ϕ−1(∞) is multiple with Kodaira symbol I∗4. The dual graph

is:

C2 C3 C4 C5 C6

C7

C8

C0

C1

Now ϕ−1
ind(∞) = C0 +C1 + 2(C2 + . . .+C6) +C7 +C8. After renumeration, we may

assume (F ·C0) = 1. In turn, the connected curve C1 + . . .+C8 has dual graph T2,2,6,
and is necessarily contained in ψ−1(∞). This must have Kodaira symbol I∗4, as we
already ruled out the symbol II∗. Let R ⊂ ψ−1(∞) be the additional component,
with (R · C2) = 1. We then have

2 ≥ ϕ−1
ind(∞) · ψ−1

ind(∞) = ϕ−1
ind(∞) ·R = (C0 + 2C2) ·R = (C0 ·R) + 2.

Consequently C0 ∩R = ∅. In turn, C0 + . . .+C3 +R supports a curve of canonical
type I∗0, in contradiction to Proposition 11.1. So there are no multiple fibers with
Kodaira symbol I∗4.
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Suppose next that ϕ−1(∞) is multiple with Kodaira symbol IV∗. The dual graph
for ϕ−1(∞) is:

C1 C3 C4

C2

C5 C6

C0

Now ϕ−1
ind(∞) = (C0 + C1 + C6) + 2(C2 + C3 + C5) + 3C4. After renumeration we

have (F · C0) = 1. In turn, the connected curve C1 + . . .+ C6 has dual graph T2,3,3

and must be contained in ψ−1(∞). Now recall that we already established that II∗

does not appear in any genus-one fibration on Y . Consequently, the only possible
Kodaira symbols for the fiber ψ−1(∞) are IV∗ and III∗. In the former case, the
fiber is multiple by Proposition 11.1, and we write R ⊂ ψ−1(∞) for the additional
component. Then 1 = ϕ−1

ind(∞) ·ψ−1
ind(∞) = (C0 +2C2) ·R ≥ 2, contradiction. So the

fiber ψ−1(∞) has Kodaira symbol III∗. Let R,R′ ⊂ ψ−1(∞) be the two additional
components, say with (R · C1) = (R′ · C6) = 1. Then

2 ≥ ϕ−1
ind(∞) · ψ−1

ind(∞) = (C0 + C1 + C6) · (R +R′) = (C0 ·R) + (C0 ·R′) + 2.

It follows that ψ−1(∞) is simple. In light of Proposition 11.1, the configuration
of fibers over the rational points for ψ : Y → P1 is III∗ + E4 + E4. In turn,
each (−2)-curve C ⊂ Y intersects the fiber ψ−1(∞). By Proposition 11.1, we may
assume that ϕ−1(0) = 2(C ′0 + . . . + C ′r−1) is multiple with Kodaira symbol III or
IV with respective integers r = 2 or r = 3. Obviously C0, . . . , C6 are disjoint from
ϕ−1(0). In turn, R∪R′ intersects each component C ′i ⊂ ϕ−1(0). Moreover, R is not
contained in ϕ−1(0), because R · ϕ−1(0) = R · ϕ−1(∞) ≥ 1, and likewise for R′. So
2 = ϕ−1

ind(0) · ψ−1(∞) equals

(C ′0 + . . .+ C ′r−1) · ψ−1(∞) = (C ′0 + . . .+ C ′r−1) · (R +R′) ≥ r ≥ 2.

Thus we have equality at each step, hence r = 2, and the fiber ϕ−1(0) has Kodaira
symbol III. If R,R′ intersect the same component of ϕ−1(0), say C ′0, the curve
C3 + . . . + C6 + R′ + C ′0 + R + C1 is a curve of canonical type I8, in contradiction
to Proposition 11.2. So after renumeration, we may assume (R ·C ′0) = (R′ ·C ′1) = 1
and (R ·C ′1) = (R′ ·C ′0) = 0. In turn, R∩C ′0 and C ′1∩C ′0 yield two different rational
points, and similarly for C ′1. Now consider the fibers ψ−1(0) and ψ−1(1), which are
linearly equivalent curves. Both are multiple, because ψ−1(∞) is simple, and their
reductions are smooth, as observed above. So ψ−1

ind(0) and ψ−1
ind(1) are disjoint but

numerically equivalent integral curves. After renumeration, we may assume that
they intersect C ′0 but not C ′1. Then

R ∩ C ′0 and C ′1 ∩ C ′0 and ψ−1
ind(0) ∩ C ′0 and ψ−1

ind(1) ∩ C ′0
define four distinct rational points on C ′0 = P1 contradicting |P1(F2)| = 3. Thus
there is no fiber with Kodaira symbol IV∗.

Let us now treat that case that ϕ−1(∞) is multiple with Kodaira symbol IV. By
Proposition 11.1, we may apply an automorphism of P1 so that the configuration of
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fibers over the rational points t =∞, 0, 1 becomes IV + I∗1 +E5. The former two are
multiple, and the latter is simple. The dual graph for ϕ−1(∞) ∪ ϕ−1(0) is:

C2 C3
C0

C1

C4

C5C ′2

C ′0

C ′1

After renumeration, we may assume that (F · C0) = (F · C ′0) = 1. The connected
curve C1 + . . .+C5 has dual graph T2,2,3 and must be contained in the fiber ψ−1(∞).
Let m ≥ 2 be the multiplicity of C2 ⊂ ψ−1

ind(∞). From 2 ≥ ϕ−1
ind(∞) · ψ−1(∞) ≥

C0 ·mC2 = m ≥ 2 we infer that the fiber ψ−1(∞) is simple. Likewise, C ′1 and C ′2 are
ψ-vertical, say contained in ψ−1

ind(0), with respective multiplicities m1,m2 ≥ 1. Now

2 ≥ ϕ−1
ind(∞) · ψ−1(0) ≥ C ′0 · (m1C

′
1 +m2C

′
2) = m1 +m2 ≥ 2,

we see that also ψ−1(0) is simple, contradiction. �

Combining Propositions 11.1 and 11.2 and 11.3 we get the following key reduction:

Proposition 11.4. Suppose Y is a non-exceptional Enriques surface over k = F2

with constant Picard scheme. Let ϕ : Y → P1 be a genus-one fibration. Up to
automorphisms of the projective line, the possible configurations of fibers over the
the rational points t = 0, 1,∞ are given by the following table:

elliptic quasielliptic

I∗4 + E4 + E2 I∗4 + II + II

III∗ + E4 + I2 III∗ + III + II

III∗ + E2 + Ĩ2

III∗ + E4 + E4

I∗1 + E4 + I4 I∗2 + III + III

Moreover, all I∗1-fibers are multiple, the fibers with Kodaira symbol I∗4, In, Ĩ2 are sim-
ple, and there is another genus-one fibration ψ : Y → P1 with ϕ−1(∞) ·ψ−1(∞) = 4.

12. Elimination of I∗4-fibers

Let Y be a non-exceptional Enriques surface over the ground field k = F2, with
constant Picard scheme. The goal of this section is to exclude the two I∗4-cases from
the table in Proposition 11.4.

Proposition 12.1. There is no genus-one fibration ϕ : Y → P1 having a fiber with
Kodaira symbol I∗4.

Proof. Seeking a contradiction, we assume that ϕ−1(∞) has Kodaira symbol I∗4. Its
dual graph is:

C2 C3 C4 C5 C6

C7

C8

C0

C1



ENRIQUES SURFACES OVER THE INTEGERS 39

The fiber must be simple, according to Proposition 11.4, so the schematic fiber is
ϕ−1(∞) = C0 + C1 + 2(C2 + . . . + C6) + C7 + C8. Moreover, there is a genus-one
fibration ψ : Y → P1 so that the multiple fiber 2F have F · ϕ−1(∞) = 2. After
renumeration, we have the following possibilities: (F · Ci) = 1 with i ∈ {2, 3, 4} or
(F · C0) = (F · C1) = 1 or (F · C0) = (F · C8) = 1 or (F · C0) = 2. Our task is to
rule out each of these six possibilities. Without restriction, we assume that ψ−1(∞)
contains the largest number of irreducible components among all fibers.

Suppose first that (F · C4) = 1. Then the connected curves C0 + . . . + C3 and
C5 + . . . + C8 both have dual graph T2,2,2 and are contained in some fibers of ψ.
According to Proposition 11.4, they both must be contained in ψ−1(∞), which
therefore has Kodaira symbol I∗4 and must be simple. Let R ⊂ ψ−1(∞) the additional
component, which has (R ·Ci) = (R ·Cj) = 1 for some i ∈ {0, 1, 3} and j ∈ {5, 7, 8}.
Let 1 ≤ mi,mj ≤ 2 be the multiplicities of Ci, Cj ⊂ ϕ−1(∞). From

4 = ϕ−1(∞) · ψ−1(∞) = (miCi + 2C4 +mjCj) · 2R = 2mi + 4(C4 ·R) + 2mj

we infer that R ∩ C4 = ∅ and mi = mj = 1. After renumeration, we may assume
i = 1 and j = 7. Then C1 + . . . + C7 + R is a curve of canonical type I8, in
contradiction to Proposition 11.4.

Suppose next that (F ·C3) = 1. The connected curve C4 + . . .+C8 has dual graph
T2,2,3 and must be contained in ψ−1(∞). The curve C0 + C2 + C1 is a chain and
must be part of some fiber ψ−1(t) as well. If t 6=∞, we infer from Proposition 11.4
that ψ−1(t) has Kodaira symbol I4 and is simple. Let R ⊂ ψ−1(t) be the additional
component, with (R · C0) = (R · C1) = 1. This gives

4 = ϕ−1(∞) · ψ−1(t) = (C0 + C1 + 2C3) ·R = 1 + 1 + 2(C3 ·R),

and hence (C3 · R) = 1. Thus C1 + C2 + C3 + R is another curve of canonical type
I4. Its intersection number with C4 is one, so the fiber is multiple, contradiction.
Summing up, C0 +C1 +C2 and C4 + . . .+C8 both belong to ψ−1(∞), which therefore
has Kodaira symbol I∗4 and must be simple, in light of Proposition 11.4. Let R be
the additional component, which necessarily has (R ·C2) = (R ·C4) = 1. This gives

4 = ϕ−1(∞) · ψ−1(∞) = (2C2 + 2C3 + 2C4) · 2R = 4 + 4(C3 ·R) + 4 ≥ 8,

contradiction.
Now suppose that (F ·C2) = 1. Then the connected curve C3 + . . .+C8 has dual

graph T2,2,4 and must be contained in ψ−1(∞). Its Kodaira symbol is either II∗,
I∗4, III∗ or I∗2. The first alternative is impossible by Proposition 11.4. In the second
alternative, the fiber must be simple. The additional component R ⊂ ψ−1(∞) has
(R · Ci) = 1 for all i ∈ {0, 1, 3}, which gives the contradiction

4 = ϕ−1(∞) · ψ−1(∞) = (C0 + C1 + 2C2 + 2C3) · 2R = 2 + 2 + 4(C2 ·R) + 4 ≥ 8.

In the third alternative, we deduce from Proposition 11.4 that one of the curves from
C0 + C1 also belongs to ψ−1(∞). Without restriction, we may assume that this is
C1. Let R ⊂ ψ−1(∞) be the additional component, say with (R ·C7) = (R ·C1) = 1.
From

4 ≥ ϕ−1(∞) · ψ−1
ind(∞) = (C1 + 2C2 + C7) · 2R = 2 + 4(C2 ·R) + 2

we get R ∩ C2 = ∅. But then C1 + . . . + C7 + R is a curve of canonical type I8, in
contradiction to Proposition 11.4. The only remaining possibility is that ψ−1(∞)



ENRIQUES SURFACES OVER THE INTEGERS 40

has Kodaira symbol I∗2. So the additional component R ⊂ ψ−1(∞) has (R ·C4) = 1.
From

4 ≥ ϕ−1(∞) · ψ−1
ind(∞) = (2C2 + 2C4) ·R = 2(C2 ·R) + 2

we deduce that (C2 · R) is either zero or one. In the latter case we get a curve
D = C2 + C3 + C4 + R of canonical type I4. The ensuing fiber is multiple, because
(D · C5) = 1, in contradiction to Proposition 11.4. The former case yields the
following dual graph, in contradiction to Proposition 12.2 below.

C2 C3 C4 C5 C6

C7

C8

C0

C1

R

Next, suppose that we are in the case (F · C0) = (F · C1) = 1. Then the connected
curve C2 + . . . + C8 has dual graph T2,2,5 and must be contained in ψ−1(∞). The
possible Kodaira symbols are II∗ and I∗4. The former is impossible by Proposition
11.4, so ψ−1(∞) is simple with Kodaira symbol I∗4. Let R,R′ ⊂ ψ−1(∞) be the two
additional components, with (R · C2) = (R′ · C2) = 1. Then 4 = ϕ−1(∞) · ψ−1(∞)
becomes

(C0 + C1 + 2C2) · (R +R′) = (C0 + C1) · (R +R′) + 2 + 2,

and we infer that R ∪ R′ is disjoint from C0 ∪ C1. In turn, C0 + C1 + R + R′ + C2

supports a curve of canonical type I∗0, in contradiction to Proposition 11.4.
Now suppose (F ·C0) = (F ·C8) = 1. Then C1 + . . .+C7 is a chain and contained

in ψ−1(∞). The possible Kodaira symbols are I∗4 or III∗, by Proposition 11.4. The
symbol I∗4 is handled as in the preceding paragraph. In the remaining case III∗, let
R ⊂ ψ−1(∞) be the additional component, which has (R · C4) = 1. From

4 ≥ ϕ−1(∞) · ψ−1
ind(∞) = (C0 + 2C4 + C8) · 2R = 2(C0 ·R) + 4 + 2(C8 ·R)

we infer that R is disjoint from C0 ∪ C8. Now the configuration C0 + . . . + C8 + R
contradicts Proposition 12.2 below.

It remains to cope with the last possibility (F ·C0) = 2, which is the most difficult.
Now the connected curve C1 + . . .+C8 has dual graph T2,2,6 and must be contained
in ψ−1(∞). Its Kodaira symbol has to be I∗4, so the fiber is simple. The additional
component R ⊂ ψ−1(∞) has (R · C2) = 1, and from

4 = ϕ−1(∞) · ψ−1(∞) = (C0 + 2C2) ·R = (C0 ·R) + 2

we infer that the dual graph for C0 + . . .+ C8 +R must be:

C2 C3 C4 C5 C6

C7

C8

C0

C1

R

But this configuration is impossible, by Proposition 12.3 below. �

In the above arguments, we have used the following facts:
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Proposition 12.2. There is no configuration C0 + . . .+C8 +R of ten (−2)-curves
on Y with simple normal crossings and the following dual graph:

(13)
C2 C3 C4 C5 C6

C7

C8

C0

C1

R

Proof. Seeking a contradiction, we assume that the configuration exists. The sub-
configuration C0 + . . . + C8 supports a curve of canonical type I∗4. Let ϕ : Y → P1

be the resulting genus-one fibration. Without restriction, we may assume that
ϕ−1(∞) = C0 + C1 + 2(C2 + . . .+ C6) + C7 + C8. The fiber indeed must be simple
by Proposition 11.4. Write F ⊂ Y for some half-fiber, and let S ⊂ Num(Y ) be
the subgroup generated by C1, . . . , C8, R, F . To proceed, we exploit properties of
the resulting Gram matrix N ∈ Mat10(Z), which can easily be checked with com-
puter algebra. One computes in this way det(N) = −4, whence S ⊂ Num(Y ) if a
subgroup of index two.

Nikulin’s theory of discriminant forms [49] allows us to use the lattice S to gain
enough control of the slightly larger Num(Y ) and thus the geometry of Y . Set
S∗ = Hom(S,Z), and consider the injection S → S∗ given by x 7→ (y 7→ (x · y)).
This linear map is described, with respect to the given basis C1, . . . , F ∈ S and the
dual basis C∗1 , . . . , F

∗ ∈ S∗, by the matrix N ∈ Matn(Z). With respect to this dual
basis, the induced Q-valued form on S∗ has Gram matrix

(14) N−1 =



−1 −1 −1 −1 −1 −1 −1/2 −1/2 0 1
−1 −2 −2 −2 −2 −2 −1 −1 0 2

−1 −2 −3 −3 −3 −3 −3/2 −3/2 0 3

−1 −2 −3 −4 −4 −4 −2 −2 0 4
−1 −2 −3 −4 −5 −5 −5/2 −5/2 0 4

−1 −2 −3 −4 −5 −6 −3 −3 0 4
−1/2 −1 −3/2 −2 −5/2 −3 −2 −3/2 0 2

−1/2 −1 −3/2 −2 −5/2 −3 −3/2 −2 0 2

0 0 0 0 0 0 0 0 0 1
1 2 3 4 4 4 2 2 1 −2


and we have S ⊂ Num(Y ) ⊂ S∗. Note that for each column, the entries are
the coordinates of the corresponding dual basis vectors with respect to the basis
vectors. The invariant factors of N are computed to be (2, 2), so the discriminant
group AS = S∗/S is elementary abelian of order four, hence a 2-dimensional vector
space over F2. As explained in loc. cit., Section 3, it comes with a quadratic form
q : AS → Q/2Z whose associated bilinear form AS × AS → Q/Z is non-degenerate.
Moreover, the generator for the extension S ⊂ Num(Y ) corresponds to a non-zero
isotropic vector in AS, by loc. cit., Section 4. Examining the columns in (14), we
see that

C∗1 ≡ C∗3 ≡ C∗5 and C∗7 and C∗8
are non-zero modulo S, whereas the other dual basis vectors vanish modulo S.
Moreover, one sees that C∗7 + C∗8 ≡ C∗1 modulo S. So each two of the above form a
basis of AS = S∗/S, and the third one is their sum. Moreover,

(C∗1)2 = −1, (C∗7)2 = (C∗8)2 = −2, (C∗1 · C∗7) = (C∗1 · C∗8) = −1/2,

hence the isotropic vectors in the discriminant group come from C∗7 and C∗8 .
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Now back to our genus-one fibration ϕ : Y → P1. Consider the genus-one curve
YK = ϕ−1(η) over the function field K = k(P1). The restriction map Pic(Y ) →
Pic(YK) is surjective. It factors over Num(Y ) because ωY can be written as the
difference of half-fibers. The curve YK contains no rational points, the two-section
R gives a splitting Pic(YK) = Pic0(YK) ⊕ 2Z, and the curves C0, . . . , C8, F vanish
in Pic(YK). This gives an identification Pic0(YK) = Num(Y )/S, so this group has
order two. Write NK for the non-trivial invertible sheaf of degree zero on YK . By
Riemann–Roch we have NK(R) ' OYK (R̃) for another two-section R̃ ⊂ Y , and thus

Num(Y ) = S + ZR̃. Note that such a two-section is not unique; according to the
Enriques Reducibility Theorem ([39], Theorem 4.1), we may furthermore assume
that R̃2 = 0 or R̃2 = −2. In light of the preceding paragraph, the element R̃ ∈ S∗ is
either congruent to C∗7 or C∗8 , modulo S. Without loss of generality R̃ ≡ C∗8 , which
ensures (R̃ ·C8) = 1. Then (R̃ ·Ci) = 0 for 2 ≤ i ≤ 6, and (R̃ ·Cj) = 1 for exactly one

j ∈ {0, 1, 7} besides j = 8. If (R̃ · C7) = 1 then R̃ ≡ C∗7 + C∗8 ≡ C∗1 , contradiction.
So without loss of generality we may assume (R̃ ·C0) = 1. If R̃2 = −2 then R̃ = P1,
and C0 + C2 + . . . + C6 + C8 + R̃ is of canonical type I8, which is impossible by
Proposition 11.4. Thus R̃2 = 0, and R̃ is a genus-one curve.

We can easily compute the intersection number n = (R̃ · R): As member of S∗

that is perpendicular to C1, . . . , C7 we have R̃ = C∗8 + nR∗ + F ∗. Glancing at (14)
again, one sees

(C∗8)2 = (F ∗)2 = −2, (R∗)2 = (C∗8 ·R∗) = 0, (C∗8 · F ∗) = 2, (R∗ · F ∗) = 1.

From 0 = R̃2 = (C∗8 + nR∗ + F ∗)2 = (−2 + 0− 2) + 2(0 + 2 + n) we get n = 0, thus
the curves R, R̃ ⊂ Y must be disjoint.

Let ψ : Y → P1 be the genus-one fibration with ψ−1(0) = 2R̃. The fiber is
indeed multiple, because (R̃ · C0) = 1. The curves C1 + . . . + C7 + R support
a curve of canonical type III∗ disjoint from R̃, and we can assume that ψ−1(∞)
is the corresponding fiber. The latter is simple, because (C0 · R̃) = 1 and (C0 ·
ψ−1

ind(∞)) = (C0 · 2C2) = 2. The dual graph (13) gives ψ−1(∞) · ϕ−1(∞) = 4.
According to Proposition 11.4, the configuration of fibers for ϕ is either I∗4 +E4 +E2

or I∗4 + II + II. In both cases we find some half fiber F̃ for ϕ that is integral and
whose regular locus contains exactly two rational points. These rational points must
be the intersections with the two half-fibers ψ−1

red(0) and ψ−1
red(1). However, we have

2 = (F̃ · ψ−1(∞)) = (F̃ · 2R), thus F̃ ∩ R must be a third rational point in the
regular locus of F̃ , contradiction. �

In a similar way, we establish:

Proposition 12.3. There is no configuration C0 + . . .+C8 +R of ten (−2)-curves
having simple normal crossings, with exception (C0 ·R) = 2, and the following dual
graph:

(15)
C2 C3 C4 C5 C6

C7

C8

C0

C1

R
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Proof. Seeking a contradiction, we assume that such a configuration exists. The
subconfigurations C0 + C1 + . . . + C8 and R + C1 + . . . + C8 support curves of
canonical type I∗4. Let ϕ : Y → P1 and ϕ′ : Y → P1 be the resulting genus-one
fibrations. Without loss of generality we may assume

ϕ−1(∞) = C0 + C1 + 2(C2 + . . .+ C6) + C7 + C8,

ϕ′−1(∞) = R + C1 + 2(C2 + . . .+ C6) + C7 + C8.

Indeed, these fibers must be simple by Proposition 11.4, and ϕ−1(∞) ·ϕ′−1(∞) = 4.
Choose some half-fibers F, F ′ ⊂ Y for the respective fibrations, with intersec-
tion number (F · F ′) = 1. Let S ⊂ Num(Y ) be the subgroup generated by
C1, . . . , C8, F

′, F . As in the preceding proof, we exploit properties of the result-
ing Gram matrix N ∈ Mat10(Z). Note that this is the lattice U ⊕ D8, as one
referee pointed out. Again S ⊂ Num(Y ) has index two, and the discriminant group
AS = S∗/S is elementary abelian of order four. Recall that the inverse

(16) N−1 =



−1 −1 −1 −1 −1 −1 −1/2 −1/2 0 0

−1 −2 −2 −2 −2 −2 −1 −1 0 0

−1 −2 −3 −3 −3 −3 −3/2 −3/2 0 0
−1 −2 −3 −4 −4 −4 −2 −2 0 0

−1 −2 −3 −4 −5 −5 −5/2 −5/2 0 0

−1 −2 −3 −4 −5 −6 −3 −3 0 0
−1/2 −1 −3/2 −2 −5/2 −3 −2 −3/2 0 0

−1/2 −1 −3/2 −2 −5/2 −3 −3/2 −2 0 0

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0


is the Gram matrix of the induced Q-valued form on S∗ with respect to the dual basis
C∗1 , . . . C

∗
8 , F

′∗, F ∗. The generator for the extension S ⊂ Num(Y ) corresponds to a
non-zero isotropic vector in AS, with respect to the quadratic form q : AR → Q/2Z.
Glancing at (16), we see that

C∗1 ≡ C∗3 ≡ C∗5 and C∗7 and C∗8 .

are non-zero modulo S, whereas the other dual basis vectors vanish modulo S,
and that (C∗1)2 = −1 and (C∗7)2 = (C∗8)2 = −2. So the isotropic vectors in the
discriminant group come from C∗7 and C∗8 . Note that F ∗ = F ′ and F ′∗ = F belong
to the sublattice S ⊂ S∗.

By Proposition 11.4, the half fiber F ′ is integral. We have F ′ ·ϕ−1(∞) = 2, hence
F ′ is a two-section for ϕ : Y → P1. Let YK = ϕ−1(η) be the generic fiber. As in
the preceding proof, the two-section F ′ gives a splitting Pic(YK) = Pic0(YK) ⊕ 2Z,
we get an identification Pic(YK) = Num(Y )/S, and there must be another integral
curve R̃ ⊂ Y that is a two-section, with Num(Y ) = S + ZR̃. Furthermore, we
may may assume R̃2 = 0 or R̃2 = −2. We now examine the possible non-zero
intersection numbers with the components of ϕ−1(∞): Since the discriminant group
is annihilated by two, the case (R̃ · Ci) = 2 with i ∈ {0, 1, 7, 8} would imply that
R̃ ∈ S∗ belongs to S, contradiction. Also (R̃ · Ci) = 1 with i ∈ {2, . . . , 6} is
impossible, because then R̃ becomes zero or non-isotropic in AS = S∗/S. Likewise,
the two cases

(R̃ · C0) = (R̃ · C1) = 1 and (R̃ · C7) = (R̃ · C8) = 1
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are impossible, because C∗0 + C∗1 ≡ F ∗ + C∗1 and C∗7 + C∗8 are non-isotropic. Up to
renumeration, the only possibilities left are (R̃ · C0) = (R̃ · C8) = 1 and (R̃ · C1) =
(R̃ ·C8) = 1. If R̃2 = −2 then R̃ = P1 and in both cases get a curve of canonical type
I8, in contradiction to Proposition 11.4. Thus R̃2 = 0, and R̃ ⊂ Y is a genus-one
curve. But then the two cases where already discarded in the proof for Proposition
12.1. Summing up, the configuration (15) also does not exist. �

13. Elimination of III∗-fibers

Let Y is a non-exceptional Enriques surface over the ground field k = F2, with
constant Picard scheme. We now exclude the III∗-cases from the table in Proposition
11.4. We proceed in two steps, treating the case of multiple fibers first:

Proposition 13.1. There is no genus-one fibration ϕ : Y → P1 having a multiple
fiber with Kodaira symbol III∗.

Proof. Seeking a contradiction, we assume that ϕ−1(∞) is multiple with Kodaira
symbol III∗. The dual graph is:

(17)

C0 C1 C3 C4 C5 C6 C7

C2

According to Proposition 11.4, there is a genus-one fibration ψ : Y → P1 having
ψ−1(∞) · ϕ−1(∞) = 4. We may assume that ψ−1(∞) has the largest number of
irreducible components, among all fibers. Choose a multiple fiber 2F for ψ. After
renumeration, we get (F ·C0) = 1. The connected curve C1 + . . .+C7 has dual graph
T2,3,4 and is thus contained in ψ−1(∞). Its Kodaira symbol must be III∗, according
to Proposition 11.4. Let C ′0 ⊂ ψ−1(∞) be the additional component, which has
(C ′0 · C1) = 1. From

2 ≥ ϕ−1
ind(∞) · ψind(∞) = (C0 + 2C1) · C ′0 = (C0 · C ′0) + 2

we infer that C0 and C ′0 are disjoint. Thus C ′0 + C0 + . . . + C5 supports a curve of
canonical type I∗2. Let τ : Y → P1 be the resulting genus-one fibration that has this
curve as reduced fiber over t =∞. The fiber is multiple, because τ−1

ind(∞) · C6 = 1.
According to Proposition 11.4, the fibers over t = 0, 1 have Kodaira symbol III.
Clearly, the curve C7 belongs to one such fiber. After applying an automorphism of
P1 we obtain

τ−1
ind(0) = C7 + C ′7 and τ−1

ind(1) = R +R′.

The dual graph for the configuration C ′0 + C0 + . . . + C7 + C ′7 + R + R′ takes the
following shape:

C0 C1 C5 C6

C7

C2

C ′0

C ′7

R R′
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The dashed edges indicate intersection numbers on which we can say the following:
First note that the intersection number (R ·C6) = 1 would lead to the configuration
C ′0 + C0 + . . . + C7 + R, which contradicts Proposition 12.2. For the same reason
(R′ · C6) = 1 is impossible. On the other hand, we have

2 = C6 · τ−1(∞) ≥ C6 · τ−1
ind(1) = (C6 ·R) + (C6 ·R′).

After interchanging R and R′ if necessary, we may assume that (C6 · R′) = 2 and
(C6 · R) = 0. If follows that R belongs to the fibers of ψ : Y → P1. According
to Proposition 11.1, the fiber ψ−1(∞) with Kodaira symbol III∗ must be multiple.
Hence

1 = ϕ−1
ind(∞) · ψ−1

ind(∞) = (2C1 · C ′0) = 2,

contradiction. �

Proposition 13.2. There is no genus-one fibration ϕ : Y → P1 having a simple
fiber with Kodaira symbol III∗.

Proof. Seeking a contradiction, we assume that ϕ−1(∞) is simple with Kodaira
symbol III∗, with dual graph as in (17). According to Proposition 11.4, there is
another genus-one fibration ψ : Y → P1 having ψ−1(∞) · ϕ−1(∞) = 4. We may
assume that ψ−1(∞) has the largest number of irreducible components, among all
fibers. Let 2F be one of the multiple fibers for ψ, such that F · ϕ−1(∞) = 2. After
renumeration, we have (F · C2) = 1 or (F · C0) = (F · C7) = 1 or (F · C1) = 1 or
(F ·C0) = 2, with otherwise zero intersection numbers. Our task is to rule out these
four possibilities.

Suppose first that (F · C2) = 1. Then C0 + C1 + C3 + . . . + C7 is a chain that is
vertical with respect to ψ, hence belongs to ψ−1(∞). Its Kodaira symbol must be
III∗, by Propositions 11.4 and 12.1. We have ψ−1

red(∞) = C0 +C1 +C3 + . . .+C7 +R,
with (R · C4) = 1. This gives

4 ≥ ϕ−1(∞) · ψ−1
ind(∞) = (4C4 + 2C2) · 2R = 8 + 4(C2 ·R) ≥ 8,

contradiction.
Next suppose that (F · C0) = (F · C7) = 1. Then C1 + . . . + C6 has dual graph

T2,3,3 and is vertical with respect to ψ, whence is contained in ψ−1(∞). As above,
the Kodaira symbol is III∗, so ψ−1

red(∞) = C ′0 +C1 + . . .+C6 +C ′7, with (C ′0 ·C1) =
(C ′7 · C6) = 1. Then

4 ≥ ϕ−1(∞) · ψ−1
ind(∞) = (C0 + 2C1 + 2C6 + C7) · (C ′0 + C ′7) ≥ 4 +

∑
(Ci · C ′j),

where the sum runs over i, j ∈ {0, 7}. It follows that C ′0∪C ′7 is disjoint from C0∪C7.
Thus the curves C ′0 +C0 + . . . C7 +C ′7 forms a configuration as in Proposition 12.2,
contradiction.

We come to the case (F · C1) = 1, which is the most challenging. The curve
C2 + . . .+C7 has dual graph T2,2,4 and is ψ-vertical, thus contained in ψ−1(∞). Now
the possible Kodaira symbols are I∗4 or III∗ or I∗2. The former was already discarded
in Proposition 12.1. Suppose the symbol is III∗. It is simple by Proposition 13.1,
and with Proposition 11.1 we infer that also C0 belongs to ψ−1(∞). Consequently
ψ−1

red(∞) = C0 + R + C2 + . . . + C7 for some additional component R with either
(R · C0) = (R · C3) = 1 or (R · C0) = (R · C2) = 1. In the former case

4 ≥ ϕ−1(∞) · ψ−1
ind(∞) = (C0 + 2C1 + 3C3) · 2R = 2 + 4(C1 ·R) + 6 ≥ 8,
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contradiction, and the latter case is treated analogously. So our fiber has Kodaira
symbol I∗2, and ψ−1

red(∞) = C2 + . . .+C7 +R for some additional component R with
(R · C6) = 1. Now

4 ≥ ϕ−1(∞) · ψ−1
ind(∞) = (2C1 + 2C6) ·R = 2(C1 ·R) + 2.

This gives (C1 ·R) ≤ 1. But the case (C1 ·R) = 1 yields a curve R+C1 +C3 + . . .+C6

of canonical type I6, contradiction. Thus C1 ∩R = ∅.
According to Proposition 11.4, ψ has I∗2 + III + III as configuration of fibers over

rational points. The curve C0 is ψ-vertical, and we can assume ψ−1
ind(0) = C0 + C ′0.

Write ψ−1
ind(1) = D+D′. The dual graph for all our curves takes the following form:

C0

C1 C3 C4 C5

C6

C7

C2

RC ′0

DD′

According to Proposition 11.1, the simple fiber ϕ−1(∞) with Kodaira symbol III∗

must intersect each (−2)-curve on Y . It follows that C1 intersects D and D′. From
4 ≥ ϕ−1(∞) · ψ−1

ind(1) = 2C1 · (D +D′) we infer (C1 ·D) = (C1 ·D′) = 1. Thus D +
C0 + . . .+C7 +R forms a configuration as in Proposition 12.2, again a contradiction.

It remains to deal with the case (F ·C0) = 2. Then C1 + . . .+C7 has dual graph
T2,3,4 and is vertical with respect to ψ, whence contained in ψ−1(∞). Its Kodaira
symbol must be III∗, by Proposition 11.4. Write ψ−1

red(∞) = C ′0 + C1 + . . . + C7 for
some additional component C ′0 with (C ′0 ·C1) = 1. The fiber is simple, by Proposition
13.1, so

4 = ϕ−1(∞) · ψ−1(∞) = ϕ−1(∞) · C ′0 = (C0 + 2C1) · C ′0 = (C0 · C ′0) + 2.

Whence (C0 ·C ′0) = 2, and C0 +C ′0 is a curve of canonical type, with Kodaira symbol
I2, Ĩ2 or III. Let η : Y → P1 be the ensuing genus-one fibration. By Proposition 11.4,
we may assume that η−1(∞) has symbol III∗ or I∗2. In the former case Proposition
13.1 ensures that it is simple so by Proposition 11.1 the configuration must be
III∗ + E4 + E4, contradiction. In light of Proposition 11.1, the only remaining
possible configuration is I∗2 + III + III. Without restriction η−1

ind(0) = C0 + C ′0 and
η−1

ind(1) = D+D′. The curve C2 + . . .+C7 has dual graph T2,2,4 and thus belongs to
η−1(∞). Let R be the additional component. The dual graph of our curves takes
the following form:

C0

C1

C3 C6

C7

C2

RC ′0

DD′

We have η−1
ind(0) · ϕ−1(∞) = (C0 + C ′0) · 2C1 = 2 + 2 = 4. If η−1(0) is simple, each

multiple fiber 2F ′ for η : Y → P1 has (F ′ ·C1) = 1, in contradiction to the previous
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paragraph. Thus η−1(0) is multiple, such that η−1(∞) · ϕ−1(∞) = 8. If the fiber
η−1(∞) is multiple as well, we get

4 = η−1
ind(∞) · ϕ−1(∞) = R · (2C1 + 2C6) = 2(R · C1) + 2,

hence C3 + . . . + C6 + R + C1 is a curve of canonical type I6, contradiction. Thus
η−1(∞) is simple, whereas η−1(1) must be the second multiple fiber. The latter gives

4 = η−1
ind(1) · ϕ−1(∞) = (D +D′) · 2C1 = 2(D · C1) + 2(D′ · C1).

According to Proposition 11.1, the fiber ϕ−1(∞) intersects both D and D′, so we
have (D · C1) = (D′ · C1) = 1. Thus D + C1 + . . . + C7 gives a curve of canonical
type III∗. This gives a further fibration on Y , in which the fiber of type III∗ must
be simple, according to Proposition 13.1. This gives

4 ≤ (D + 2C1 + . . .+ 2C6 + C7) · ϕ−1(∞) = D · 2C1 = 2,

contradiction. �

14. Surfaces with restricted configurations

Let k be an algebraically closed ground field k of arbitrary characteristic p ≥ 0,
and Y be a classical Enriques surface. The goal of this section is to show that
certain configurations of (−2)-curves cannot exist, once one imposes rather severe
restrictions on the configuration of reducible fibers in genus-one fibrations.

Proposition 14.1. There is no classical Enriques surface Y such that every genus-
one fibration ϕ : Y → P1 satisfies one of the following properties:

(i) The configuration of reducible fibers is I∗1 + I4, where the I∗1-fiber is multiple.
(ii) The configuration is I∗2 + III + III, where two of these fibers are multiple.

Proof. Seeking a contradiction, we assume that such a surface exists. Choose a
genus-one fibration ϕ : Y → P1. By [17], Theorem A the surface Y is non-
exceptional. According to Proposition 4.4 there is another genus-one fibration
ψ : Y → P1, with ϕ−1(∞) · ψ−1(∞) = 4. Choose a multiple fiber 2F ⊂ Y for
ψ. Without restriction, we may assume that the fibers of ϕ and ψ with Kodaira
symbol I∗n occur over t =∞.

Suppose first that ϕ−1(∞) has Kodaira symbol I∗1, and hence must be multiple.
The dual graph is:

C2 C3

C4

C5

C0

C1

After renumeration, we may assume (F ·C0) = 1. The curve C1 + . . .+C5 has dual
graph T2,2,3 and is ψ-vertical, hence must belong to ψ−1(∞). Suppose the latter has
Kodaira symbol I∗1. Then ψ−1

red(∞) = R+C1+. . .+C5 for some additional component
R with (R · C2) = 1, and the fiber is multiple. This gives the contradiction

1 = ϕ−1
ind(∞) · ψ−1

ind(∞) = (C0 + 2C2) ·R = (C0 ·R) + 2 ≥ 2.
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Thus ψ−1(∞) has Kodaira symbol I∗2, and we write ψ−1
ind(∞) = R+R′+C1 + . . .+C5

with additional components R and R′, which have (R · C1) = (R′ · C1) = 1. Then

2 ≥ ϕ−1
ind(∞) · ψ−1

ind(∞) = (C0 + C1) · (R +R′) = C0 · (R +R′) + 1 + 1.

Hence R∪R′ is disjoint from C0, and ψ−1(∞) must be simple. Without restriction,
we may assume that ψ−1(0) is multiple with Kodaira symbol III. Write ψ−1

ind(0) =
D +D′. Then

2(D +D′) · C0 = ψ−1(∞) · C0 = 2C2 · C0 = 2.

Without restriction, we may assume (C0 ·D) = 1 and (C0 ·D′) = 0. Then the dual
graph for our curves becomes:

C2

C3

C4

C5

C0

C1

R

R′

DD′

Thus R +D + C0 + . . .+ C4 is a curve of canonical type IV∗, contradiction.
Summing up, every genus-one fibration on Y has I∗2 + III + III as configuration

of degenerate fibers, two of which are multiple. We tacitly assume that the I∗2-fiber
lies over t = ∞, whereas the III-fibers appear over t = 0, 1. In particular, the dual
graph for the reducible fibers of our ϕ : Y → P1 is:

C2 C3 C4

C5

C6

C0

C1

E0

E1

D0

D1

We first verify that ϕ−1(∞) is simple. Seeking a contradiction, we assume that it is
multiple, such that F ·ϕ−1

ind(∞) = 1. After renumeration we may assume (F ·C0) = 1.
The connected curve C1+. . .+C6 has dual graph T2,2,4, hence is contained in ψ−1(∞).
Let R ⊂ ψ−1(∞) be the additional component, which has (R · C2) = 1. From

2 ≥ ϕ−1
ind(∞) · ψ−1

ind(∞) = (C0 + 2C2) ·R = (C0 ·R) + 2

we infer R∩C0 = ∅. Thus C0 + . . .+C3 +R supports a curve of canonical type I∗0,
contradiction.

Summing up, in all genus-one fibrations the I∗2-fiber is simple and the III-fibers
are multiple. Recall that 2F is a multiple fiber for our fibration ψ : Y → P1 with
ϕ−1(∞)·ψ−1(∞) = 4. After renumeration, we may assume that (F ·D0) = (F ·E0) =
1 and (F · D1) = (F · E1) = 0. In particular, the curves D0, E0 are ψ-horizontal,
whereas D1, E1 are ψ-vertical.

By symmetry, we now write ψ−1
ind(0) = R0 + R1 such that R0 is ϕ-horizontal and

R1 is ϕ-vertical. We claim that R1 is not contained in ϕ−1(0). For R1 = D1 we get
the contradiction

1 = (D0 +D1) · (R0 +R1) = D0 · (R0 +R1) ≥ (D0 ·R1) = (D0 ·D1) = 2,

whereas R1 = D0 leads to

1 = (D0 +D1) · (R0 +R1) = D1 · (R0 +R1) = 0,
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again a contradiction. Thus R1 is disjoint from ϕ−1(0), which gives

(D0 ·R0) = D0 · (R0 +R1) = (D0 +D1) · (R0 +R1) = 1.

By symmetry, we also get (E0 · R0) = 1. Likewise, we write ψ−1
ind(1) = S0 + S1 such

that S0 is ϕ-horizontal and S1 is ϕ-vertical, and see (D0 · S0) = (E0 · S0) = 1. Thus
D0 +R0 + E0 + S0 is a curve of canonical type I4, contradiction. �

15. Proof of the main result

We are finally ready to prove Theorem 5.1, the main result of this paper. The
task is to show that the fiber category MEnr(Z) for the stack of Enriques surfaces is
empty. Seeking a contradiction, we assume that that there is a family of Enriques
surfaces f : Y→ Spec(Z). According to Proposition 5.5, the Picard scheme PicY/Z
is constant. So the closed fiber Y = Y⊗ F2 also has constant Picard scheme. It is
non-exceptional, by [57], Theorem 7.2, because this Enriques surface comes with a
deformation over W2(F2) = Z/4Z. Therefore it suffices to establish:

Theorem 15.1. There is no Enriques surface Y over the prime field k = F2 that is
non-exceptional and whose Picard scheme is constant.

Proof. Suppose such a Y exists. By Theorem 5.6 there is a genus-one fibration ϕ :
Y → P1. For each geometric point ā : Spec(Ω)→ P1 lying over a non-rational closed
point a ∈ P1, the geometric fiber Yā is irreducible, according to Proposition 3.1, thus
the Kodaira symbol is I0, I1 or II. Moreover, it must be simple by Theorem 5.6. The
possible configurations of fibers over the rational points t = 0, 1,∞ are tabulated
in Proposition 11.4. In Sections 12 and 13 we saw that the Kodaira symbols I∗4
and III∗ actually do not occur. For the classical Enriques surface Ȳ = Y ⊗k kalg

this means that for every genus-one fibration, the configuration of degenerate fibers
is either I∗1 + I4 or I∗2 + III + III. Furthermore, in the former case the I∗1-fiber is
multiple, whereas in the latter case two of the three fibers are multiple. We showed
in Proposition 14.1 that such an Enriques surface does not exist. This gives the
desired contradiction. �
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1968.

[32] T. Honda: Isogeny classes of abelian varieties over finite fields. J. Math. Soc. Japan 20
(1968), 83–95.
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