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Abstract
In characteristic 2 and dimension 2, wild Z/2Z-actions on k[[u, v]] ramified precisely at
the origin were classified by Artin, who showed in particular that they induce hypersurface
singularities. We introduce in this article a new class of wild quotient singularities in any
characteristic p > 0 and dimension n ≥ 2 arising from certain non-linear actions ofZ/pZ on
the formal power series ring k[[u1, . . . , un]]. These actions are ramifiedprecisely at the origin,
and their rings of invariants in dimension 2 are hypersurface singularities, with an equation
of a form similar to the form found by Artin when p = 2. In higher dimension, the rings of
invariants are not local complete intersection in general, but remain quasi-Gorenstein. We
establish several structure results for such actions and their corresponding rings of invariants.
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1096 D. Lorenzini, S. Schröer

1 Introduction

Given a smooth quasi-projective algebraic variety X over a field k and a finite subgroup
G of automorphisms of X , the quotient X/G exists, and a precise understanding of the
singularities of X/G is often crucial in many problems in algebraic geometry, including in
the geography of surfaces of general type, and in the study of the automorphisms of K3
surfaces and Enriques surfaces. The initial study of a quotient singularity on X/G is local,
and consists in the analysis of the action of the isotropy subgroup of a point x ∈ X on the
completion of the regular local ring OX ,x .

In characteristic zero, the action of a finite group G on the power series ring A =
k[[u1, . . . , un]] is always linearizable, an observation going back to Cartan [14]. The ring
of invariants AG has then good algebraic properties, such as being Cohen–Macaulay [24],
and the singularity of Spec AG is even rational [10,12]. Watanabe gave in [64] and [65] an
explicit criterion for AG to be Gorenstein.

When k has positive characteristic p and the order of G is divisible by p, an action of G
on k[[u1, . . . , un]] is called wild. Such actions are much more delicate to study. Most wild
actions of G on k[[u1, . . . , un]] are not linearizable, in which case the group G acts via true
power series substitutions. The resulting rings AG are usually not Cohen–Macaulay when
n ≥ 3 (Proposition 3.2). The elements of order p in the group Autk(k[[u1, . . . , un]]) are
completely understood only when n = 1 and k is finite [30,36]. In this article, we will focus
on the geometric case where the action is ramified precisely at the origin (3.1). This type of
wild action is never induced by a linear action on the variables (Lemma 3.3), and thus the
large body of results in modular invariant theory is not immediately applicable to their study.

The starting point of our article is a result of Artin [4], who analyzed all wild actions of
G = Z/2Z, ramified precisely at the origin, in dimension n = 2 when k is algebraically
closed, and showed that

AG = k[[x, y, z]]/(z2 − abz − ya2 + xb2)

for some system of parameters a, b ∈ k[[x, y]]. In particular, this explicit description of
AG shows that it is a complete intersection and, hence, Gorenstein. Artin noted in [4] that
it would be interesting to extend his result to wild Z/pZ-actions when p > 2. Peskin [46]
subsequently described an explicit class of wildZ/3Z-actions ramified precisely at the origin
with ring of invariants also described by an explicit equation when n = 2. In general, though,
mostwildZ/pZ-actions on k[[u1, u2]] ramified precisely at the origin do not haveGorenstein
rings of invariants (see Remark 9.5).

In this article, inspired by the work of Artin, we introduce a new class of wild Z/pZ-
actions on k[[u1, . . . , un]] ramified precisely at the origin, for all n ≥ 2 and all primes
p, whose rings of invariants are complete intersection when n = 2, and quasi-Gorenstein
(Theorem 9.6) in general. Our main motivation for introducing these actions, in addition to
their intrinsic interest as new explicit elements in the mysterious group of automorphisms
of k[[u1, . . . , un]], lies in the fact that already in dimension n = 2, we believe that this
class of actions is rich enough to potentially solve two open problems concerning resolutions
of singularities of Z/pZ-quotient singularities of surfaces: determine whether in the class
of minimal resolutions of Z/pZ-quotient singularities, there is no bound on the number of
vertices of valency at least 3 that the minimal resolution graph can have; and determine
whether every power of p occurs as the determinant of the intersection matrix of a resolution
of some Z/pZ-quotient singularity when p > 2. We address the latter problem in [35].

An analysis of Artin’s arguments in [4] for p = n = 2 shows that it is possible to formulate
five axiomatic conditions on a Z/pZ-action, such that any Z/pZ-action satisfying all five
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Moderately ramified actions in positive characteristic 1097

of these axioms can be described in a particularly simple way, similar to the description
obtained by Artin in the case p = n = 2. We call such Z/pZ-actions moderately ramified.
As a byproduct, we also obtain a class of (Z/pZ)n−1-actions on k[[u1, . . . , un]]whose rings
of invariants are local complete intersections (Theorem 7.2).

Our new class of wild Z/pZ-actions can be described as follows. Start with an action
of G := Z/pZ on A := k[[u1, . . . , un]] which is ramified precisely at the origin. We call
xi := ∏

σ∈G σ(ui ) a norm element, and we show in Proposition 2.9 that it is always possible
to find a regular system of parameters u1, . . . , un in A such that A is finite of rank pn over
the norm subring R := k[[x1, . . . , xn]]. Our axioms ensure that the ring A comes with a
norm subring R such that Frac(A)/Frac(R) is Galois with elementary abelian Galois group
H of order pn , and that n distinguished subgroups G⊥

i of index p yield intermediate rings

of invariants R ⊂ AG⊥
i ⊂ A that result in a decomposition A = AG⊥

1 ⊗R . . . ⊗R AG⊥
n . Our

description then relies on an analysis of the resulting schemes Yi := Spec AG⊥
i → S :=

Spec R endowed with the natural action of H/G⊥
i .

Extending to base schemes S of dimension bigger than one a construction of Raynaud
[48], which was already further extended in dimension one by Romagny [53] to groups which
are not necessarily finite and flat over S, we attach to the action of H/G⊥

i on Yi a finite flat
group scheme Gi/S and a natural action Gi ×S Yi → Yi . In keeping with the terminology
introduced by Romagny, we call the action Gi ×S Yi → Yi the effective model of the action
of the constant group scheme H/G⊥

i on Yi . Our final axiom imposes that Yi/S be a torsor
under the action of Gi/S, for i = 1, . . . , n. We then use the Tate–Oort classification of such
group schemes Gi/S [62], and obtain explicit equations describing a moderately ramified
G-action on A in Theorem 6.11.

Our terminology “moderately ramified G-action on A” refers to the fact that the ramifica-
tion of the associated morphism Spec A → Spec AH is “as small as possible”. Moderately
ramified actions are in some sense “as free as possible” outside ramification at the closed
point. When p = n = 2, all five axioms are automatically satisfied when k is algebraically
closed. For arbitrary p ≥ 2, we obtain in dimension n = 2 a description in Theorem 7.7 of
the ring of invariants AG which generalizes Artin’s description when p = 2 in [4].

In dimension n > 2, the ring AG is never a complete intersection since it is known that
this ring is not Cohen–Macaulay when the action is ramified precisely at the origin. Thus
an explicit description of AG by generators and relations is in general out of reach in higher
dimensions. When n = 3, we are able to provide generators for AG in Theorem 8.5 when
the system of parameters associated with the G-action consists of polynomials rather than
general power series. We are also able to provide a formula for the embedding dimension.
Using methods from non-commutative algebra, we show for all n ≥ 2 in Theorem 9.6 that
AG is quasi-Gorenstein, that is, that the dualizing module KAG is trivial in the class group
Cl(AG).

The paper is organized as follows. In Sect. 2 we study general properties of norm subrings
R inside A = k[[u1, . . . , un]]. Section 3 focuses on wild G-actions on A that are ramified
precisely at the origin, and presents a criterion for the extension Frac(A)/Frac(R) to be
Galois in terms of the extension Frac(AG)/Frac(R). The proof of this criterion uses results
on fundamental groups. Section 4 deals with extensions of group schemes and torsors, and
proves the existence of the effective model of a group action over higher-dimensional bases.
These concepts are further developed explicitly in dimension 1 in Sect. 5. Section 6 introduces
the central notion ofmoderately ramified action and themain structure results for such action.
In Sect. 7 we study various auxiliary invariant rings that are attached to moderately ramified
actions.We treat the case n = 3 in Sect. 8, wherewe present a set of generators for the ring AG
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1098 D. Lorenzini, S. Schröer

for certain moderately ramified actions. We show that the canonical class [KAG ] ∈ Cl(AG)

is trivial in Sect. 9.

2 Norm subrings

Let A denote a complete local noetherian ring that is regular, of dimension n ≥ 1, and with
maximal ideal mA. Recall that a field of representatives for A is a subfield k of A such that
the composition k ⊂ A → A/mA is an isomorphism of fields. When A/mA is perfect,
such a subfield is unique. We will always in this article assume that A contains a field, and
we fix a field of representatives k ⊂ A and regard it as ground field. A set of n elements
x1, . . . , xn ∈ A which generate an mA-primary ideal in A is called system of parameters.
The following facts are well-known.

Lemma 2.1 If x1, . . . , xn ∈ A is a system of parameters, then the ensuing homomorphism
of complete local k-algebras R := k[[x1, . . . , xn]] → A is finite and flat. Its degree is the
length of A/(x1, . . . , xn)A.

Proof The ring A, viewed as an R-module is finite, according to [68, Corollary 2 and
Remark on page 293]. Since R is regular and A is Cohen–Macaulay, the R-module A is
free of finite rank, by [57, Proposition 22, page IV-37]. This rank is the vector space dimen-
sion of A/(x1, . . . , xn)A over k = R/(x1, . . . , xn), which coincides with the length of
A/(x1, . . . , xn)A. �	

A set of n elements u1, . . . , un in A which generate mA is called a regular system of
parameters. The resulting homomorphism k[[u1, . . . , un]] → A is then bijective.

LetG ⊂ Aut(A) be a finite group of automorphisms such that k lies in the ring of invariants
AG . Clearly,mA ∩ AG is a maximal ideal with residue field k. It follows from [41, Théorème
2], that AG is a complete noetherian local ring and that A is an AG -module of finite type.
Choose a regular system of parameters u1, . . . , un ∈ A, and consider the norm elements

xi := NA/AG (ui ) =
∏

σ∈G
σ(ui ), 1 ≤ i ≤ n.

These elements are obviously G-invariant, and we can consider the complete local k-
subalgebra R ⊂ AG generated by x1, . . . , xn . Let us call R a norm subring of A. The
ring extensions R ⊂ AG ⊂ A play a crucial role in this article. In this section, we determine
under what conditions the extension R ⊂ A is finite.

Definition 2.2 A regular system of parameters u1, . . . , un ∈ A is called weakly admissible
(resp. admissible) with respect to the G-action if, for each (σ1, . . . , σn) ∈ Gn , the elements
σ1(u1), . . . , σn(un) ∈ A form a system of parameters (resp., form a regular system of param-
eters).

The main justification for introducing this notion is the following result:

Proposition 2.3 Let u1, . . . , un be a regular system of parameters of A. Then the associated
norm elements x1, . . . , xn form a system of parameters in A if and only if the elements
u1, . . . , un are weakly admissible with respect to the action of G. If the above equivalent
conditions hold, then the homomorphism of k-algebras k[[x1, . . . , xn]] → A is finite and flat
of degree at least |G|n, with equality when the regular system is admissible.
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Moderately ramified actions in positive characteristic 1099

Proof Let g := |G|. Choose an enumeration σ1, . . . , σg of the elements of G such that
σ1 := e is the neutral element. Define fi, j := σ j (ui ), with 1 ≤ j ≤ g and 1 ≤ i ≤ n. In
particular, fi,1 = ui and xi = ∏g

j=1 fi, j . Let X := Spec(A) and consider the closed subsets
V ( fi, j ) ⊂ X . Clearly,

V (x1, . . . , xn) =
n⋂

i=1

⎛

⎝
g⋃

j=1

V ( fi, j )

⎞

⎠ .

Let J := {1, . . . , g}. Using the distributive properties of ∩ and ∪, we find that

V (x1, . . . , xn) =
⋃

( j1,..., jn)∈Jn

(
n⋂

i=1

V ( fi, ji )

)

=
⋃

( j1,..., jn)∈Jn
V ( f1, j1 , . . . , fn, jn ). (2.4)

If the elements x1, . . . , xn ∈ A forma systemof parameters, thenV (x1, . . . , xn) contains only
the closed point and, thus, each V ( f1, j1 , . . . , fn, jn ) consists only of the closed point. Hence,
for each tuple ( j1, . . . , jn), the elements fi, j1 , . . . , fi, jn ∈ A form a system of parameters.
In other words, the elements u1, . . . , un ∈ A are weakly admissible. Conversely, when the
elements u1, . . . , un ∈ A are weakly admissible, it immediately follows from (2.4) that the
elements x1, . . . , xn ∈ A form a system of parameters.

Now suppose that the regular system of parameters u1, . . . , un ∈ A is weakly admissi-
ble, such that the associated norm elements x1, . . . , xn form a system of parameters in A.
According to Lemma 2.1, the ring A is a finite and flat module over R = k[[x1, . . . , xn]]. To
determine its rank, we need to compute the length of A/I , where I := (x1, . . . , xn)A. We
now establish the inequality length(A/I ) ≥ gn using general facts on the Hilbert–Samuel
multiplicity e(I , A) of I . Since we assume that the elements u1, . . . , un ∈ A are weakly
admissible, the ideal I ⊂ A is generated by a system of parameters. Since the ring A is
Cohen–Macaulay, the formula length(A/I ) = e(I , A) holds [5, Proposition 5.9]. For any
mA-primary ideal J ⊂ A, we have e(J s, A) = sne(J , A) [40, page 108]. Applying this to
J := m

g
A and using the fact that e(mA, A) = 1 since A is regular, we find that e(J , A) = gn .

Finally, the inclusion I ⊂ J gives e(I , A) ≥ e(J , A) [40, page 109], and the desired inequal-
ity follows.

Finally, assume that the regular system of parameters u1, . . . , un ∈ A is admissible.
To proceed, it is convenient to consider the slightly more general situation where we omit
the precise definition of the element fi, j , and keep only the following hypothesis: for each
element ( j1, . . . , jn) ∈ Jn , the elements f1, j1 , . . . , fn, jn form a regular system of parameters
of A. In particular, fi, j ∈ mA\m2

A for each i ∈ [1, n] and j ∈ [1, g]. Letting ui := fi,1, we
find that u1, . . . , un form a regular system of parameters of A.

For each � ∈ [1, n] and r ∈ [1, g], define g�,r := ∏r
j=1 f�, j , and denote as previously

x� := g�,g . When 2 ≤ � ≤ n − 1, consider the ideal

I�,r := (x1, . . . , x�−1, g�,r , u�+1, . . . , un) ⊂ A.

Define similarly the ideals I1,r = (g1,r , u2, . . . , un) and In,r = (x1, . . . , xn−1, gn,r ) for
each r ∈ [1, g]. With respect to the lexicographic ordering on the set of all pairs (�, r) in
[1, n] × [1, g], the gn ideals I�,r form a decreasing sequence

I�,r = (x1, . . . , x�−1, g�,r , u�+1, . . . , un) ⊇ (x1, . . . , x�−1, g�,r+1, u�+1, . . . , un) = I�,r+1

between I1,1 = (u1, . . . , un) and In,g = (x1, . . . , xn). Note that this sequence of ideals
contains the repetitions I�,g = I�+1,1.
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1100 D. Lorenzini, S. Schröer

Since the module I�,r/I�,r+1 is generated by g�,r , and because g�,r+1 = g�,r f�,r+1, we
find that I�,r/I�,r+1 is annihilated by

J�,r+1 := (x1, . . . , x�−1, f�,r+1, u�+1, . . . , un).

It follows that length(A/J�,r+1) ≥ length(I�,r/I�,r+1). We claim that

length(A/J�,r+1) ≤ g�−1

for all r ∈ [0, g − 1] and � ∈ [1, n]. Assuming this claim, we find the upper bound

length(A/(x1, . . . , xn)) = 1 +
∑n

�=1

∑g−1

r=1
length(I�,r/I�,r+1)

≤ 1 +
∑n

�=1
(g − 1)g�−1 = gn . (2.5)

To verify the claim, we proceed by induction on n = dim(A). Assume that n = 1. By
construction, J1,r+1 = ( f1,r+1). By hypothesis, f1,r+1 ∈ mA\m2

A. Hence, f1,r+1 is a uni-
formizer and A/( f1,r+1) has length one, as desired.

Assume now that n > 1, and that the assertion holds for n − 1. Since f�,r+1 is part of a
regular system of parameters, we find that the ring A := A/( f�,r+1) is a complete regular
local ring of dimension n− 1. When a ∈ A, denote by a its class in A. When 2 ≤ � ≤ n− 1,
we have

length(A/J�,r+1) = length(A/(x1, . . . , x�−1, u�+1, . . . , un)). (2.6)

Similarly, A/J1,r+1 and A/(u2, . . . , un)) have the same length, and A/Jn,r+1 and
A/(x1, . . . , xn−1) also have same length. We now observe that we can apply our induc-
tion hypothesis to bound the right-hand side of (2.6). Indeed, the set of elements f i,r ∈ A
with i ∈ [1, n] and i �= �, and with r ∈ [1, g], inherits the property that every sequence
f 1, j1 , . . . , f n, jn of n − 1 elements (where no term f �, j� appears) is a regular system of

parameters in A. In case � < n, we can view u�+1 as f �+1,1 and conclude by induction. In
the boundary case � = n, it suffices to show that length(A/(x1, . . . , xn−1) ≤ gn−1. To prove
this inequality we use the argument in (2.5) and use induction to justify each inequality found
in that argument. �	

Recall that a G-action on A = k[[u1, . . . , un]] is called linear if each σ ∈ G acts as a
substitution of variables u j �→ ∑n

i=1 λσ
i j ui for some linear representation G → GLn(k),

σ �→ (λσ
i j ). For instance, the Z/2Z-action on k[[u, v]] which permutes u and v is linear, and

our next lemma implies that u, v is not weakly admissible for this action.

Lemma 2.7 Suppose that the G-action on A = k[[u1, . . . , un]] is linear. If there is an element
σ ∈ G whose matrix (λσ

i j ) has a zero on the diagonal, then the regular system of parameters
u1, . . . , un ∈ A is not weakly admissible with respect to the action of G.

Proof After reordering the u1, . . . , un ∈ A, we may assume that the non-zero diagonal entry
is λσ

11 = 0. For the tuple (σ, e, . . . , e) ∈ Gn , where e ∈ G denotes the neutral element, the
resulting elements σ(u1), u2, . . . , un ∈ A do not form a system of parameters, because they
generate the ideal (u2, . . . , un) ⊂ A. �	

Any regular system of parameters u1, . . . , un ∈ A induces a basis u1, . . . , un of the cotan-
gent space mA/m2

A. Fixing this basis of mA/m2
A, we obtain an induced linear representation

G → GL(mA/m2
A) = GLn(k).
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Moderately ramified actions in positive characteristic 1101

Lemma 2.8 Let u1, . . . , un ∈ A be a regular system of parameters with induced linear
representation G → GL(mA/m2

A) = GLn(k). If the image of G is contained in the Borel
subgroup of upper triangular matrices, then u1, . . . , un is admissible with respect to the
action of G.

Proof Given (σ1, . . . , σn) ∈ Gn , we need to show that the elements σ1(u1), . . . , σn(un)
form a regular system of parameters of A. For this, it suffices to show that the images
σ1(u1), . . . , σn(un) inmA/m2

A form a basis. That they form a basis is clear from the assump-
tion that each σi induces in the basis u1, . . . , un a matrix which is upper triangular. �	

Note in particular that it follows from Lemma 2.8 that if the induced representation of
G on the cotangent space is trivial, then any regular system of parameters is automatically
admissible.

Proposition 2.9 If the ring A has characteristic p > 0 and the group G is a finite p-group,
then A contains an admissible regular system of parameters.

Proof Let u1, . . . , un be any regular system of parameters of A with induced linear repre-
sentation G → GL(mA/m2

A) = GLn(k). Since G is a finite p-group, it is possible to change
basis in mA/m2

A so that in the new basis, every element in the image of G is an upper tri-
angular matrix whose diagonal coefficients are all 1 [59, Proposition 26 on page 64]. The
proposition then follows from Lemma 2.8. �	

3 Actions ramified precisely at the origin

Let A be a complete local noetherian ring that is regular, of dimension n ≥ 2, and charac-
teristic p > 0, with maximal ideal mA and field of representatives k. Let G be a finite cyclic
group of order p, and assume that A is endowed with a faithful action ofG so that k lies in the
ring of invariants AG . For each prime ideal p ⊂ A, we write Ip ⊂ G for the inertia subgroup
consisting of all σ ∈ G with σ(p) = p and such that the induced morphism σ : A/p → A/p

is the identity.

3.1 We say that the G-action is ramified precisely at the origin if ImA = G and Ip = {id}
for every non-maximal prime ideal p.

We discuss in this section several algebraic properties of the ring of invariants AG and
of the field extension Frac(A)/Frac(R) induced by a norm subring R ⊂ A. Let us start by
recalling the following well-known facts.

Proposition 3.2 Suppose that the G-action on A is ramified precisely at the origin.

(i) The ring of invariants AG is a complete local noetherian domain that is normal, with
dim(AG) = n and depth(AG) = 2.

(ii) The ring extension AG ⊂ A is local, finite of degree p, but not flat. The induced map
on residue fields is an isomorphism.

(iii) The singular locus of Spec(AG) consists of the closed point mAG . The morphism
Spec(A)\{mA} → Spec(AG)\{mAG } is a G-torsor.

Proof It is standard that AG is an integrally closed domain, and that the ring extension
AG ⊂ A is integral. In light of the Going-Up Theorem, the ring AG must be local, the ring
extension AG ⊂ A is local, and dim(AG) = dim(A).
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1102 D. Lorenzini, S. Schröer

Let us show that AG is noetherian (see also [41, Théorème 2]). According to Proposi-
tion 2.9, there exists a regular system of parameters u1, . . . , un ∈ A that is admissible with
respect to the G-action. Let R = k[[x1, . . . , xn]] be the resulting norm subring. Then the
extension R ⊂ A if finite of degree pn (Proposition 2.3). It follows that AG is also a finitely
generated R-module and, hence, AG is noetherian.

Now that we know that AG is noetherian, Proposition 2 and Proposition 4 in [16] show
that AG has depth 2 (see also [15, 2.4], or [46, Corollary 1.6]). Since A is complete, the
completion B of AG with respect to its maximal ideal maps to A, and the image of B in A is
AG . Thus, AG is complete since it is the image of a complete ring. This completes the proof
of (i).

By our overall assumption we have k ⊂ AG , so the inclusion AG ⊂ A has trivial residue
field extension. If AG is regular, then A would be flat over AG [40, Theorem 23.1]. But then
the Zariski–Nagata Theorem on the Purity of the Branch Locus [2, Chapter VI, Theorem
6.8] would imply that the branch locus is pure of codimension 1, which would contradict
our hypothesis that AG ⊂ A is ramified precisely at the origin. Hence, the ring AG is not
regular, and it follows from [20, IV.6.5.1 (i)], that AG ⊂ A is not flat. This shows (ii). Part
(iii) follows from [49, Exposé V, Proposition 2.6]. �	

The following lemma will be used in 6.15.

Lemma 3.3 Suppose that the G-action on A is ramified precisely at the origin. Then no
element v ∈ mA � m2

A is G-invariant. In particular, the action of G on A is not linear.

Proof Suppose that there exists v ∈ mA � m2
A which is G-invariant. Extend v to a regular

system of parameters u1, . . . , un of A, with u1 = v. Let σ denote a generator of G, and
consider the ideal a ⊂ A generated by the elements σ(ui ) − ui , i = 1, . . . , n. Since any
prime ideal p of A which contains a is such that Ip �= (0), we find that V (a) = {mA}. In
particular, dim(A/a) = 0. On the other hand, by construction, the ideal a is generated by
at most n − 1 elements because σ(u1) − u1 = 0. Thus, since dim(A) = n, we find that
dim(A/a) > 0, a contradiction.

It follows that an action of G on A which is ramified precisely at the origin is never
linear, because a matrix of order p always has an eigenvector for the eigenvalue λ = 1
in characteristic p. Note that this statement about non-linearity was noted already in [46,
Proposition 2.1]. �	

Our next theorem is used in Proposition 6.20.

Theorem 3.4 Assume that the G-action on A is ramified precisely at the origin.

(i) Choose a regular system of parameters u1, . . . , un ∈ A which is admissible with respect
to the G-action, and consider the corresponding norm subring R = k[[x1, . . . , xn]].
Then the extension Frac(AG)/Frac(R) is not purely inseparable.

(ii) Assume that the field k has no Galois extension of degree p. Then any k-automorphism
ϕ : AG → AG extends to an automorphism ϕ′ : A → A. Furthermore, if AG contains
a subring R such that the extension R ⊂ AG is finite and Frac(AG)/Frac(R) is Galois,
then the extension Frac(A)/Frac(R) is Galois as well.

Proof (i)Consider the local schemes X := Spec(A),Y := Spec(AG), and S := Spec(R), and
write U ⊂ X , V ⊂ Y , and W ⊂ S for the complements of their closed points. Suppose that
Frac(R) ⊂ Frac(AG) is purely inseparable, so that the finite morphism Y → S is a universal
homeomorphism. According to [49, Exposé IX, Theorem 4.10], the étale covering U → V
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Moderately ramified actions in positive characteristic 1103

would be the base-change of an étale coveringW ′ → W . The latter is the restriction of some
étale covering S′ → S by the Zariski–Nagata Purity Theorem. Consequently, U → V is
the restriction of some étale covering Y ′ → Y . Since the schemes X and Y ′ are normal,
both restriction maps �(Y ′,OY ′) → �(U ,OU ) ← �(X ,OX ) are bijective, whence Y ′ = X ,
contradicting the fact that X → Y is not étale.

(ii) In order to extend ϕ : AG → AG to A, let τ : V → V be the morphism induced by
ϕ. Define the scheme τ ∗(U ) by requiring that the following diagram be Cartesian:

τ ∗(U ) −−−−→ U
⏐
⏐
�

⏐
⏐
�

V −−−−→
τ

V .

Our task is to show the existence of a V -isomorphism U → τ ∗(U ). Composing this iso-
morphism with the given morphism τ ∗(U ) → U produces an extension of the morphism τ ,
giving the desired automorphism ϕ′ of A = �(U ,OU ).

Choose a separable closure Frac(AG) ⊂ �. In turn, we get a geometric point b :
Spec(�) → V . Recall that the algebraic fundamental group π1(V , b) is defined as the group
of automorphisms for the fiber functor (Cov/V ) → (Set) that sends a finite étale V ′ → V
to the underlying set of the base-change V ′ ⊗V �. Here (Cov/V ) denotes the category of all
finite étale V -schemes, which thus becomes equivalent to the category of finite sets endowed
with a continuous action of π1(V , b) [49, Exposé V, Section 7]. By abuse of notation, we also
write π1(V ,�) for the fundamental group with respect to the base-point b : Spec(�) → V .

Up to isomorphism, the two finite étaleG-coveringsU1 = U andU2 = τ ∗(U ) correspond
to the finite set G, endowed with actions via group homomorphisms hi : π1(V ,�) → G for
i = 1, 2. Let Hi ⊂ π1(V ,�) be their kernels. The task is to show that the two actions onG are
isomorphic, in other words, that H1 = H2. To proceed, choose a lifting of the geometric point
b : Spec(�) → V along Ui → V . This gives an identification Hi = π1(Ui ,�). Clearly,
�(Ui ,OUi ) is a complete local noetherian ring that is regular. Let Xi be its spectrum. The
commutative diagram

Ui −−−−→ V
⏐
⏐
�

⏐
⏐
�

Xi −−−−→ Spec(k)

induces a commutative diagram of fundamental groups

π1(Ui ,�) −−−−→ π1(V ,�)
⏐
⏐
�

⏐
⏐
�

π1(Xi ,�) −−−−→ π1(k,�).

The map on the left is bijective, because Xi is regular and Xi �Ui has codimension two [49,
ExposéX,Corollary 3.3]. The lowermap is bijective aswell, because Xi is local henselian [49,
Exposé X, Théorème 2.1]. It follows that the kernel N ⊂ π1(V ,�) for the map on the right
is isomorphic to G, and that both Hi = π1(Ui ,�) are sections for π1(V ,�) → π1(k,�).
Any two sections differ by a homomorphism π1(k,�) → N . The latter must be zero, by
assumption on the field k. In turn, H1 = H2.

Now suppose that R ⊂ AG is finite and Frac(R) ⊂ Frac(AG) is Galois, say of degree
d ≥ 1. To check that Frac(R) ⊂ Frac(A) is Galois, it suffices to extend each Frac(R)-
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automorphism ϕ : Frac(AG) → Frac(AG) to an automorphism ϕ′ : Frac(A) → Frac(A).
Indeed, the group H of automorphisms of Frac(A) over Frac(R) then contains at least dp
elements, obtained as products of extension ϕ′ and σ ∈ G. Since [Frac(A) : Frac(R)] = dp,
we find that Frac(R) ⊂ Frac(A) is Galois. The desired extensions ϕ′ do exist, because then
the morphism ϕ extends to the integral closure AG of R with respect to R ⊂ AG , and thus
to A. �	
Remark 3.5 (i) We do not know whether the conclusion of Theorem 3.4 (ii) holds without
the additional hypothesis on the field of representatives k.

(ii) We do not know of an example of an action of G = Z/pZ on A = k[[u1, . . . , un]]
ramified precisely at the origin where Frac(AG)/Frac(R) is not separable. When the action
is not ramified precisely at the origin, it is easy to find examples where Frac(AG)/Frac(R)

is not separable. Indeed, if σ(ui ) = ui , then ui ∈ AG and xi := Norm(ui ) = u p
i ∈ R.

4 The effective model of a group action

Let R := k[[x1, . . . , xn]], and let L/Frac(R) be a Galois extension of degree p. Let B denote
the integral closure of R in L . It is natural to wonder what conditions can be imposed on the
Galois extension L/Frac(R) to guarantee that the ring B is simple, say B � R[u]/( f (u))

for some easily described f (u) ∈ R[u]. To give an answer to this question that will be useful
in 6.8 in our study of normal forms of Z/pZ-actions on A = k[[u1, . . . , un]], we introduce
below the notion of effective model of a group action.

Let G denote the Galois group of L/Frac(R). Clearly, G also acts on B. Letting S =
Spec R and Y := Spec B, we obtain an action of the constant group scheme GS/S on Y/S.
Assume now that Y/S is flat. Then, associated with this action on Y/S is a uniquely defined
group schemeG/Swith an S-actionG×SY → Y . Thegroup schemeG/S is called the effective
model of the action of G on Y . It was considered first by Raynaud in [48, Proposition 1.2.1],
in cases where R is a discrete valuation ring. This theory was extended, still in the case where
R is a discrete valuation ring, to cases where GS is not constant, and even not finite over S,
in [52] and [53]. In the case where GS is constant, some cases where the base scheme S is
not of dimension 1 are considered in [1, 2.2]. The main result in this section is Theorem 4.3
below, which proves the existence of the effective model when GS/S is constant but the base
S is not necessarily of dimension 1.

Fix a noetherian base scheme S and some prime number p > 0. Let Y → S be a finite flat
morphism of degree p. Denote by Aut(Y/S) the group of S-automorphisms of Y . Consider
the group-valued functorAutY/S , withAutY/S(T ) := Aut(YT /T ) for any S-scheme T . Using
the existence of Hilbert schemes [19, 221-19], such functor is shown to be representable, by
a scheme denoted AutY/S/S. In our situation, we will need to use the fact that the structure
morphism AutY/S → S is affine. For convenience, we recall a proof of this fact below. This
proof can be easily modified to also give a proof of the existence of AutY/S/S.

Lemma 4.1 The structure morphism AutY/S → S is affine.

Proof The question is local in S, so it suffices to treat the case where the schemes S =
Spec(R) and Y = Spec(B) are affine. Furthermore, we may assume that B admits a basis
b1, . . . , bp ∈ B as R-module, and that b1 = 1B . Let GL(B) = GLp,R be the group scheme of
R-linear automorphisms. Its underlying scheme is the spectrum of the localization R[Ti j ]det,
where T11, . . . , Tpp are p2 indeterminates and det = det(Ti j ) is the determinant of the
matrix (Ti j )1≤i, j≤p. We have a canonical monomorphism AutY/S ⊂ GLp,R . To show that
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Moderately ramified actions in positive characteristic 1105

the scheme AutY/S → S is affine, it suffices to show that the monomorphism is a closed
embedding.

Let τ = (τi j ) be an R-linear map B → B. Write μ : B ⊗ B → B for the algebra multi-
plication, with μ(bi ⊗ b j ) = ∑

μki j bk . Then the linear map τ is an algebra homomorphism
if and only if μ ◦ (τ ⊗ τ) = τ ◦ μ and τ(b1) = b1. The latter means τ21 = . . . = τp1 = 0.
As to the former condition, we have (μ ◦ (τ ⊗ τ)) (bi ⊗ b j ) = ∑

k(
∑

r ,s τriτs jμkrs)bk and
(τ ◦ μ) (bi ⊗ b j ) = ∑

k(
∑

t μi j tτkt )bk . Comparing coefficients gives
∑

r ,s τriτs jμkrs =∑
t μi j tτkt for all 1 ≤ k ≤ n. Replacing the scalars τri by the indeterminates Ti j , we obtain

equations that define a closed subscheme inside GLp,R . Applying the above computations
over arbitrary R-algebras R′, we infer that this closed subscheme represents the functor
AutY/S . �	

Let now G be an abstract group of order p acting on Y via S-automorphisms. In other
words, G is endowed with a group homomorphism G → AutS(Y/S). The quotient scheme
Y/G exist, and we assume that the structure map Y/G → S is an isomorphism. Write GS/S
for the constant group scheme associated to G. The action of G on Y/S yields a natural
homomorphism of group schemes

f : GS → AutY/S . (4.2)

Since AutX/S → S is separated and GS → S is proper, the morphism GS → AutY/S

is proper, and its schematic image f (GS) ⊂ AutY/S is finite over S (use [20, Chapter II,
Corollary 5.4.3]).

Let s ∈ S be any point, and consider the natural morphism SpecOS,s → S. We denote by
f (GS) ⊗ OS,s the base change of f (GS) → S by SpecOS,s → S. Both the construction of
AutY/S andof the schematic closure of f (GS) commutewith the base changebySpecOS,s →
S. Let now s ∈ S be a regular point of codimension 1, so thatOS,s is a discrete valuation ring.
We are in a position to apply a theorem of Romagny [53, Theorem 4.3.4] to obtain that the
scheme f (GS)⊗OS,s is in fact a subgroup scheme of the group scheme AutY/S ⊗OS,s . The
group scheme f (GS)⊗OS,s over SpecOS,s is called the effectivemodel for theG-action at the
point s ∈ S. Our next theorem slightly extends this result. Note that Theorem 4.3.4 in [53] is
stated for group schemes G → SpecOS,s that need not be finite. The hypothesis in Theorem
4.3.4 that G/SpecOS,s is universally affinely dominant (see [53, 3.1.1]) is automatically
satisfied in our situation where we require G → SpecOS,s to be finite and flat. The same is
true for the hypothesis that G → SpecOS,s is pure (see [53, 2.1.1 and 2.1.3]).

Let ζ ∈ Zp denote a primitive (p − 1)-th root of unity, and define �p to be the subring
Z[ζ, 1/p(p − 1)] ∩ Zp of Qp . Note that all schemes S → SpecFp of characteristic p are in
fact schemes over Spec�p in a unique way, after composing with the natural homomorphism
�p ⊂ Zp → Fp .

Theorem 4.3 Let p > 0 be prime. Let S be a noetherian locally factorial scheme over �p.
Keep the above notation. In particular, let Y → S be a finite flat morphism of degree p.
Let G be an abstract group of order p acting on Y via S-automorphisms. Then there is a
finite flat S-group scheme G of degree p and a S-homomorphism h : G → AutY/S such
that, given any point s ∈ S of codimension at most 1, the base change of h over Spec(OS,s),
G ⊗ OS,s → AutY/S ⊗OS,s , induces an isomorphism of Spec(OS,s)-group schemes

G ⊗ OS,s −→ f (GS) ⊗ OS,s .

The pair (G , h) is unique up to unique isomorphism. Moreover, Y/S is a torsor for the G -
action if and only if the fiber Y ⊗ k(s) is a torsor for the action of G ⊗ κ(s) for each point
s ∈ S of codimension at most 1.
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1106 D. Lorenzini, S. Schröer

Extending Romagny’s terminology, we call the finite flat S-group scheme G , together
with its action on Y , the effective model for the G-action on Y . The proof of Theorem 4.3 is
postponed to 4.13. We start with several preliminary propositions.

Lemma 4.4 Let S be a noetherian scheme. Let U ⊂ S be a dense open subscheme which
contains all points of S which do not satisfy Serre’s Condition (S1). Let G1 → S and G2 → S
be two finite and flat morphisms. Let ϕ : G1 → G2 and ψ : G1 → G2 be two S-morphisms
such that ϕ|U and ψ|U are equal as morphisms from G1 ×S U to G2 ×S U. Then ϕ = ψ .

Proof The equality can be checked locally on the base. Thuswemay assume that S = Spec R
is affine, in which caseGi = Spec(Ai ) for some R-algebra Ai which are free of finite rank as
R-module, and the two given morphisms corresponds to morphisms ϕ∗, ψ∗ : A2 → A1 of
R-algebras. Since S is noetherian, the set Ass(R) is finite. Thus the Prime Avoidance Lemma
lets us find f ∈ R such that Ass(R) is contained in the special open set D( f ) of S, and such
that D( f ) ⊆ U . Then f ∈ R is regular [20, Chapter IV, Corollary 3.1.9]. Since A1/R and
A2/R are free, the localization map

HomR(A2, A1) −→ HomR(A2, A1) f = HomR f ((A2) f , (A1) f )

is injective. It follows that ϕ∗ = ψ∗. �	
Let (FFG/S) denote the category of finite flat group schemes over S.

Proposition 4.5 Let S be a noetherian scheme. Let U ⊂ S be a dense open subscheme and
consider the restriction functor (FFG/S) → (FFG/U ).

(i) If U contains all points of S which do not satisfy Serre’s Condition (S1), then the
restriction functor is faithful.

(ii) If U contains all points of S which have codimension at most 1 and all points which do
not satisfy Serre’s condition (S2), then the restriction functor is full.

Proof (i) Follows immediately from Lemma 4.4.
(ii) Let G1,G2 be two finite flat group schemes over S, and ϕU : (G1)U → (G2)U be a

homomorphism over U . We have to extend it to S. Since S is noetherian, there is a maximal
open subset overwhichϕU extends. It suffices to treat the casewhereU ⊂ S itself ismaximal.
Seeking a contradiction, we assumeU �= S and choose a generic point s in the closed subset
S � U . One easily sees that if (ϕU )U∩Spec(O S,s ) extends over Spec(OS,s), then it extends to
some ϕV over some open neighborhood V of s ∈ S. Using (i), we may shrink V so that ϕU
and ϕV coincide on the overlapU ∩V . Hence, ϕU extends toU ∪V , which is a contradiction.
This reduces us to the case where S = Spec(R) is local, and U ⊂ S is the complement of
the closed point s ∈ S. Then Gi = Spec(Ai ) for some Hopf R-algebra Ai , such that the
underlying R-modules are free of finite rank. The morphism ϕ that we seek corresponds to
an R-linear Hopf algebra map A2 → A1. Consider the free R-module M = HomR(A2, A1)

of finite rank and the corresponding coherent sheaf M . The long exact sequence of local
cohomology yields

�s(S,M ) −→ �(S,M ) −→ �(U ,M ) −→ H1
s (S,M ). (4.6)

By assumption, the local ring R has depth ≥ 2. Whence the outer terms vanish, and the
homomorphism of Hopf algebras ϕU extends to a homomorphism of R-modules ϕ : A2 →
A1. Arguing in the same way as for Lemma 4.4, one sees that the morphism ϕ is compatible
with the Hopf structures. �	

123



Moderately ramified actions in positive characteristic 1107

Proposition 4.7 Let S be a noetherian scheme. Let G be a finite flat S-group scheme, and
let Y be a finite flat S-scheme. Assume that there exists an open subscheme U of S such
that YU is endowed with a U-group scheme action μU : GU ×U YU → YU of GU . If U
contains all points of S that are of codimension at most 1 and all points of S which do not
satisfy Serre’s Condition (S2), then the given U-group scheme actionμU extends to a unique
S-group scheme action μ : G ×S Y → Y of G on Y .

Proof As in the proof for Proposition 4.5, it suffices to treat the case that S = Spec(R) is local,
and U ⊂ S is the complement of the closed point. Then Y = Spec(B) and G = Spec(A)

are given by R-algebras that are free of finite rank as R-modules. The desired group scheme
action μ : G × Y → Y corresponds to a linear map B → A⊗R B satisfying certain axioms.
Consider the free R-moduleM = HomR(B, A⊗R B); arguing with a short exact sequence in
local cohomology like (4.6), we see that the desired homomorphism exists. The uniqueness
of the extension follows from Lemma 4.4. �	
Proposition 4.8 Let S be a noetherian scheme. Let G be a finite flat S-group scheme, and let
Y be a finite flat S-scheme endowed with a S-group scheme action μ : G ×S Y → Y . If for
each point s ∈ S of codimension at most 1, the fiber Y ⊗ κ(s) is a torsor over G ⊗ κ(s), then
Y is a G -torsor.

Proof Wehave to show that the canonicalmapμ×pr2 : G×SY → Y×SY is an isomorphism.
The question is local, so we may assume that S = Spec(R) is the spectrum of a local ring,
and write Y = Spec(B) and G = Spec(A). Let f : B ⊗R B → A ⊗R B be the resulting
map between free modules of finite rank, and consider its determinant det( f ) ∈ R. Suppose
the latter is not a unit, and choose a minimal prime ideal p ⊂ R annihilating R/ det( f )R.
Replacing R by the localization Rp, we arrive at the situation that det( f ) is invertible precisely
outside the closed point s ∈ S = Spec(R). By Krull’s Principal Ideal Theorem, the point
s ∈ S is of codimension at most 1. By assumption, the class of det( f ) in κ(s) is nonzero,
contradiction. �	
Remark 4.9 The above propositions might be known to the experts, but we did not find
an appropriate reference for them in the literature. Lemme 2 in [42], stated without proof,
asserts that the restriction functor induces an equivalence of categories between the category
of torsors under G /S and the category of torsors under GU/U , for any dense open setU of a
regular noetherian scheme S which contains all points of codimension 1 in S. This statement
is proved in [38, 3.1].

4.10 Denote by (FFGp/S) the full subcategory of (FFG/S) consisting of all finite flat S-
group schemes of degree p. According to [62, Theorem 1], such group schemes G/S take
as values commutative groups annihilated by p. To apply further results of [62], we assume
now that the base scheme S is a scheme over Spec�p .

Certain elements wi ∈ �p , 1 ≤ i ≤ p are introduced in [62] on page 9, with the property
that wi ≡ i ! modulo p. When S → Spec�p is given, we also denote by wi the image
of wi in �(S,OS). Consider now triples (L , α, β), where L is an invertible sheaf on the
scheme S, endowed with global sections α ∈ �(S,L ⊗(p−1)) and β ∈ �(S,L ⊗(1−p))

so that α ⊗ β = wp . Here the equality is obtained after identifying in the natural way
L ⊗(p−1) ⊗ L⊗(1−p) with OS .

An abelian sheaf GL
α,β , annihilated by p, is associated to such triple (L , α, β) as follows.

For any T /S, let

GL
α,β(T ) := {

x ∈ �(T ,L ⊗O S OT ) | x⊗p = α ⊗ x
}
,
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and the group law is given by the formula

x�x ′ := x + x ′ + β

wp−1
Dp(x ⊗ 1, 1 ⊗ x ′),

where Dp is a certain polynomial in two variables described in [62, page 14]. It satisfies

Dp(X1, X2) ≡ ∑p−1
i=1

(p−1)!
i !(p−i)! X

i
1X

p−i
2 modulo p. The sheaf GL

α,β is representable by a finite

flat S-group scheme of degree p, denoted by the same letter GL
α,β .We can assemble a category

(Trp/S) whose objects are triples (L , α, β) as above, and whose morphisms are homomor-
phisms between invertible sheaves respecting the sections. According to [62, Theorem 2],
we have:

Proposition 4.11 The functor (Trp/S) → (FFGp/S), given by (L , α, β) �→ GL
α,β , is essen-

tially surjective.

From this one deduces:

Proposition 4.12 Suppose that S is a locally factorial scheme over �p, and let U ⊂ S be an
open subscheme containing all points of codimension at most 1. Then the restriction functor
(FFGp/S) → (FFGp/U ) is an equivalence of categories.

Proof The restriction functor is fully faithful by Proposition 4.5, and we have to check that it
is essentially surjective. In light of Proposition 4.11, it suffices to extend an invertible sheaf
LU and the sections αU , βU ∈ �(U ,LU ) corresponding to a triple in (Trp/U ) to a triple
in (Trp/S). Write LU = OU (DU ) for some Cartier divisor DU . Since S is locally factorial,
we can view DU as a Weil divisor and write it as a difference DU = AU − BU of effective
Weil divisors. Denote by A and B the closures in S of AU and BU . These Weil divisors
over S correspond to invertible sheaves, giving the desired extension of the invertible sheaf
OU (DU ). The sections are extended as in the proof of Proposition 4.5. �	
4.13 Proof of Theorem 4.3. Since S is a disjoint union of integral schemes, it suffices to
prove the theorem when S is irreducible. Let f : GS → AutY/S be the morphism introduced
in (4.2). Let f (GS) ⊆ AutY/S denote the schematic image, which is finite over S. According
to [20, Chapter IV, Theorem 11.1.1], the set W ⊂ f (GS) of all points where the morphism
f (GS) → S is flat is open. Let V ′ be the complement in S of the image under f of the closed
set f (GS) � W . Since f is finite, V ′ is open. Then the induced map f (GS)V ′ → V ′ is flat.
Consider now

V := {
s ∈ S | f (GS) ⊗O S OS,s ⊂ AutY/S ⊗O SOS,s is a subgroup scheme

}
.

We claim that V is open in S, and that f (GS)V is a subgroup scheme of (AutY/S)V . This is a
local question, and we may assume that S = Spec(R) is affine, with f (GS) = Spec(A) and
AutY/S = Spec(B) (we use here the fact noted in Lemma 4.1 that AutY/S → S is affine).
Write A = B/I , and let p ⊂ R be the prime ideal corresponding to a point s ∈ V . The
comultiplication map B → B ⊗ B → A ⊗ A factorizes over A = B/I when localized at
p. Since I is finitely generated, there is an element a ∈ R � p so that the map factorizes
when inverting a. Then Spec(Ra) ⊂ S defines an open neighborhood over which the group
law for AutY/S defines a composition f (GS) × f (GS) → f (GS). In a similar way one
construct an open neighborhood over which the inversion map for AutY/S maps f (GS) to
itself. Summing up, V ⊂ S is open.

Now consider the open subset U := V ∩ V ′ of S. Define GU := f (GS)U . Then the
structure morphism GU → U is finite and flat, and the inclusion GU ⊂ (AutY/S)U is a
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subgroup scheme, necessarily closed. We claim that GU → U has degree p. Since U is
integral, it suffices to check this over the generic point η ∈ U . By construction of the
effective model, Gη = G is the constant group of order p.

According to Romagny’s result [53, Theorem A], U contains each point s ∈ S of codi-
mension one. Using Proposition 4.12, we extend GU to a finite flat group scheme G over S.
The canonical inclusion GU ⊂ Aut Y/SU gives an action on YU . By Proposition 4.7, this
action extends to an action of G on Y . This shows the existence of G and h : G → AutY/S .

The uniqueness also follows from Propositions 4.12 and 4.7, because for any other G ′ and
h′ : G → AutY/S as in the assertion, there is an open subset U0 ⊂ U containing all points
of codimension one with G ′|U0 = f (GS)|U0. If the fibers Ys are Gs-torsors for each point
s ∈ S of codimension one, then Y is a G -torsor, by Proposition 4.7. �	

Now let R be a noetherian domain of characteristic p > 0 and write S := Spec(R). Fix
some elements a, b ∈ R with a �= 0, and consider the R-algebra

B := R[u]/(u p − a p−1u − b),

endowed with the automorphism u �→ u + a of order p. This automorphism induces an
action of G = Z/pZ on the S-scheme Y := Spec(B). Let G /S denote the group scheme
Ga,0 = Spec R[z]/(z p − a p−1z) in the Tate–Oort classification.

Lemma 4.14 There is a natural S-action G ×S Y → Y of G /S on Y/S such that Y/S is
a torsor under G /S. Moreover, any torsor Z/S under G /S is isomorphic to a torsor of the
form Y/S.

Proof Indeed, the p-polynomial P(z) = z p −a p−1z defines an isogeny of the additive group
scheme, and yields a short exact sequence

0 −→ G −→ Ga,S
P−→ Ga,S −→ 0

in the fppf-topology. In turn, we get a long exact sequence

H0(S,OS)
P−→ H0(S,OS)

δ−→ H1(S,G ) −→ H1(S, Ga,S) −→ H1(S, Ga,S).

(4.15)

The element b ∈ R = H0(S,OS) yields, via the coboundary map δ, a G -torsor. According
to [18, Chapter III, Definition 3.1.3], the torsor is defined as the fiber for the G -torsor P :
Ga → Ga over the section b : S → Ga . We thus see that Y is the G -torsor coming from
b ∈ R via the coboundary map. The group scheme action G ×S Y → Y is just induced by
the addition in Ga , hence given by the homomorphism u �→ z + u.

The etale cohomology group H1(S, Ga,S) is isomorphic to the coherent sheaf cohomology
group H1(S,OS), and since S is affine, this latter group is trivial. Hence, since torsors under
G are in bijection with the elements of H1(S,G ), any torsor Z/S under G /S is isomorphic
to a torsor of the form Y/S. �	
Proposition 4.16 Suppose that R is a locally factorial noetherian domain of characteristic
p > 0. Then G /S and the S-action G ×S Y → Y in Lemma 4.14 is the effective model for
the action of G = Z/pZ on Y/S.

Proof Since the G -action on the torsor Y is faithful, the canonical map G → AutY/S is
a monomorphism. The structure morphism G → S is finite, and AutY/S → S is affine
(Lemma 4.1). It follows that G → AutY/S is proper, hence a closed embedding by [20,
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Chapter IV, Proposition 18.12.6]. Being flat, the morphism G → S has the going-down
property, hence the generic fiber Gη is dense in G . By assumption, the scheme S = Spec(R)

is normal, whence contains no embedded component, and the same holds for G , because it
is the spectrum of R[z]/(z p − a p−1z), whose underlying R-module is free. It follows that
G = Gη is schematically dense in G .

Our assumption that S is locally factorial and Theorem 4.3 show that the effective model
for the G-action exists. Theorem 4.3 also shows that the closed subscheme G of AutY/S is
the effective model if we show that when S has dimension 1, then G is equal to the schematic
image G ′ := f (GS) of the canonical homomorphism f : GS → AutY/S . Since GS is
reduced and Gη ⊂ GS is dense, the same properties hold for G ′. Both G and G ′ are the
closures of their generic fibers inside AutY/S . Hence, G = G ′. �	

5 Wild actions in dimension one

We further discuss in this section the notion of effective model for a group action in the case
where the base scheme S has dimension 1. The main result of this section is Theorem 5.1.

Let A := k[[u]] be a formal power series ring over a field k of characteristic p > 0. Let
σ : A → A be a k-linear automorphism of order p, generating a cyclic group G ⊂ Autk(A)

of order p. Let x := NA/AG (u) = ∏
σ∈G σ(u) be the norm element of the uniformizer u ∈ A.

It is obviously invariant under the action of G, so that k[[x]] ⊂ AG . Samuel’s Theorem [56]
ensures that this canonical inclusion k[[x]] ⊂ AG is an equality.

Since the field k contains only ζ = 1 as p-th root of unity, we find that σ(u) = u +
(higher order terms). It is standard to define the ramification break of the action as the largest
integer m > 0 such that the induced action of σ on A/mm+1

A is trivial. In particular, σ(u) =
u+um+1(unit), andm > 0 completely determines the higher ramification groupsG = G1 =
G2 = · · · = Gm � Gm+1 = (0).

Let now Y := Spec A and S := Spec AG . Using theG-action on A, we associate an action
of the constant group schemeGS on Y , given by the morphismGS ×S Y → Y corresponding
to the ring homomorphism A → A ⊗AG AG [s]/(s p − s) defined by

a �−→
p−1∑

i=0

⎛

⎜
⎝σ i (a) ⊗

∏

j∈Fp, j �=i

(s − j)

(i − j)

⎞

⎟
⎠ .

Consider now the effective model G /S for the action of GS on Y , as recalled in Sect. 4.
Since dim(S) = 1, the existence of the effective model is proved already in [53, Theorem
4.3.4], where one finds that G /S is a finite flat group scheme of degree p with an S-action
G ×S Y → Y . It is natural to ask when Y/S is a torsor for this action. The answer to this
question is given in our next theorem, which is the main result of this section.

Theorem 5.1 Keep the above notation. Let G /S be the effective model for the action of GS

on Y . The following are equivalent:

(i) The scheme Y/S is a torsor for the action of G /S.
(ii) The integer m + 1 is divisible by p.
(iii) There exists a uniformizer u ∈ A and an invariant element a ∈ AG such that σ(u) =

u + a.

Let ρ := (m+1)(p−1)/p. When these equivalent conditions are satisfied, the group scheme
G is isomorphic to the group scheme Gxρ ,0 in the Tate–Oort classification [62].
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Note that in characteristic p = 2, the equivalent conditions in Theorem 5.1 automatically
hold, because the ramification break m is known to be always odd in this case (the proof
of this fact is recalled in Lemma 5.5). Theorem 5.1 illustrates the fact that the geometric
condition Y/S is a torsor for the action of G /S implies an interesting condition on the
equation defining the automorphism σ . When the three equivalent conditions in Theorem 5.1
are satisfied, we call the action of G on A moderately ramified. We consider the case where
dim(A) > 1 in Definition 6.10 and impose an analogous geometric condition (MR5) in our
general definition of moderately ramified action. The proof of Theorem 5.1 is postponed to
5.6. We start by reviewing the relevant parts of the Tate–Oort classification [62].

5.2 Let R be any ring of characteristic p > 0, with Pic(R) = 0. Set S := Spec R. The Tate–
Oort classification [62], which we already discussed in 4.10, now takes the following simpler
form: a group scheme G /S whose structure sheaf is locally free of rank p is isomorphic to
Gα,β := Spec(R[T ]/(T p − αT )) for some elements α, β ∈ R with αβ = 0. As abelian
sheaves,

Gα,β(T ) := {
s ∈ �(T ,OT ) | s p = αs

}
,

with group law given by the formula s�s′ = s + s′ +β
∑p−1

i=1
1

i !(p−i)! s
i s′p−i . Moreover, two

group schemes Gα,β/S and Gα′,β ′/S are isomorphic if and only if there exists ε ∈ R× such
that α′ = ε p−1α and β ′ = ε1−pβ.

Proposition 5.3 Suppose that R is a domain. Then the generic fiber of Gα,β is étale if and
only if α �= 0 and β = 0. Assume in addition that R is normal. Then the generic fiber of Gα,β

is constant if and only if β = 0 and α = a p−1 for some non-zero a ∈ R.

Proof Taking the derivative of T p − αT , we see that α defines the locus where the structure
morphism Gα,β → Spec(R) is not smooth. Suppose that the generic fiber of Gα,β is étale.
Then α �= 0. Since R is a domain, the condition αβ = 0 ensures β = 0. The converse is also
clear.

Now assume that R is normal. Suppose that α = a p−1 for some non-zero a ∈ R. Then
we have a factorization T p − αT = ∏p−1

i=0 (T − ia). The roots ia are pairwise different.
Thus the generic fiber of Gα,β must be constant. Conversely, suppose that Gα,β is generically
constant. Then the polynomial T p − αT is separable, and its roots are contained in the field
of fractions F = Frac(R). In particular, there is a non-zero element a ∈ F with a p−1 = α.
Again it follows that β = 0. Since R is normal, we already have a ∈ R. �	
Corollary 5.4 Let G /S be a finite flat group scheme of degree p that is generically constant.
Then G /S is isomorphic to Gxr(p−1),0/S for some unique integer r ≥ 0.

Proof According to Proposition 5.3, the group scheme G is isomorphic to Gα,0 for some
power series of the form α = a p−1 with a ∈ R. Write α = ε · xe for some unit ε ∈ R and
some exponent e ≥ 0. Taking valuations of both sides, we see that e = (p − 1)r for some
r , so xe, and whence the unit ε, are (p − 1)-th powers. Since α is unique up to invertible
(p − 1)-th powers, we may assume α = xr(p−1), so that

G = Gxr(p−1),0 = Spec R[s]/(s p − xr(p−1)s).

The integer r ≥ 0 is unique, because it is the length of the intersection, inside the scheme
G , of the zero-section (defined by s = 0) and any non-zero section (defined by s = i xr for
some i ∈ F

×
p ). �	
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We now return to the initial set-up of this section where A = k[[u]] and R = AG =
k[[x]]. Recall that since Frac(A)/Frac(AG) is a Galois extension of degree p, we can find
z ∈ Frac(A), a power series f (x) = ∑∞

i=0 λi x i ∈ k[[x]]×, and an integer μ, such that
Frac(A) = Frac(AG)(z) and z satisfies the Artin–Schreier equation z p − z = x−μ f (x).
Since the extension A/AG is totally ramified, we find that μ > 0. It is well-known that there
exists such z with μ coprime to p. Indeed, write μ = pr − i for some uniquely defined
non-negative integers r and 0 ≤ i < p. The ring A contains the element s := zxr , which
satisfies the equation s p − xr(p−1)s = xi f (x). If i = 0, then the residue field of A contains
the class of s, and since the residue field extension is trivial, we find that λ0 is a p-th power
modulo (x), say λ0 = �p for some � ∈ k. It follows that we can consider z′ := z + �/xr ,
which satisfies z′p − z′ = x−μ f (x) − λ0/xμ + �/xr . After possibly finitely many similar
steps, we obtain a generator z for Frac(A) whose associated integer μ > 0 is coprime to p.
The following lemma is well-known, and the notation introduced in its proof will be used
in 5.6.

Lemma 5.5 Write as above Frac(A) = Frac(AG)(z) such that z satisfies the Artin–Schreier
equation z p − z = x−μ f (x) with μ > 0 coprime to p. Then μ = m.

Proof Write μ = pr − i with 0 < i < p. Let 0 < c < p be the unique integer such that
ci is congruent to 1 modulo p, and let d := (ci − 1)/p, so that ci − dp = 1. The element
s = zxr ∈ Frac(A) satisfies the integral equation

s p − xr(p−1)s = xi f (x).

Recall that A = k[[u]], so that ordu(s) = ordu(z) + pr = −μ + pr = i . Consequently,
the element sc/xd has valuation ordu(sc/xd) = ci − pd = 1. Thus the element sc/xd is a
uniformizer in A, and hence k[[sc/xd ]] = A. The group action z �→ z + 1 sends s to s + xr .
To determine the ramification break m, it remains to compute the valuation of

(s + xr )c

xd
− sc

xd
=

c−1∑

n=0

(
c

n

)

snxr(c−n)−d ,

and we leave this computation to the reader. �	
5.6 Proof of Theorem 5.1. The implication (iii)⇒(ii) is immediate: Suppose that σ(u) =
u + a for some invariant a. Then m + 1 := valu(σ (u) − u) = valu(a), and the latter is a
multiple of p since AG ⊂ A has degree p.

(ii)⇒(i): Suppose that m = pr − 1. As above, we can find z ∈ Frac(A) and a power
series f (x) = ∑∞

i=0 λi x i ∈ k[[x]]× such that Frac(A) = Frac(AG)(z) and z satisfies the
Artin–Schreier equation z p − z = x−m f (x). With the notation from the proof of Lemma 5.5,
we have i = c = 1 and d = 0, and we see that s := zxr ∈ A is a uniformizer, satisfying the
equation

s p − xr(p−1)s − x f (x) = 0.

Moreover, the G-action is given by s �→ s + xr . In light of the exact sequence (4.15), the
scheme Y = Spec(A) is a torsor for the group scheme Gxr(p−1),0. By Proposition 4.16, the
group scheme Gxr(p−1),0 and its associated action on Y is the effective model for the action
of G on Y .

(i)⇒(iii): Suppose that Y is a G -torsor. Corollary 5.4 shows that since G /S is a finite flat
group scheme of degree p that is generically constant, then it is isomorphic to Gxr(p−1),0/S
for some unique integer r ≥ 0. The case r = 0 is impossible, for then the closed fiber of G is
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étale, whereas the closed fiber of Y → S is non-reduced. Since Y is a G -torsor, Lemma 4.14
allows us to write that

A = k[[x]][s]/(s p − xr(p−1)s − g(x))

for some power series g(x) ∈ k[[x]]. The induced G-action is given by s �→ s + xr .
Using the hypothesis that A is formally smooth over k, we infer that the partial derivative of
s p − xr(p−1)s − g(x) with respect to x is a unit, and we deduce from the Implicit Function
Theorem that one may express x as a formal power series in s. In turn, the canonical map
k[[s]] → A is bijective. Setting u = s and a = xr , we see that (iii) holds. �	

We can generalize the last statement of Theorem 5.1 as follows.

Proposition 5.7 Let G and A be as at the beginning of this section. In particular, AG = R =
k[[x]], Y = Spec A, and S = Spec k[[x]]. Let m > 0 be the ramification break, and write
m + 1 = pr + i with some unique integers r ≥ 0 and 0 ≤ i < p. Then the effective model
G /S of the action of the constant group scheme GS on Y is isomorphic to Gxr(p−1),0/S.

Proof According to Corollary 5.4, the effective model of the G-action is of the form

G = Gx�(p−1),0 = Spec R[s]/(s p − x�(p−1)s)

for some integer � ≥ 1. We have to prove that � = r . In the group scheme Gx�(p−1),0/S, the
zero-section is given by the ideal (s). Let P denote the section defined by the ideal (s − x�).
By definition of the effective model when dim(S) = 1 (see proof of Theorem 4.3 in 4.13),
we have a closed immersion G = Gx�(p−1),0 ⊂ GLS(OY ). Thus the section P gives an S-
automorphism P0 : Y → Y , and this automorphism becomes the identity after tensoring
with R/m�

R , but is not the identity when tensoring with R/m�+1
R .

Consider now the morphism GS → G . Since this morphism is an isomorphism after
tensoring with Frac(R), we find that P ∈ G (S) lifts to a generator of GS(S). By definition
of the ramification break m ≥ 0, any generator of GS(S) corresponds to an automorphism
Y → Y such that this automorphism becomes the identity after tensoring with A/mm+1

A over
A, but is not the identity when tensoring with A/mm+2

A . It follows that this automorphism
becomes the identity after tensoring with R/mr

R over R, but is not the identity when tensoring
with R/mr+1

R . Applying this to the automorphism P0 shows that � = r . �	

6 Moderately ramified actions

Let A be a complete local noetherian ring that is regular, of dimension n ≥ 2 and char-
acteristic p > 0, with maximal ideal mA and field of representatives k. Let G be a finite
cyclic group of order p, and assume that A is endowed with a faithful action of G ramified
precisely at the origin (3.1), such that k ⊂ AG . Choose an admissible regular system of
parameters u1, . . . , un ∈ A with respect to the G-action (Proposition 2.9). Write as before
xi := NA/AG (ui ), i = 1, . . . , n, for the norm elements, and consider the norm subring
R := k[[x1, . . . , xn]] of A = k[[u1, . . . , un]]. The ring extension R ⊂ A is flat and finite of
degree pn (Proposition 2.3).

In this section, we introduce five cumulative assumptions on the G-action and on the
choice of parameters, which ensure that the ramification in Spec(A) → Spec(R) is “as
small and simple as possible”. This will lead to the notion of moderately ramified G-action
in Definition 6.10, for which we shall obtain structure results in Theorems 6.11 and 6.19.
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We show in Proposition 6.20 that when n = 2 and p = 2, and k has no separable quadratic
extensions, then everyG-action that is ramified precisely at the origin is moderately ramified.
The first condition on the G-action that we want to consider is:

(MR 1) The field extension Frac(A)/Frac(R) is Galois.

Aswe note in Theorem3.4, this condition often reduces to checking that the smaller extension
Frac(AG)/Frac(R) is Galois. Assuming from now on that (MR1) holds, we write H for the
Galois group of Frac(A)/Frac(R), which has order pn and contains G. Given p ∈ Spec A,
the notation Ip always refers in this section to the inertia group inside H .

Proposition 6.1 If (MR1) holds, then the Galois group H is generated by the inertia sub-
groups Ip ⊂ H , where p runs through the height one prime ideals in A.

Proof Consider the subgroup H ′ ⊂ H generated by the inertia subgroups Ip for all height
one prime ideals p of A. Set R′ := AH ′

and consider the morphism Spec R′ → Spec R.
Seeking a contradiction, we assume H ′ �= H , so that R′ �= R. Let q ⊂ R be a prime ideal of
height one. Then there exists a prime ideal p ⊂ A of height one such that q = R∩p. It follows
that the morphism Spec R′ → Spec R is unramified over q. On the other hand, the morphism
is ramified at the maximal ideal of R′, because the morphism is finite and the residue field
extension at themaximal ideal is trivial. Since R′ is normal and R is regular and themorphism
is finite, we can apply the Zariski–Nagata Purity Theorem to Spec R′ → Spec R and find that
the non-empty branch locus is pure of codimension one in Spec R. This is a contradiction. �	

A similar argument appears in [58, Théorème 2’], and we discuss this result further
in Remark 6.21. The next condition ensures that the inertia groups for the quotient map
Spec(A) → Spec(R) are as small and uniform as possible:

(MR 2) The inertia group Ip of every ramified prime ideal p ⊂ A of height one is cyclic
of order p, and normal in H .

Our next lemma shows that this condition is automatic in dimension two.

Lemma 6.2 If (MR1) holds and n = 2, then Condition (MR2) also holds, and H is elemen-
tary abelian of order p2.

Proof When n = 2, we find that |H | = p2 and so H is abelian. By the Zariski–Nagata
Purity Theorem applied to the ramified morphism Spec A → Spec R, there is at least one
prime ideal p of height one in A whose inertia group Ip ⊂ H is non-trivial. The group Ip
cannot be the whole group H , otherwise the morphism Spec A → Spec AG is ramified at p,
a contradiction. Hence, all non-trivial inertia subgroups Ip are cyclic of order p. Note that the
group H cannot be cyclic, since otherwise, it contains only one subgroup of order p, which
must coincide with G. This is not possible, since then G = Ip, contradicting the assumption
that G acts freely outside the closed point. Hence, H is elementary abelian of order p2. �	
Proposition 6.3 If (MR1) and (MR2) hold, then the Galois group H is elementary abelian
of order pn.

Proof We use here Proposition 6.1 and the fact that if H1 and H2 are two abelian subgroups
of H such that H1 ∩ H2 = (0) and such that both H1 and H2 are normal in H , then the
subgroup of H generated by H1 and H2 is also abelian and normal in H . To see this, simply
note that a commutator h1h2h

−1
1 h−1

2 with hi ∈ Hi belongs to both H1 and H2. �	
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Assume that (MR1) and (MR2) hold. Since H is elementary abelian of order pn , it
contains exactly (pn − 1)/(p − 1) distinct subgroups of order p. Proposition 6.1 let us
choose n distinct such cyclic subgroups G1, . . . ,Gn that are equal to the inertia subgroup of
some ramified prime ideal of height one in A and such that the natural map

G1 × · · · × Gn −→ H

is an isomorphism. Each subgroup Gi ⊂ H has a canonical complement, namely the sub-
group G⊥

i of H generated by the subgroups G j , j �= i .

Consider the corresponding ring of invariants AG⊥
i ⊂ A. Then Frac(AG⊥

i )/Frac(R) is a
cyclic extension of degree p, with Galois group H/G⊥

i , which we identify with the group
Gi . By hypothesis, Gi is the inertia group of a prime pi of A. It follows that the morphism
Spec(AG⊥

i ) → Spec(R) is ramified at pi ∩ AG⊥
i . By the Zariski–Nagata Purity Theorem, the

branch locus of Spec AG⊥
i → Spec R is of the form V (ai ) for some non-invertible element

ai ∈ R = k[[x1, . . . , xn]].
Consider the canonical homomorphism of R-algebras:

f : AG⊥
1 ⊗R · · · ⊗R AG⊥

n −→ A. (6.4)

Lemma 6.5 Keep the above notation, and assume that (MR1) and (MR2) hold. If the above
map f is an isomorphism, then the extension R ⊂ AG⊥

i is flat and the ring AG⊥
i is regular

for i = 1, . . . , n. Moreover, the elements a1, . . . , an form a system of parameters of R.

Proof Letdi denote the dimension of AG⊥
i ⊗R/mR as an R/mR-vector space.ByNakayama’s

Lemma, there exists a surjective homomorphismϕi : R⊕di → AG⊥
i of R-modules. Tensoring

with Frac(AG⊥
i ), which has degree p over Frac(R), we find that di ≥ p. Since A is free of

rank pn and f is an isomorphism, we have
∏n

i=1 di = pn , which implies that di = p for
all 1 ≤ i ≤ n. Since the R-module R⊕p is torsion-free, we conclude that the morphism
ϕi : R⊕p → AG⊥

i is an isomorphism for each i = 1, . . . , n. Hence, the extension R ⊂ AG⊥
i

is flat for all i = 1, . . . , n. It follows that the finite ring extensions AG⊥
i ⊂ ⊗n

j=1 A
G⊥

j are

flat. Since A is regular, [20, IV.6.5.1] ensures that the rings AG⊥
i are regular.

If a1, . . . , an does not form a system of parameters in R, then the ideal (a1, . . . , an) of R
is contained in some non-maximal prime ideal q of R. Let s ∈ Spec(R) be the corresponding
non-closed point. Since s belongs to the branch locus of each morphism Spec(AG⊥

i ) →
Spec R by hypothesis, the preimage of s in each Spec(AG⊥

i ) is a singleton, with purely
inseparable (possibly trivial) residue field extension. Since by hypothesis, Spec(A) is the
fiber product of the Spec(AG⊥

i ), we find that the preimage t of s in Spec(A) is also a singleton
with purely inseparable residue field extension. Hence, the inertia group at t for the action of
G is not trivial, contradicting the hypotheses that the action of G on A is ramified precisely
at the origin. �	

Remark 6.6 Let Yi := Spec(AG⊥
i ) and S := Spec(R). When n = 2, the morphism Yi → S

is flat since Yi is normal and, hence, Cohen–Macaulay. When n > 2, Condition (MR4)
discussed below will imply that Yi → S is flat. Note that the flatness would be automatic if
the order of the group were prime to the residue characteristic. Indeed, it is proved in [51] that
if R is a regular local ring and L/Frac(R) is a Galois extension with abelian Galois group H
of order coprime to the residue characteristic p of R, then the integral closure B of R in L is
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Cohen–Macaulay. It follows then that B/R is flat. An example is given in [51] that shows that
the hypothesis gcd(|H |, p) = 1 is needed in the proof of the statement. We note here that this
hypothesis is also needed for the statement to hold in the equicharacteristic case. For this, let
G = Z/pZ, and consider amoderately ramifiedG-action on A = k[[u1, . . . , un]], with norm
ring R, as in Theorem 6.19. Then the extension Frac(AG)/Frac(R) is elementary abelianwith
Galois group H of order pn−1, and AG is the integral closure of R in Frac(AG). But AG is
not Cohen–Macaulay when dim(A) > 2, in view of the facts reviewed in Proposition 3.2.

We do not know a counter-example to the Cohen–Macaulayness of the integral closure B
when H is cyclic of order p > 3. When p = 3, such a counter-example is presented in [31,
2.4], in the mixed characteristic case. In Example 8.6, we exhibit such a counter-example
when R is only assumed to beCohen–Macaulay and H is generated by a generalized reflection
(definition recalled in Remark 6.21). Under such weaker assumption on R, the case where
|H | is coprime to the residue characteristic of R is treated in [24, Propositions 13 and 15].

Our third condition below requires that the set of inertia subgroups for the morphism
Spec(A) → Spec(R) be as small as possible. This condition is motivated by the statement
of Proposition 6.7.

(MR 3) There are only n subgroups G1, . . . ,Gn ⊂ H which are equal to the inertia
subgroup of a ramified prime ideal of height one in A.

When (MR3) holds, up to the enumeration of the subgroups, the morphism (6.4) does not
anymore depend on the choice of subgroups.

Proposition 6.7 Keep the above notation, and assume that (MR1) – (MR3) hold. If the rings
AG⊥

i are Cohen–Macaulay for 1 ≤ i ≤ n, then the morphism f is an isomorphism.

Proof First, we verify that the ring A′ := AG⊥
1 ⊗R · · · ⊗R AG⊥

n is normal: Since R is regular
and AG⊥

i is Cohen–Macaulay, the extension R ⊂ AG⊥
i is flat for all i = 1, . . . , n [39, (21.D)

Theorem 51]. In turn, A′ is free as an R-module, hence Cohen–Macaulay. It remains to check
that A′ is regular in codimension one. Let q ⊂ R be a prime of height one. We claim that
all but possibly one of the extensions R ⊂ AG⊥

i are unramified over q. If this holds, we may
assume without restriction that Rq ⊂ (AG⊥

i )q is unramified for i = 2, . . . , n. Then A′
q is

étale over (AG⊥
1 )q and the latter ring is normal, which ensures that A′

q is normal too [39,
(21.E) (iii)]. Summing up, A′ is normal.

To verify the claim, let us assume ab absurdo that there exist two indices i �= j such

that R ⊂ AG⊥
i and R ⊂ AG⊥

j are ramified over q. Upon renumbering if necessary, we may
assume that i = 1 and j = 2. Since Frac(AG⊥

i )/Frac(R) is cyclic of degree p, there is only
one prime ideal p1 ⊂ AG⊥

1 and p2 ⊂ AG⊥
2 lying over q. Choose some prime ideal p ⊂ A

lying over q. Clearly, p lies over both p1 and p2. The extension R ⊂ A is ramified at p since
R ⊂ AG⊥

1 is ramified at p1. In particular, the inertia group Ip is non-trivial. By Condition
(MR3), we have Ip = G j for some index j ∈ [1, n]. Thus we can always assume that either
Ip �= G1 or Ip �= G2. Let us consider the case where Ip �= G1, the other one being similar.
Since Ip = G j for some index j ∈ [2, n], we find that by definition Ip ⊂ G⊥

1 . Hence,

AG⊥
1 ⊂ AIp . Since R ⊂ AIp is unramified at p ∩ AIp , we find that R ⊂ AG⊥

1 is unramified
at p1, which is a contradiction.

We proceed by proving that the localized morphism fq is bijective for the minimal prime
q = 0 inside R. We need to show that the map

Frac(A)G
⊥
1 ⊗Frac(R) . . . ⊗Frac(R) Frac(A)G

⊥
n = A′

q −→ Aq = Frac(A)
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is an isomorphism. It follows from the Galois correspondence that the image of this map is
the subfield of Frac(A) fixed by the subgroup G⊥

1 ∩ . . . ∩ G⊥
n . By construction, this latter

subgroup is trivial so the map is surjective. Since both source and targets are vector spaces
over Frac(R) of the same dimension, the map is an isomorphism, as desired.

Since A′ is a free R-module, the canonicalmap A′ → A′
q is injective, andwe conclude that

f : A′ → A is injective. In particular, A′ is integral, and we saw in the preceding paragraph
that Frac(A′) → Frac(A) is bijective. Since A′ is normal, the finite extension A′ ⊂ A must
be an equality. �	

Proposition 6.7 motivates our next condition.

(MR 4) The rings AG⊥
i are Cohen–Macaulay, for all 1 ≤ i ≤ n.

When (MR4) holds, we can use f to identify A with AG⊥
1 ⊗R · · · ⊗R AG⊥

n .

6.8 LetYi := Spec(AG⊥
i ) and S := Spec(R). Recall thatwe identify H/G⊥

i withGi through

the canonical bijection Gi → H/G⊥
i , so that we get a Gi -action on AG⊥

i and Yi/S. Let Gi/S
be the effective model of the Gi -action on Yi , as introduced in Theorem 4.3. This effective
model is a finite flat group scheme over S, and comes with an S-action Gi ×S Yi → Yi . We
can now formulate the last of our cumulative conditions.

(MR 5) The scheme Yi/S is a torsor for Gi/S, for all 1 ≤ i ≤ n.

When dim(S) = 1, a similar condition is considered in Theorem 5.1. Our next lemma shows
that Condition (MR5) is automatic when p = 2.

Lemma 6.9 If (MR1) – (MR4) hold and p = 2, then Condition (MR5) also holds.

Proof Set B = AG⊥
i for convenience. Condition (MR4) ensures that the extension R ⊂ B

is flat. Thus B is a free R-module of rank 2, and since R is local, we can find a basis for B
as an R-module of the form 1, u, where 1 is the unit element in R and u ∈ B. It follows that
there exist a, ξ ∈ R such that u2 = au + ξ . Then B = R[u]/(u2 − au − ξ), and the action
of G/G⊥

i is given by u �→ u + a. Proposition 4.16 describes the effective model Gi of the
action of Z/2Z on Yi = Spec(B), and shows that the latter scheme is a torsor under Gi . �	
Definition 6.10 We say that a G-action on A ismoderately ramified if it is ramified precisely
at the origin, and there exists an admissible regular system of parameters u1, . . . , un ∈ A
with associated norm subring R such that the five conditions (MR1) – (MR5) hold.

Theorem6.11below is ourmain structure result formoderately ramified actions, and shows
that such actions are easily described by explicit equations. Its converse in Theorem 6.19
shows in addition that moderately ramified actions are abundant.

Theorem 6.11 Let A be a complete local ring that is regular of dimension n ≥ 2, with field
of representatives k and endowed with a moderately ramified action of the cyclic group G of
order p. Then A, as a k-algebra with G-action, is isomorphic to

k[[x1, . . . , xn]][u1, . . . , un]/(u p
1 − a p−1

1 u1 − x1, . . . , u
p
n − a p−1

n un − xn),

where x1, . . . , xn are indeterminates, the elements a1, . . . , an ∈ k[[x1, . . . , xn]] form a sys-
temof parameters of k[[x1, . . . , xn]], and the natural automorphismσ of order p, which sends
ui to ui + ai for i = 1, . . . , n and fixes k[[x1, . . . , xn]], induces under this isomorphism a
generator of G.
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1118 D. Lorenzini, S. Schröer

The elements u1, . . . , un form an admissible regular system of parameters for the action
of 〈σ 〉, and the subring R := k[[x1, . . . , xn]] is identified with the norm subring for the
action of G. The Galois group H of the extension Frac(A)/Frac(R) is generated by the
automorphisms σi , i = 1, . . . , n, where σi (u j ) = u j if i �= j , and σi (ui ) = ui + ai . Let G⊥

i

be the subgroup generated by the elements σ j with j �= i . Then the invariant subring AG⊥
i

introduced in Lemma 6.5 is isomorphic to R[ui ]/(u p
i − a p−1

i ui − xi ).

Before we give the proof of Theorem 6.11 in 6.15, let us review the notion of fixed scheme
of the action and mention two corollaries. Let a finite group G act on a ring A. The fixed
point scheme of the G-action is the closed subscheme Spec A/I of Spec A, where I is the
ideal of A generated by the elements of the form σ(a) − a, for all a ∈ A and all σ ∈ G.
Assume now that A = k[[u1, . . . , un]] and G acts by k-automorphisms. Then I is the ideal
of A generated by the elements σ(ui ) − ui , for i = 1, . . . , n and σ ∈ G. When the action
of G = 〈σ 〉 on k[[u1, . . . , un]] is linear, with σ(ui ) := ζi ui for i = 1, . . . , n and ζi is a
non-trivial m-th root of unity for some m coprime to the characteristic of k, we find that the
fixed point scheme is smooth, with ideal I = (u1, . . . , un). Let us record now the following
immediate consequences of Theorem 6.11.

Corollary 6.12 Let A of dimension n be endowed with a moderately ramified G-action, as
in Theorem 6.11. Let I be the ideal of A defining the fixed point scheme of the action. Then
I ⊆ m

p
A and the length of A/I is a multiple of pn.

Proof Consider the normal form for the ring A obtained in Theorem 6.11. It is clear from the
explicit form of the action of G that I = (a1, . . . , an)A. Since ai ∈ mR and u p

i − a p−1
i ui −

xi = 0, we see that xi ∈ m
p
A, so that I ⊆ m

p
A. We computed in Proposition 2.3 that the

length of A/(x1, . . . , xn)A is equal to pn . It follows from the facts that a1, . . . , an ∈ R
belong to mR = (x1, . . . , xn)R and that A/R is flat, that the length of A/(a1, . . . , an)A as
an A-module is a multiple of the length of A/(x1, . . . , xn)A [45, 19.1]. �	

The proof for the following consequence is left to the reader:

Corollary 6.13 Let A1 and A2 be two regular complete local rings of positive dimension n1
and n2, respectively, of characteristic p > 0, and field of representatives k. Consider two
moderately ramified actions of G := Z/pZ, on A1 and A2. Then the natural diagonal action
of G on the completed tensor product A1⊗̂k A2 is also moderately ramified.

Next we explain how the torsor condition on Yi → S in (MR5) leads to a simple equation
for Yi .

Lemma 6.14 Consider amoderately ramifiedG-action on A and keep the notation introduced

in this section. Suppose that Yi → S is a Gi/S-torsor. Then AG⊥
i is isomorphic to R[ri ]/( fi )

for some polynomial fi (ri ) = r pi − a p−1
i ri − ξi with coefficients ai , ξi ∈ mR.

Proof It follows from the Tate–Oort classification recalled in Proposition 4.11 and 5.2 that
Gi/S is isomorphic to the group scheme Gαi ,βi /S, with Gαi ,βi = R[T ]/(T p − αi T ) for
some elements αi , βi ∈ R with αiβi = 0 (since wp = 0 when R has characteristic p). By
construction, the generic fiber of Gi → S is a constant group scheme. Since R is a normal
domain, we conclude from Proposition 5.3 that βi = 0, αi �= 0, and αi is a (p− 1)-th power
in R, say αi = a p−1

i with ai ∈ R.
It follows from Lemma 4.14 and Proposition 4.16 that the torsor Y → S is isomorphic to

the spectrum of R[ri ]/( fi ) for some polynomial fi (ri ) = r pi −a p−1
i ri −ξi . The coefficient ai
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is not a unit, because R ⊂ AG⊥
i is ramified at the origin. The element ξi becomes a p-th power

in the residue field k = R/mR , because the extension R ⊂ AG⊥
i has trivial residue field exten-

sion. Changing ξi by such p-th power from the field of representatives k ⊂ R, we obtain ξi ∈
mR . �	
6.15 Proof of Theorem 6.11. Suppose that the G-action on A = k[[u1, . . . , un]] is moder-
ately ramified, that is, Conditions (MR1) – (MR5) hold.We find fromProposition 6.7 that the
map f : AG⊥

1 ⊗R · · ·⊗R AG⊥
n → A introduced in (6.4) is an isomorphism, and that each AG⊥

i

is in fact regular (Lemma 6.5). We may then apply Lemma 6.14 to write AG⊥
i = R[ri ]/( fi )

for some polynomial fi (ri ) = r pi − a p−1
i ri − ξi with coefficients ai , ξi ∈ mR .

Lemma 6.16 Keep all the preceding assumptions. Then the following hold:

(a) The elements a1, . . . , an form a system of parameters of R.
(b) The elements ξ1, . . . , ξn form a regular system of parameters of R.
(b) The elements r1, . . . , rn form a regular system of parameters of A.

Proof Part (a) is immediate from Lemma 6.5. To proceed, note that the canonical map

R[r1, . . . , rn]/( f1, . . . , fn) −→ R[[r1, . . . , rn]]/( f1, . . . , fn)

from polynomial rings to power series rings is bijective. This is because the polynomials
fi (ri ) are monic, so both sides are free R-modules of the same rank, with corresponding
bases of monomials. Write a ⊂ R[[r1, . . . , rn]] for the ideal generated by the polynomials
f1, . . . , fr . Using Proposition 6.7we get an identification A = R[[r1, . . . , rn]]/a. The partial
derivatives are

∂

∂x j
(r pi − a p−1

i ri − ξi ) = ∂ai
∂x j

a p−2
i ri − ∂ξi

∂x j
, and

∂

∂r j
(r pi − a p−1

i ri − ξi ) = a p−1
i .

(6.17)

Consider the Jacobianmatrix J ∈ Matn×2n(k[[x1, . . . , xn, r1, . . . , rn]])of partial derivatives.
Since A is regular, this matrix has maximal rank when its entries are reduced modulo the
maximal ideal (use the Jacobian Criterion as in [44, Theorem on page 429, and Remark 1
on page 431]). So the same holds for the n × n-matrix (∂ξi/∂x j )1≤i, j≤n ∈ Matn×n(R),
because ai ∈ mR . By the Implicit Function Theorem [8, Chapter IV, §4, No. 7, Corollary
to Proposition 10], the elements x1, . . . , xn can be expressed as formal power series in the
ξ1 . . . , ξn , which proves (b). Using the relation r

p
i −a p−1

i ri −ξi = 0, the elements x1, . . . , xn
can be expressed as formal power series in the r1, . . . , rn . Thus r1, . . . , rn for a regular system
of parameters of A, and (c) is proved. �	
6.18 We can now conclude the proof of Theorem 6.11. We use the identification

k[[x1, . . . , xn]][r1, . . . , rn]/( f1, . . . , fn) −→ A

to obtain an explicit isomorphism (Z/pZ)n → H : Define an injective group homomorphism

(Z/pZ)n −→ AutR(A) ⊆ Gal(Frac(A)/Frac(R)) = H ,

(h1, . . . , hn) �−→ (ri �→ ri + hiai )1≤i≤n .

In the definition above, we identify Z/pZ with the prime subfield of k. Since |H | = pn , we
find then that this homomorphism is an isomorphism.
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The subgroup G of H corresponds under this isomorphism to a subgroup of order p
generated by some (h1, . . . , hn) ∈ (Z/pZ)n . Lemma 3.3 shows that every coefficient hi is
non-zero. We thus have h p−1

i = 1 for i = 1, . . . , n. After replacing our choice of ai ∈ R
by hiai , we can assume that the subgroup G of H corresponds under the above bijection
with the diagonal subgroup, generated by (1, . . . , 1). With such choice, the generator of G
corresponding to (1, . . . , 1) acts via

ri �−→ ri + ai .

It is easy to compute the norms of ri ∈ A:

NA/AG (ri ) =
p−1∏

�=0

(ri + �ai ) = r pi − a p−1
i ri = ξi .

We replace our original regular system of parameters u1, . . . , un by the regular system of
parameters r1, . . . , rn . The norm elements x1, . . . , xn ∈ R for the initial regular system of
parameters are then replaced by ξ1, . . . , ξn . Both regular systems of parameters produce
the same norm subring R ⊂ A. After this change of parameters, we can write that A =
k[[u1, . . . , un]] and R = k[[x1, . . . , xn]], with

A = R[u1, . . . , un]/(u p
1 − a p−1

1 u1 − x1, . . . , u
p
n − a p−1

n un − xn).

Moreover, the elements (h1, . . . , hn) ∈ (Z/pZ)n = H act on A via ui �→ ui + hiai and G
is generated by the element corresponding to (1, . . . , 1). �	

We now state the expected converse to Theorem 6.11.

Theorem 6.19 Let n ≥ 2. Let k be a field of characteristic p > 0. Let R := k[[x1, . . . , xn]]
and let a1, . . . , an ∈ mR\{0}. Consider the ring

A := R[u1, . . . , un]/(u p
1 − a p−1

1 u1 − x1, . . . , u
p
n − a p−1

n un − xn).

(a) Then A is a regular complete local ring with maximal ideal (u1, . . . , un). The extension
Frac(A)/Frac(R) is Galois with Galois group H isomorphic to (Z/pZ)n, generated by
the automorphisms σi , i = 1, . . . , n, with σi (u j ) := u j if j �= i , and σi (ui ) := ui + ai .
We have R = AH .

(b) Assume now that the elements a1, . . . , an form a system of parameters in R. Let σ be
the automorphism of order p of A which sends ui to ui + ai , for i = 1, . . . , n and fixes
R (in other words, σ = σ1 · · · σn). Then the action of 〈σ 〉 on A is moderately ramified.

Proof (a) Clearly, R ⊂ A is a finite flat extension of degree pn , so dim(A) = dim(R) =
n by Going-Up and Going-Down. The fiber ring for this extension is A/mR A =
k[u1, . . . , un]/(u p

1 , . . . , u p
n ), which is local, so A is local by Hensel’s Lemma. Furthermore,

the residue classes of the xi vanish in the cotangent space mA/m2
A, so the latter is generated

by the residue classes of the ui . Hence edim(A) ≤ dim(A), so A is regular.
It is clear that we can exhibit pn automorphisms of A leaving R fixed: for each

(c1, . . . , cn) ∈ (Z/pZ)n , define σ(c1, . . . , cn) to be the R-automorphism of order p of
A which sends ui to ui + ciai , for i = 1, . . . , n. Hence, Frac(A)/Frac(R) is Galois, and we
obtained an explicit group homomorphism H := (Z/pZ)n → Gal(Frac(A)/Frac(R)).

Let us denote byGi the subgroup generated by σi , with σi (ui ) := ui +ai and σi (u j ) := u j

if j �= i . LetG⊥
i denote the subgroupof H generated by the groupsG j , j �= i . Clearly, the ring

of invariants AG⊥
i contains ui , and we obtain a natural ring homomorphism R[ui ]/( fi ) →
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AG⊥
i , which sends the class of ui to the class of ui . As in the preceding paragraph, one sees

that the source ring is a regular complete local ring with field of fractions of degree p over
Frac(R). It follows that this natural homomorphism is an isomorphism.

(b) Let G := 〈σ 〉. The fixed scheme of the G-action on X = Spec(A) is defined by the
ideal (a1, . . . , an) ⊂ A. Since we assume in (b) that a1, . . . , an ∈ R = k[[x1, . . . , xn]] is a
system of parameters, it follows that the action of G is ramified precisely at the origin. The
regular system of parameters u1, . . . , un ∈ A is admissible since the group G induces the
trivial representation on the cotangent spacemA/m2

A (Lemma 2.8). Clearly, xi = NA/AG (ui ),
so that R is indeed the norm subring of A associatedwith the admissible system of parameters
u1, . . . , un . It follows from (a) that Frac(A)/Frac(R) is Galois, showing that (MR1) holds.

Let us show now that each Gi is the inertia group of a height one prime ideal of A. Indeed,
let p be minimal prime ideal in A which contains ai . This ideal p has height one, and it is
clear that Gi ⊆ Ip. Since a1, . . . , an, is a system of parameters of A, we find that p cannot
contain a j , for any j �= i . It follows that no automorphism in H but those in Gi can induce
the identity on A/p. Hence, Gi = Ip, as desired.

Consider now a prime ideal p of height one in Awith Ip �= {id}. We are going to show that
Ip = G j for some j , which in particular implies that Conditions (MR2) and (MR3) hold.
Let τ ∈ Ip be a non-trivial element. Then the ideal I (τ ) of the fixed scheme is contained in
p. Since p has height one, it follows that I (τ ) can contain at most one of a1, . . . , an . We find
using our explicit description in (a) of the automorphisms of Frac(A) over Frac(R) that the
ideal I (τ ) is not trivial and contains at least one of a1, . . . , an since τ is not trivial. It follows
that we can assume that ai ∈ I (τ ). Considering again the descriptions of the automorphisms,
we see that this implies that τ ∈ 〈σi 〉 = Gi . It follows that Ip = Gi .

Consider now the isomorphism R[ui ]/( fi ) → AG⊥
i found in (a). It is clear that R ⊂ AG⊥

i

is finite and flat, so (MR4) holds. The scheme Spec AG⊥
i → Spec R is a torsor under the

group scheme Gi := Spec R[z]/(z p − a p−1
i z) and this group scheme is the effective model

of the action on Spec AG⊥
i , according to Proposition 4.16. Thus (MR5) holds. �	

There is one situation in which every action ramified precisely at the origin is moderately
ramified, namely when n = 2 and p = 2, and k does not admit any separable quadratic
extension. That Z/2Z-actions on k[[x, y]] are very structured was already recognized by
Artin in [4], leading to a description of the ring of invariants AG that we recall in Theorem 7.7.

Proposition 6.20 Let k be a field of characteristic p = 2 which does not admit any separable
quadratic extension. Then, in dimension n = 2, any G-action on A that is ramified precisely
at the origin is moderately ramified.

Proof Proposition 2.9 shows that A contains an admissible regular system of parame-
ters u1, u2, with norm ring k[[x1, x2]]. According to Theorem 3.4 (i), the field extension
Frac(AG)/k((x1, x2)), which has degree pn−1 = 2, is not purely inseparable. Hence it must
be Galois. We use our hypothesis on k with Theorem 3.4 (ii) to find that the extension
Frac(A)/k((x1, x2)) must be Galois as well. So Condition (MR1) holds. Then Lemma 6.2
shows that (MR2) holds. Hence, the Galois group H of order pn = 4 is Z/2Z × Z/2Z, and
this group has precisely three nontrivial cyclic subgroups, one of which must be G. Since the
action of G is ramified precisely at the origin, we find that G cannot be the inertia group in
H of a prime of height 1. Proposition 6.1 shows that H is generated by cyclic groups which
are inertia groups of primes of height 1. Thus H contains exactly two subgroups which are
inertia groups of primes of height 1, and Condition (MR3) holds. In dimension 2, Condition
(MR4) is always satisfied. Lemma 6.9 ensures that (MR5) holds. �	
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Remark 6.21 Let B be any noetherian local ring. A ring automorphism σ : B → B of finite
order is called a generalized reflection if (σ − id)(B) ⊆ (x B) for some regular non-unit
x ∈ B. In other words, the scheme of fixed points of σ in Spec(B) contains an effective
Cartier divisor. The automorphism σ is called a pseudo-reflection if (σ − id)(B) = (x B)

for some regular non-unit x ∈ B. In this case, the scheme of fixed points of σ in Spec(B)

is an effective Cartier divisor. When the order of σ is invertible in B, this latter definition is
equivalent to the more classical definition where one requires that σ acts on the cotangent
spacemB/m2

B through pseudo-reflections in the sense of linear algebra (see [6, (12) on page
168]).

Note that if σ : B → B is a generalized reflection (resp., a pseudo-reflection), then
the conjugates gσ g−1 and powers σm �= id, are also generalized reflections (resp., pseudo-
reflections), where g : B → B is any automorphism. Indeed, I (gσ g−1) = g(I (σ )), and
when n ≥ 2 is the order of σ , we have I (σ n−1) ⊆ · · · ⊆ I (σ 2) ⊆ I (σ ). Considering the
same chain of inclusions with σ replaced by σ−1, we find that all these inclusions are in fact
equalities.

Let now A be a complete regular local ring of dimension n ≥ 2 endowedwith amoderately
ramified action of Z/pZ, as in Theorem 6.11. Let u1, . . . , un ∈ A be as in the statement
of Theorem 6.11, and let R := k[[x1, . . . , xn]]. As in Theorem 6.11, Frac(A)/Frac(R) is
Galois of order pn , with Galois group H generated by elements σi , i = 1, . . . , n, such that
σi (ui ) = ui + ai , and σi (u j ) = u j if i �= j . It is clear from this expression for σi that
the ideal I (σi ) is equal to (ai A), and is thus principal. Since we assume that (a1, . . . , an)
is a system of parameters in R, each of these ideals is proper. It follows that the group H
is generated by pseudo-reflections. The next proposition shows that when only Condition
(MR1) holds (i.e., when Frac(A)/Frac(R) is Galois), then it is still possible to show that H
is generated by generalized reflections. This proposition is nothing but a reformulation of a
result of Serre [58, Théorème 2’].

Proposition 6.22 Let B be a regular noetherian local ring with maximal ideal mB. Let H
be a finite group of ring automorphisms of B, and let R := BH . Assume that B is a finitely
generated R-module. The ring R is then a noetherian local ring with maximal ideal mR,
and we assume also that the natural map R/mR → B/mB is an isomorphism. Then H is
generated by generalized reflections if R is regular.

Remark 6.23 Conjecture 9 in [29] strengthens Proposition 6.22 in certain cases. Indeed, let
B be a regular local ring with char(B/mB) = p > 0, and let G = 〈σ 〉 be a cyclic group of
order p acting on B by local automorphisms. With the definition of pseudo-reflection given
in this article, [29, Conjecture 9], states that: If BG is regular, then σ is a pseudo-reflection.
The authors of [29] prove this conjecture when p = 2 and p = 3.

Theorem 2, (a) implies (d), in [29] proves the converse of the statement of Conjecture 9
above: If σ is a pseudo-reflection, then BG is regular. We note below an example where σ

is a generalized reflection, but BG is not regular (see also Example 8.6). We do not have an
example of a generalized reflection acting on a regular ring B such that BG is not Cohen–
Macaulay, and it would be interesting to determine whether such example exists. In the case
where the order of σ is coprime to the residue characteristic of B, the invariant ring BG is
always Cohen–Macaulay [24, Proposition 13].

Theorem 7.14 lets us consider an action of G on A := k[[u, v]] which is not ramified
precisely at the origin, but such that the ring AG can still be completely described. Indeed,
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let R := k[[x, y]]. Let a, b ∈ mR with (a, b) a mR-primary ideal. Let μ ∈ mR such that
(a, μ) and (b, μ) are mR-primary ideals. Consider the ring

A := R[u, v]/(u p − (μa)p−1u − x, v p − (μb)p−1v − y).

Then A is a regular complete local ring with maximal ideal (u, v) (Theorem 6.19 (a)). The
extensionFrac(A)/Frac(R) isGaloiswithGalois group H isomorphic to (Z/pZ)2, generated
by the automorphisms σ1 and σ2, with σ1(u) := u+μa and σ1(v) = v, and σ2(v) := v+μb
and σ2(u) = u. We have R = AH . The morphisms σ1 and σ2 are both pseudo-reflections, but
the composite σ := σ1σ2 is only a generalized reflection: I (σ ) = (μa, μb). Let G := 〈σ 〉.
It follows that every prime ideal p of A containing μ is ramified over p ∩ AG . We claim
that the ring AG is not regular. Indeed, consider z := bu − av, with the relation f (z) :=
z p − (μab)p−1z − a p y + bpx = 0. Then AG = k[[x, y]][z]/( f ), and this latter ring is
singular at (x, y, z) (Theorem 7.14). Preliminary computations seem to indicate that the
graph of the minimal desingularization X → Spec AG does not depend on μ.

7 Complete intersection subrings

Let as usual A be a complete regular local noetherian ring of dimension n ≥ 2, characteristic
p > 0, with field of representatives k, and endowed with the action of a cyclic group G
of order p. The main result in this section is Theorem 7.7, which shows that for the class
of moderately ramified actions introduced in Definition 6.10, the ring AG can be described
when n = 2 in terms of generators and relations.

7.1 Let R := k[[x1, . . . , xn]]. Let a1, . . . , an ∈ mR be such that ai and a j are coprime if
i �= j . Let μ ∈ R\{0} be such that μ and ai are coprime, for i = 1, . . . , n. Consider the ring

A := R[u1, . . . , un]/(u p
1 − (μa1)

p−1u1 − x1, . . . , u
p
n − (μan)

p−1un − xn).

Theorem 6.19 (a) shows A is a regular complete local ring with maximal ideal (u1, . . . , un).
The extension Frac(A)/Frac(R) is Galois with Galois group H isomorphic to (Z/pZ)n ,
generated by the automorphisms σi , i = 1, . . . , n, with σi (u j ) := u j if j �= i , and σi (ui ) :=
ui + μai . We have R = AH .

Let σ be the automorphismof order p of Awhich sends ui to ui+μai , for i = 1, . . . , n and
fixes R (in other words, σ = σ1 · · · σn).When (μa1, . . . , μan) is a system of parameters of R,
then the action of G := 〈σ 〉 on A is moderately ramified (Theorem 6.19 (b)). Theorem 6.11
shows that any moderately ramified action of G corresponds to a ring A as above with μ = 1
and (μa1, . . . , μan) a system of parameters of R. When μ /∈ R∗, the action is not ramified
precisely at the origin. Our goal is to describe the ring of invariants AG explicitly in all cases
when n = 2.

Identify the Galois group H of Frac(A)/Frac(R) with the elementary abelian p-group
(Z/pZ)n , where an element (ν1, ν2, . . . , νn) corresponds to the R-algebra automorphism
given by u j �−→ u j + ν jμa j . Under our identification, (1, . . . , 1) corresponds to the gener-
ator σ of G.

Let s = (s1, . . . , sn) ∈ (Z/pZ)n be a non-zero element, and consider the subgroup Hs of
H of all elements of H perpendicular to s. In other words,

Hs :=
{

(ν1, ν2, . . . , νn) |
n∑

i=1

νi si = 0

}

.
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1124 D. Lorenzini, S. Schröer

Let

zs :=
⎛

⎝
∏

{i |si �=0}
ai

⎞

⎠
(

s1
u1
a1

+ · · · + sn
un
an

)

∈ A.

It is easy to verify that zs satisfies the following relation:

z ps −
⎛

⎝μ
∏

{i |si �=0}
ai

⎞

⎠

p−1

zs −
⎛

⎝
∏

{i |si �=0}
ai

⎞

⎠

p (

s1
x1
a p
1

+ · · · + sn
xn
a p
n

)

= 0.

The reader will check that h ∈ H is such that h(zs) = zs if and only if h ∈ Hs . In particular,
Frac(AHs ) = Frac(R)(zs) has degree p over Frac(R).

For convenience, let α := ∏
{i |si �=0} ai , and when si �= 0, let αi := α/ai . By definition,

α ∈ R, and αi ∈ R when si �= 0. With this notation, define f (z) ∈ R[z] by
f (z) := z p − (μα)p−1z −

∑

{i |si �=0}
siα

p
i xi .

Since f (zs) = 0 and the degree of zs over R is p,wefind that f (z) is irreducible inFrac(R)[z],
and also in R[z] by Gauss’ Lemma. Since R[z] is factorial because R is, we find that
R[z]/( f (z)) is a domain. We have a natural ring homomorphism j : R[z]/( f (z)) → AHs ,
which sends the class of z to zs . After tensoring with Frac(R), the resulting homomorphism
is surjective. It is thus also bijective, since the source and target have the same dimension over
Frac(R). Since both rings R[z]/( f (z)) and AHs are integral domains, the map j is injective.

Theorem 7.2 Let A be as in 7.1. Let H denote the Galois group of the associated extension
Frac(A)/Frac(R). Let Hs denote a subgroup of order pn−1 in H. Then the extension AHs

is isomorphic to the ring R[z]/( f (z)), where f (z) ∈ R[z] is given above. In particular, it is
flat over R. The group H/Hs acts on the ring AHs through pseudo-reflections.

Proof Since R[z]/( f (z)) is finitely generated and free over R, it is Cohen–Macaulay and,
hence, satisfies the property S2. We show below that R[z]/( f (z)) is regular in codimension
1. Then from Serre’s criterion, R[z]/( f (z)) is normal, and injects into AHs , which is also
normal, with same field of fractions. It follows that R[z]/( f (z)) → AHs is an isomorphism.

Since R is complete, we can identify R[z]/( f ) with k[[x1, . . . , xn, z]]/( f ). Consider the
partial derivatives of f :

fz = −(μα)p−1 and fxi = (μα)p−2z(μα)xi − siα
p
i , i = 1, . . . , n.

Suppose that p is a prime ideal in R[z] containing ( f ). Assume that the localization of
R[z]/( f ) at the prime ideal p/( f ) is not regular. Then, according to the Jacobian Criterion,
all the derivatives of f belong to p. In particular, fz ∈ p, and so μα ∈ p. We want to show
that the prime p/( f ) has height at least 2 in R[z]/( f ).

Assume first that p ≥ 3, and that si �= 0. Then the condition fxi ∈ p immediately implies
that αi ∈ p. In particular, αi is not a unit. Since α = aiαi = ∏

{ j |s j �=0} a j , and so there exists
� �= i such that s� �= 0 and a� ∈ p. But then from s� �= 0 and fx�

∈ p, it follows that α� ∈ p.
Hence, among the factors of α�, we can find am ∈ p for some m �= �. By hypothesis, the
ideal (a�, am) has height at least 2 since a� and am are coprime and, thus, ht(p) ≥ 2.

Assume now that p = 2. In view of the fact that μα ∈ p, we will consider two cases:
when α ∈ p, and when μ ∈ p. Let us start with the case where α ∈ p. If two or more of the
a j ’s that divide α belong to p, then as before ht(p) ≥ 2 and we are done. Thus we are reduced
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Moderately ramified actions in positive characteristic 1125

to consider only the case where ai ∈ p for some i with si �= 0 and a j /∈ p for all j �= i such
that s j �= 0. We show now that this case cannot happen. Recalling that α = αi ai , we find
using the product rule that fxi = z(μα)xi − siα2

i = z(μαi )xi ai + z(μαi )(ai )xi − siα2
i . From

fxi , ai ∈ p and αi /∈ p, we obtain that

zμ(ai )xi + siαi ∈ p. (7.3)

We conclude in particular from this last expression that z /∈ p.
Since ai divides α j when j �= i and s j �= 0, we find that s jα2

j x j ∈ p. By hypothesis,

f (z) := z2 − (μα)z − ∑
{ j |s j �=0} s jα2

j x j belongs to p, and so

z2 + siα
2
i xi ∈ p. (7.4)

We are now ready to conclude as follows. First, (7.3) shows that (zμ(ai )xi +siαi )
2 ∈ p. Using

that si = 1 = s2i and (7.4), we obtain that z2(1 + (μ(ai )xi )
2xi ) ∈ p. This is a contradiction,

since (1 + (μ(ai )xi )
2xi ) is a unit, and we noted above that z /∈ p.

Consider now the case where μ ∈ p. If ai belongs to p for some i , then ht(p) ≥ 2
by our hypothesis that μ is coprime to ai . So let us assume that ai /∈ p for all i with
si �= 0. From fxi ∈ p and αi /∈ p, we conclude that zμxi ai + siαi ∈ p whenever si �= 0.
In particular, z /∈ p. From the relation f = 0 we find that z2 + ∑

{i |si �=0} siα2
i xi ∈ p.

It follows that z2(1 + ∑
{i |si �=0}(μxi ai )

2xi ) ∈ p. This is a contradiction as before, since

(1+∑
{i |si �=0}(μxi ai )

2xi ) is a unit, and z /∈ p. This concludes the proof that R[z]/( f (z)) →
AHs is an isomorphism.

Pick any standard basis vector ei of (Z/pZ)n which does not belong to Hs (i.e., such that
si �= 0). Then the group H/Hs is cyclic of order p, generated by the image ei of ei , and acts
on AHs . It is easy to check that ei (zs) − zs = siμ

∏
s j �=0 a j , so that the ideal of the fixed

scheme of ei is I (ei ) = μ(
∏

s j �=0 a j )AHs , showing that ei is a pseudo-reflection as defined
in Remark 6.21. �	

In the definition of a moderately ramified action on a complete local regular noetherian
ring A of dimension n ≥ 2, Condition (MR5) imposes some structure requirement on n

subrings of AG , denoted AG⊥
i in 6.8, of rank p over R. Our next corollary implies that all

subrings of the form AHs of rank p over R satisfy the same structure requirement.

Corollary 7.5 Let A be a complete local regular noetherian ring of dimension n ≥ 2 and
characteristic p > 0, with field of representatives k. Assume that A is endowed with a
moderately ramified action of a cyclic group G of order p. Let H denote the Galois group
of the associated extension Frac(A)/Frac(R). Let Hs denote a subgroup of order pn−1 in
H. Then the extension AHs is isomorphic to a ring of the form R[z]/( f (z)), where f (z) =
z p − α p−1z − β, with α, β ∈ R. In particular, it is flat over R. The group H/Hs acts on the
ring AHs through pseudo-reflections.

Proof Theorem 6.11 lets us identify A with a ring of the form

R[u1, . . . , un]/(u p
1 − a p−1

1 u1 − x1, . . . , u
p
n − a p−1

n un − xn),

where R := k[[x1, . . . , xn]] and a1, . . . , an ∈ R is a system of parameters of R. Theorem 7.2
can then be applied. �	

Keep the notation introduced in 7.1. Recall that xi := NA/AG (ui ) = u p
i − (μai )p−1ui is

a norm element. In light of the G-action ui �→ ui + μai , the elements

zi j := aiu j − a jui , i �= j
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are also clearly G-invariant. We call these elements minor elements. Denoting by e1, . . . , en
the standard vectors of (Z/pZ)n and setting s = e j − ei , we find that zi j = zs (notation as
in 7.1). The minor elements satisfy the obvious relations:

z pi j − (μp−1a p−1
i a p−1

j zi j + a p
i x j − a p

j xi ) = 0, 1 ≤ i < j ≤ n, and
ai z jk − a j zik + akzi j = 0, 1 ≤ i < j < k ≤ n.

(7.6)

When n = 2, there is only one interesting element zi j , namely z12, and Theorem 7.2
shows that it generates AG . Our next theorem shows that AG in this case can be explicitly
described.

Theorem 7.7 Let A be a complete local regular noetherian ring of dimension two and char-
acteristic p > 0, with field of representatives k. Assume that A is endowed with a moderately
ramified action of a cyclic group G of order p. Then there exists a system of parameters a, b
in k[[x, y]] such that AG is isomorphic to the domain

k[[x, y, z]]/(z p − a p−1bp−1z − a p y + bpx).

Conversely, for any system of parameters a, b ∈ k[[x, y]], the above ring is the ring of
invariants of a moderately ramified G-action on some complete regular local noetherian
ring A of dimension two.

Proof The first part of the statement follows immediately from Corollary 7.5. For the con-
verse, we use the ring A := k[[x, y]][u, v]/(u p − a p−1u − x, v p − bp−1v − y) and apply
Theorem 6.19 to find that A is regular. �	
Remark 7.8 When p = 2 and n = 2, we noted in Proposition 6.20 that every action ramified
precisely at the origin is in fact alreadymoderately ramifiedwhen k has no separable quadratic
extensions. Putting this result together with Theorem 7.7, we recover Artin’s description in
[4] of the ring AG when n = 2, p = 2, and k has no separable quadratic extensions. Note
that this hypothesis on k does not appear in Artin’s description in [4], and we have not been
able to provide a proof of this description without such hypothesis on k.

Remark 7.9 Let A be a complete local regular noetherian ring of dimension two and charac-
teristic p > 0, with field of representatives k. Assume that A is endowed with a moderately
ramified action of a cyclic group G of order p, and consider the ring AG as described in
Theorem 7.7. Let I denote the ideal of AG generated by x and y. Then I �= I A ∩ AG .
Indeed, the element z ∈ AG does not belong to I since AG/I is isomorphic to k[z]/(z p). On
the other hand, since (a, b) ⊆ I and z = av − bu, we find that z ∈ I A ∩ AG . This example
generalizes Example 2 in [17]. Note that it follows that AG is not a direct summand of the
AG -module A (see [23, Proposition 1], or [24, Proposition 10]).

Remark 7.10 Axioms (MR1) and (MR2) in the definition of moderately ramified action
specify the existence of a regular system of parameters u1, . . . , un in the complete regu-
lar local ring A such that the associated norm subring R := k[[x1, . . . , xn]] is such that
Frac(A)/Frac(R) is a Galois extension of degree pn with elementary abelian Galois group
(see Proposition 6.3). In particular, any moderately ramified action σ : A → A comes
equipped with a subgroup of Autk(A) isomorphic to (Z/pZ)n . We note below that when
p = 2 = n, much more is true.

Assume that n = p = 2 and that k is algebraically closed. Let σ : A → A be amoderately
ramified action. Consider a regular system of parameters u, v such that A = k[[u, v]],
R := k[[x, y]] is the norm subring, and a, b ∈ k[[x, y]] are such that σ(u) = u + a and
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Moderately ramified actions in positive characteristic 1127

σ(v) = v +b. Clearly, there are then two non-trivial involutions in Autk(A) which commute
with σ , namely the involution which fixes v and sends u to u + a, and the involution which
fixes u and sends v to v + b. We show below that in fact, the centralizer of 〈σ 〉 in the group
Autk(A) contains infinitely many non-trivial involutions.

For each c ∈ k∗, consider the regular system of parameters u + cv, v, with norms X and
Y = y with respect to σ , where

X := (u + cv)(σ (u) + cσ(v)) = x + c2y + c(uσ(v) + vσ(u)).

For the regular system of parameters u + cv, v, the norm subring is k[[X , Y ]]. Since u, v

is an admissible regular system of parameters (Definition 2.2) and a, b ∈ (u, v)2, one
checks that u + cv, v, is also an admissible regular system of parameters, so the homo-
morphism k[[X , Y ]] → A has degree 4. Theorem 3.4 (i) shows that the field extension
Frac(AG)/k((X , Y )), which has degree pn−1 = 2, is not purely inseparable. Hence it
must be Galois. Since k is algebraically closed, Theorem 3.4 (ii) implies that the exten-
sion Frac(A)/k((X , Y )) must be Galois as well. We find that k[[x, y]] = k[[X , Y ]] if
and only if (uσ(v) + vσ(u)) ∈ k[[x, y]]. In our case, we can compute explicitly that
uσ(v) + vσ(u) = av + bu, which is nothing but the minor element z = z12 generating
AG over k[[x, y]]. Hence, the extension Frac(A)/Frac(R) and Frac(A)/k((X , Y )) are dis-
tinct, and thus correspond to two distinct elementary abelian subgroups H0 and Hc inAutk(A)

of order 4, intersecting in 〈σ 〉. It is not hard to check that the groups Hc, c ∈ k, are pairwise
distinct.

7.11 Let Aci denote the R-subalgebra of AG generated by the n − 1 minor elements
z12, . . . , z1n . We show in Theorem 7.14 that this subring is a complete intersection which
gives us a useful approximation of AG . Call the R-subalgebra generated by all minor ele-
ments zi j , 1 ≤ i < j ≤ n, the minor subring Amnr of AG . This subring captures the regular
locus of Spec(AG) (Corollary 7.15).

For the definition of the ring homomorphism below, regard zi j as an indeterminate, and
set ri j := z pi j − (μaia j )

p−1zi j − a p
i x j + a p

j xi , viewed as an element of the polynomial ring
R[zi j ]. Set B := R[z12, . . . , z1n]/(r12, . . . , r1n). Then we have a natural homomorphism of
R-algebras:

B = R[z12, . . . , z1n]/(r12, . . . , r1n) −→ A, (7.12)

whose image is Aci. We show in Theorem 7.14 that the homomorphism B → Aci is an
isomorphism.

Lemma 7.13 The ring B is a complete intersection, free of rank pn−1 over R. The ring
B[1/(μa1)] is normal.
Proof Consider the natural isomorphism

n⊗

j=2

R[z1 j ]/(r1 j ) −→ B := R[z12, . . . , z1n]/(r12, . . . , r1n)

Since the polynomial rings R[z1 j ] are domains and each r1 j is non-zero, each tensor factor
on the left and, hence, also B, is a complete intersection [37, Theorem 2]. Each tensor factor
is free of rank p over R, so B is free of rank pn−1 over R.

Consider now the fibers of the map Spec(R[z1 j ]/(r1 j )) → Spec(R). The Jacobian Cri-
terion tells us that the fibers over points outside of the closed subset V (μa1a j ) are etale.
Theorem 7.2 shows that Spec(R[z1 j ]/(r1 j )) is regular in codimension 1. Let q be a prime
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ideal of height 1 in B that does not contain μa1. Then q can contain at most one a j with
j �= 1. When q does not contain any a j , j �= 1, the map Spec B → Spec R is etale at q, and
thus Bq is regular. When q contains a j for some j �= 1, let Bj denote the natural subring of B
isomorphic to R[z1 j ]/(r1 j ). The map Spec B → Spec Bj is etale at q, and thus Bq is regular
since Bj is regular in codimension 1.We conclude that B[1/(μa1)] is regular in codimension
1. Since B is a complete intersection, it is Cohen–Macaulay and, hence, satisfies Condition
S2. It follows that B[1/(μa1)] is normal. �	
Theorem 7.14 The homomorphism B → Aci induced by (7.12) is an isomorphism. The ring
Aci is a complete intersection domain, with Aci[1/(μa1)] = AG [1/(μa1)]. When n = 2,
Aci = AG. When n ≥ 3, the ring Aci is not regular in codimension one, and Aci �= AG.

Proof Let us show first that the morphism B → A is injective. For this, let Bi j :=
R[zi j ]/(ri j ). We will show that both natural maps

B12 ⊗R · · · ⊗R B1n −→ Frac(B12) ⊗Frac(R) · · · ⊗Frac(R) Frac(B1n)

and

Frac(B12) ⊗Frac(R) · · · ⊗Frac(R) Frac(B1n) −→ Frac(A)

are injective. The first map is injective because each B1 j is free (and thus flat) over R. To
show that the second map is injective, we consider its source and target as finitely generated
vector spaces over Frac(R). We find that the dimension of the source is pn−1, and that the
image is the smallest subfield of Frac(A) generated by Frac(R) and z12, . . . , z1n . It is easy
to check that this subfield has dimension pn−1, since H12 ∩ · · · ∩ H1n = 〈σ 〉.

Since A is a domain and B → A is injective, we find that B is a domain. The injection
B ⊂ AG induces a bijection on field of fractions. As AG and B[1/μa1] are both normal
(Lemma 7.13), we find that the inclusion B[1/μa1] → AG [1/μa1] is an isomorphism.

The case n = 2 is treated in Theorem 7.2. To prove the last statement in Theorem 7.14,
suppose that n ≥ 3. Then Proposition 3.2 shows that AG is not Cohen–Macaulay. Being a
complete intersection, the ring B is Cohen–Macaulay. If B were regular in codimension one,
then it would be normal since it is S2, and the inclusion B ⊂ AG would be an equality, a
contradiction. �	
Corollary 7.15 The morphism of schemes Spec(AG) → Spec(Amnr) is an isomorphism out-
side the closed points.

Proof By definition, we have Aci ⊂ Amnr ⊂ A. Using Theorem 7.14, we infer that Amnr

becomes normal after inverting a1. But it also contains the other complete intersection sub-
rings, defined with zi1, . . . , ẑi i , . . . , zin for 1 ≤ i ≤ n. Whence Amnr becomes normal after
inverting any of the ai . Since a1, . . . , an ∈ R is a system of parameters, we conclude that
the localizations (Amnr)p are normal for any non-maximal prime ideal p. It follows that
Spec(AG) → Spec(Amnr) is an isomorphism outside the closed points. �	

8 The invariant ring in higher dimension

Let k be a ground field of characteristic p > 0, and consider the polynomial ring in 2n
variables

B := k[u1, . . . , un, a1, . . . , an],

123



Moderately ramified actions in positive characteristic 1129

endowed with the action of the cyclic group G of order p given by identifying a generator
of G with the k-linear automorphism σ of order p defined by

ui �−→ ui + ai and ai �−→ ai , 1 ≤ i ≤ n.

The subring BG of B is an object extensively studied in modular representation theory. In
this section, we review some known results on the structure of BG in Proposition 8.1, and
use them to obtain information on the invariant subring AG for certain moderately ramified
group actions on complete local rings A obtained as quotients of the completion B̂ of B
at (u1, . . . , un, a1, . . . , an). We also provide in Example 8.6 an example where the integral
closure of a Cohen–Macaulay local ring R in a Galois extension L/Frac(R) generated by a
generalized reflection of prime order p is not Cohen–Macaulay (see Remark 6.6 for a related
example).

Generators for the invariant ring BG have been determined. As in the previous section,
the norm elements and the minor elements

xi := NB/BG (ui ) = u p
i − a p−1

i ui , 1 ≤ i ≤ n,

zi j := aiu j − a jui , 1 ≤ i < j ≤ n

are clearly G-invariant. Additional natural G-invariant elements are the traces

tε := TrB/BG (uε1
1 · · · · · uεn

n ) =
p−1∑

ν=0

(
n∏

i=1

(ui + νai )
εi

)

,

where ε = (ε1, . . . , εn) ∈ N
n . For the purpose of generating BG , we recall below that it

suffices to consider only the n-tuples (ε1, . . . , εn) subject to the conditions

0 ≤ εi ≤ p − 1 and
n∑

i=1

εi > 2p − 2.

Let us call such a tuple relevant. Note that there are no relevant tuples when n = 2. When
n = 3 and p = 2, there is only one relevant tuple, namely ε = (1, 1, 1). The element tε ∈ BG

attached to a relevant tuple ε is called trace element.
Write B̂ for the formal completion of the polynomial ring B with respect to the maximal

ideal m = (u1, . . . , un, a1, . . . , an). Then B̂G coincides with the formal completion of BG

with respect to m∩ BG . Recall that the embedding dimension of a local noetherian ring C is
the vector space dimension of the cotangent spacemC/m2

C over the residue field κ = C/mC .

Proposition 8.1 The ring BG is generated as a k-algebra by the indeterminates ai , the norm
elements xi , the minor elements zi j , and the trace elements tε . These elements yield a basis
for the cotangent space mB̂G /m2

B̂G , which has dimension

edim(B̂G) = 2n +
(
n

2

)

+ pn −
(
2p + n − 2

n

)

+ n

(
p + n − 2

n

)

. (8.2)

Furthermore, the ring B̂G has depth n + 2.

Proof First note that the grading on the polynomial ring B induces a grading on the ring
of invariants BG ⊂ B. According to [27, Proposition 2.1, together with Lemma 2.2], these
gradings ensure that the minimal number of generators for the k-algebra BG coincides with
edim(B̂G).
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Richman conjectured that the indeterminates together with the norms, minors and traces
generate the ring of invariants [50, page 32]. This was established in full generality by
Campbell and Hughes [13]. Later, Shank and Wehlau showed that the elements form a
minimal set of generators, if one discards the non-relevant traces [60, Corollary 4.4]. In turn,
these yield a basis for the cotangent space mB̂G /m2

B̂G .
The indeterminates ai , together with the norm elements xi and minor elements zi j con-

tribute 2n+(n
2

)
members of the basis. It remains to count the number ofmonomials uε1

1 . . . uεn
n

corresponding to relevant tuples ε ∈ N
n . There are pn monomials that have degree ≤ p − 1

in each variable, and there are
∑2p−2

d=0

(d+n−1
n−1

) = (2p+n−2
n

)
monomials with total degree

≤ 2p − 2. Among the latter one sees that there are
∑p−2

d=0

(d+n−1
n−1

) = (p+n−2
n

)
excess mono-

mials that have degree ≥ p in a fixed variable ui . Our formula for edim(B̂G) follows.
The statement about the depth of the local ring of BG at the origin is proved by Ellingsrud

and Skjelbred [15, Theorem 3.1], under the assumption that the ground field k is algebraically
closed. In the notation of their result, we interpret F−1 to be the empty set, and note that F0
is the closed set V (a1, . . . , an) in Spec B, which as dimension n. Since depths are invariant
under ground field extensions and formal completions, the formula holds in general. �	

Recall that xi denote the norm from B to BG of the element ui . We now write
B̂ = k[[u1, . . . , un, a1, . . . , an]] and identify the norm of ui from B̂ to B̂G with xi . Thus,
B̂ contains R := k[[x1, . . . , xn]] as subring. Choose α1, . . . , αn ∈ mR , and consider the
elements

bi := ai − αi ∈ B̂.

Since (u1, . . . , un, a1, . . . , an) = (u1, . . . , un, b1, . . . , bn) we conclude that the b1, . . . , bn
are part of a regular system of parameters of B̂ (use [40, 17.4]). Let b denote the ideal of
B̂ generated by b1, . . . , bn . It follows from the equality of ideals just mentioned that the
ring A := B̂/b is regular of dimension n, with maximal ideal generated by the classes of
u1, . . . , un . Clearly, bi ∈ B̂G . The ring A = B̂/b has thus an induced action of G.

Lemma 8.3 The ring A is isomorphic to the ring k[[x1, . . . , xn]][u1, . . . , un]/I , where the
ideal I is generated by u p

i − α
p−1
i ui − xi for 1 ≤ i ≤ n. When α1, . . . , αn is a system of

parameters in R, then the G-action on A is moderately ramified.

Proof Follows from the Implicit Function Theorem, the definition of a moderately ramified
action and Theorem 6.19. �	

The elements b1, . . . , bn are G-invariant, so they define ideals in both B̂G and B̂. We have
a natural homomorphism

ϕ : B̂G/(b1, . . . , bn)B̂
G −→ (B̂/(b1, . . . , bn)B̂)G = AG .

Under suitable assumptions, this map is bijective, as we now show.

Proposition 8.4 Keep the above notation and assumptions. Assume that b1, . . . , bn is a reg-
ular sequence in B̂G, and that at least one αi ∈ mR is non-zero. Then the following holds.

(i) The map ϕ : B̂G/(b1, . . . , bn)B̂G → AG is an isomorphism.
(ii) We have edim(AG) = n + (n

2

) + pn − (n+2p−2
n

) + n
(n+p−2

n

)
.

Proof (i) The ring B̂G has dimension 2n and, according to Proposition 8.1, it has depth n+2.
Hence, the quotient ring B̂G/(b1, . . . , bn) acquires dimension n and depth 2. Since the ring
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Moderately ramified actions in positive characteristic 1131

extension BG ⊂ B is finite, the induced map on affine schemes Spec(B) → Spec(BG) is
surjective. This continues to hold for

Spec(B̂/(b1, . . . , bn)) −→ Spec(B̂G/(b1, . . . , bn)).

The scheme on the left is irreducible, whence the same holds for the scheme on the right.
Now consider the exact sequence

0 −→ N −→ B̂G/(b1, . . . , bn)
ϕ−→ AG −→ F −→ 0

defining the kernel N and cokernel F for ourmap in question. Clearly, the image ofϕ contains
the norm and minor elements, thus the cokernel F has finite length, by Corollary 7.15.
Moreover, its kernel N contains only nilpotent elements, because B̂G/(b1, . . . , bn) is n-
dimensional with only one minimal prime ideal. We conclude that N equals this minimal
prime ideal. If we could show that N = 0, then the morphism of schemes

Spec(AG) −→ Spec(B̂/(b1, . . . , bn))

is an isomorphism outside the closed points. Since B̂/(b1, . . . , bn) has depth 2, this ring must
be normal, and the map ϕ is bijective by Zariski’s Main Theorem.

To see that N = 0, we regard the ring of invariants BG as a finite algebra over the
polynomial ring k[x1, . . . , xn, a1, . . . , an] generated by the norms xi and the variables ai .
The scheme Spec(BG) is regular outside the image of the fixed scheme in Spec(B), the latter
being defined by the ideal generated by a1, . . . , an . It follows that

Spec(BG) → A
2n = Spec(k[x1, . . . , xn, a1, . . . , an])

is finite and flat, of degree pn−1, at least over the complement of the subscheme defined by
ai , 1 ≤ i ≤ n. The subscheme defined by bi = ai − αi , 1 ≤ i ≤ n is not contained in
this, because some αi is non-zero, and it follows that B̂G/(b1, . . . , bn) has degree pn−1 as
module over

R = k[[x1, . . . , xn]] = k[[x1, . . . , xn, a1, . . . , an]]/(b1, . . . , bn).
The same holds for AG . Tensoring with the fraction field of R, we deduce that N ⊗R

Frac(R) = 0 by counting vector space dimensions. Since B̂G/(b1, . . . , bn) has no embedded
components, this already ensures N = 0.

(ii) In light of (i), we merely have to check that the bi = ai − αi , 1 ≤ i ≤ n are linearly
independent in the cotangent space of BG . This indeed holds, because the xi = u p

i − aiui
vanish and the ai are linearly independent in the cotangent space of the ring B. �	

In dimension n = 3, we obtain the following unconditional result when the formal power
series α1, α2, α3, are polynomials.

Theorem 8.5 Let n = 3. Choose polynomials αi = αi (x1, x2, x3) ∈ k[x1, x2, x3], i =
1, 2, 3, such that α1, α2, α3 form a system of parameters in R = k[[x1, x2, x3]]. Then the
induced G-action on A := B̂/b is moderately ramified and the natural homomorphism
B̂G/(b1, b2, b3) → AG is bijective. In particular, AG is generated as a complete local k-
algebra by the norm elements x1, x2, x3, the minor elements z12, z13, z23 and the (p3 − p)/6
trace elements tε ∈ AG. Moreover, we have edim(AG) = 6 + (p3 − p)/6.

Proof In view of Proposition 8.4, we start by proving that b1, b2, b3 ∈ BG form a regular
sequence. Using the case r = 1 of Theorem 1.4 in [26], we have to check that the map

B −→ B⊕3, x �−→ (b1x, b2x, b3x)
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1132 D. Lorenzini, S. Schröer

induces an injective map H1(G, B) → H1(G, B⊕3) on group cohomology. Using the
decomposition H1(G, B⊕3) = H1(G, B)⊕3 and symmetry, is suffices to verify that the
map b3 : H1(G, B) → H1(G, B) is injective.

Let B� ⊂ B be the k[a1, a2, a3]-submodule generated by all monomials un11 un22 un33 with
exponents n1, n2, n3 ≤ p−1. Clearly, B� ⊂ B is G-invariant. According to [60, Proposition
6.2], the canonical map

k[x1, x2, x3] ⊗k H1(G, B�) −→ H1(G, B)

is bijective (in loc. cit. the symbols k[W ]� are defined at the end of Section 2 on page
310, and the symbol B is defined on page 318 before Lemma 6.1). Multiplication by the
element b3 = a3 − α3(x1, x2, x3) on the right corresponds to the k-linear mapping f =
id⊗a3 −α3(x1, x2, x3)⊗ id on the left. Let Fili ⊂ k[x1, x2, x3] by the vector subspace of all
polynomials of total degree≤ i . This is an ascending filtration that is exhaustive and discrete,
in the sense that

⋃
i Fil

i = k[x1, x2, x3] and Fili = 0 for i = −1. By abuse of notation
we denote the induced filtration Fili ⊂ k[x1, x2, x3] ⊗k H1(G, B�) by the same symbol.
Clearly, f (Fili ) ⊂ Fili+d , where d ≥ 1 is the total degree of α3(x1, x2, x3). Moreover, the
induced map f : Gri → Gri+d on the associated graded coincides with the multiplication by
α3(x1, x2, x3)⊗ id, and the latter is injective because α3 ∈ k[x1, x2, x3] is a regular element.
It follows that our original multiplication map b3 : H1(G, B) → H1(G, B) is injective
(compare for example [61, Lemma 1 (e)]). This shows that b1, b2, b3 ∈ BG form a regular
sequence. In turn, they form a regular sequence in the flat extension B̂G .

Now it follows from Proposition 8.4 that the map B̂G/(b1, b2, b3)B̂G → AG is bijective,
with indicated embedding dimension. The generators of B̂G are given in Proposition 8.1.
According to Lemma 8.3, the ring A := B̂/b equals

k[[x1, x2, x3, u1, u2, u3]]/(u p
1 − α

p−1
1 u1 − x1, u

p
2 − α

p−1
2 u2 − x2, u

p
3 − α

p−1
3 u3 − x3),

and the G-action given by ui �→ ui + αi is moderately ramified. �	
Example 8.6 Let A denote a complete noetherian regular local ring of dimension n and
characteristic p > 0, endowed with a moderately ramified action of a cyclic groupG of order
p. Then the ring AG is endowed with a group of automorphisms of order pn−1 generated by
generalized reflections of order p. Indeed, A is endowed with an elementary abelian group
of automorphisms H , and by construction, H/G acts on AG . In the presentation of A given
in Theorem 6.11, we find that the ideal I (σi ) of the fixed scheme of the pseudo-reflection
σi : A → A is ai A. Thus the image σ i : AG → AG of σi in H/G has an ideal I (σ i )

contained in ai AG (since ai ∈ AG ). In particular, σ i is a generalized reflection of order p.
We note in the example below that the ideal I (σ i ) is not principal in general.

Consider the case where n = 3. In this case, AG is not Cohen–Macaulay (use Proposi-
tion 3.2 (i)), and Theorem 8.5 gives us a set of generators that we can use to obtain information
about the ideal I (σ 1). We find that σ 1(z12) − z12 = −a1a2 and σ 1(z13) − z13 = −a1a3, so
that (a1a2, a1a3) ⊆ I (σ 1). From the relation z p23 − (a2a3)p−1z23 − a p

2 x3 + a p
3 x2, we find

that a1z
p
23 ∈ (a1a2, a1a3). Note now that I (σ2σ3) = (a2, a3)A. Since σ 1 = (σ 2σ 3)

−1, we
find that I (σ 1) ⊆ (a1)A ∩ (a2, a3)A ∩ AG (with (a2, a3)A ∩ AG ⊇ (a2, a3, z23)AG ).

Assume now that in addition p = 2. By considering the last generator of AG found in
Theorem 8.5, namely t := u1u2u3 + σ(u1u2u3), we find that σ 1(t) − t = a1z23 + a1a2a3.
Thus in this case I (σ 1) = (a1)(a2, a3, z23), which shows that I (σ 1) is not principal.

We note that Theorem 7.2 shows that the invariant ring (AG)〈σ 1〉 is a complete intersection
and, thus, is Cohen–Macaulay. Consider a Cohen–Macaulay local ring R and a Galois exten-
sion L/Frac(R) of prime order. Let B denote the integral closure of R in L . When the Galois

123



Moderately ramified actions in positive characteristic 1133

group of L/Frac(R) is generated by a generalized reflection σ : B → B, one may wonder
whether B is always Cohen–Macaulay. This question is given a partial positive answer when
the order of σ is coprime to the residue characteristic of R in [24, Proposition 15]. The above
example with (AG)〈σ 1〉 ⊂ AG shows that the answer to this question is negative in general.
We note however that (AG)〈σ 1〉 is Gorenstein, and that AG is shown in Theorem 9.6 to be
quasi-Gorenstein.

9 Class group and canonical class

Let A be a complete local noetherian ring that is regular of dimension n ≥ 2 and characteristic
p > 0, with a field of representatives k, and endowed with an action of a cyclic group G of
order p that is ramified precisely at the origin. Let AG be the ring of invariants, and denote
by Cl(AG) its class group of Weil divisors modulo linear equivalence. Since AG is normal,
the group Cl(AG) is trivial if and only if AG is factorial.

The canonical module KAG of AG is reflexive of rank one. Since Cl(AG) is naturally
isomorphic to the rank one reflexive class group,weobtain using this isomorphisma canonical
class [KAG ] ∈ Cl(AG). The main result of this section, Theorem 9.6, states that the canonical
class [KAG ] is trivial when the G-action is moderately ramified.

Let us start with a description of the group Cl(AG), which follows from a result of
Waterhouse [66], generalizing work of Samuel [55, Théorème (1)].

Proposition 9.1 Let A be as above, endowed with a G-action ramified precisely at the origin.
Let U1 denote the kernel of the map A∗ → k∗. Then Cl(AG) is isomorphic to H1(G, A∗),
and there is a short exact sequence

0 −→ UG
1 /(UG

1 )p −→ (U1/U
p
1 )G −→ Cl(AG) −→ 0.

Proof That Cl(AG) is isomorphic to H1(G, A∗) follows from [66, Corollary 1, page 545],
applied to the Galois extension Frac(A)/Frac(AG) of degree p with Galois group G. Indeed,
it is clear that A is the integral closure of AG in Frac(A), and that every minimal prime of AG

(and by this, [66] means the primes in AG of height 1, see proof of Theorem 1) are unramified
in A, since we assume that the G-action is ramified precisely at the origin. The definition of
P(AG , A) as the kernel of the natural map Cl(AG) → Cl(A) is given in the abstract of the
paper, and we find that since A is regular and, hence, factorial, P(AG , A) = Cl(AG).

Recall that the G-action is k-linear. Hence 1 → U1 → A∗ → k∗ → 1 is an exact
sequence of G-modules, and induces an exact sequence

1 −→ H1(G,U1) −→ H1(G, A∗) −→ H1(G, k∗).

Since the action on k∗ is trivial, H1(G, k∗) = Hom(G, k∗) = (0). It follows that

H1(G,U1) → H1(G, A∗) is bijective. The short exact sequence (1) → U1
p→ U1 →

U1/U
p
1 → (1) of G-modules gives an exact sequence

H0(G,U1)
p−→ H0(G,U1) −→ H0(G, (U1/U

p
1 )) −→ H1(G,U1)

p−→ H1(G,U1).

The map on the right is the trivial map, because the cohomology group H1(G,U1) is anni-
hilated by ord(G) = p. The assertion follows. �	

The group Cl(AG) is expected to be frequently non-trivial. When n = 2, this expectation
is implied by Theorem 25.1 in [32]. A direct proof that Cl(AG) is not trivial for certain
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1134 D. Lorenzini, S. Schröer

moderately ramified actions is presented in our next lemma. When n > 2, examples of non-
Cohen–Macaulay unique factorization domains are known (see [33, section 4], for a survey
on this matter, and [43]). In the context of ring of invariants for an action of G := Z/pZ on
A := k[[x1, . . . , xn]], Theorem 1.3 in [7] exhibits examples of complete local rings AG with
n ≤ p which are not unique factorization domains.

Let n = 3. Choose polynomials α1, α2 ∈ k[x1, x2], and α3 ∈ k[x1, x2, x3] such that
α1, α2, α3 form a system of parameters in R = k[[x1, x2, x3]]. Consider the associated
action of G on A := k[[u1, u2, u3]] as in Theorem 8.5. We obtain from Theorem 8.5 a
description of a minimal set of generators x1, x2, x3, w1, . . . , ws for AG , which includes the
minor element z12 := α1u2 − α2u1. Write AG = k[[x1, x2, x3, w1, . . . , ws]]/I , where I is
the ideal of relations between the generators of AG . Since we are considering a minimal set
of generators, we find that I ⊂ J 2, where J = (x1, x2, x3, w1, . . . , ws). Recall (7.6) that
z12 satisfies the relation

z p12 − (α1α2)
p−1z12 − α

p
1 x2 + α

p
2 x1 = 0.

Lemma 9.2 Keep the above notation. Suppose thatα p
1 x2−α

p
2 x1 can be factored in k[[x1, x2]]

into a product of at least p + 1 non-units. Then the ring AG is not factorial.

Proof In the ring AG , we have a factorization

α
p
1 x2 − α

p
2 x1 =

∏

i∈Fp

(z12 − iα1α2). (9.3)

We claim that each factor z12−iα1α2 is irreducible in AG . Indeed, if z12−iα1α2 is reducible,
there exists power series f , g, h ∈ k[[x1, x2, x3, w1, . . . , ws]] such that

z12 − iα1α2 = f g + h,

with f , g ∈ J and h ∈ I ⊆ J 2, since the images of x1, x2, x3, w1, . . . , ws form a minimal
system of generators. It follows from this expression for z12 that z12 ∈ J 2, which is a
contradiction.

Now assume that AG is factorial. Then the elements z12 − iα1α2 ∈ AG , i ∈ Fp , are prime
elements, and the existence and uniqueness of prime factorization shows that α p

1 x2 − α
p
2 x1

does not factor into more than p non-units. �	
It is easy to produce examples of elements a, b ∈ k[[x, y]] such that a p y − bpx factors

into a product of p + 1 elements. For instance, set a = x and b = y, to obtain a p y − bpx =
yx p − xy p = xy

∏
i∈F∗

p
(x − iy). When k contains a primitive p + 1-root of unity ζ , we can

take a = y and b = x , to obtain a p y − bpx = y p+1 − x p+1 = ∏
i (y − ζ i x).

We now briefly review some facts regarding canonical modules. Let S be any complete
local noetherian ring of dimension n with maximal ideal m and residue field k := S/m. Let
ES(k) be the injective hull of the residue field k. If M is any S-module, let Hi

m(M) denote
the i-th local cohomology group. Then the functor

M �−→ HomS(H
n
m(M), ES(k))

is representable by a module KS . This module is called the canonical module of S [22], or the
dualizing module [9]. By Yoneda’s Lemma, it is unique up to isomorphism. The S-module
KS is finitely generated, of dimension dim(KS) = n, and satisfies Serre’s Condition (S2).
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Moderately ramified actions in positive characteristic 1135

These statements are proved for instance in [22, 5.2, and 5.16]. Note that these hold without
the requirement that the ring be Cohen–Macaulay.

When S is Cohen–Macaulay, the canonical module is isomorphic to S if and only if S is
Gorenstein [22, 5.9]. In particular, if S = k[[x1, . . . , xn]], then KS is isomorphic to S.

9.4 Suppose that T is a complete local ring and φ : S → T is an injective local homomor-
phism of local rings, such that T is finite over S. Then KT := HomS(T , KS) is the canonical
module of T [22, 5.14].

Assume now that P ∈ Spec S is such that dim S = dim S/P + height(P). Then KSP is
isomorphic to (KS)P [22, 5.22]. The prime ideal P belongs to the support of KS if and only
if dim S = dim S/P + height(P) [3, 1.9]. In particular, if S is normal and P has height one,
we find that SP is regular and, thus, KSP is trivial. Hence, (KS)P is free of rank 1 for every
prime P of height one. The module KS satisfies Serre’s condition S2 [3, 1.10].

LetM be afinitely generated S-module, and recall the functorM �→ M∗ := HomS(M, S).
ThemoduleM is called reflexive if the naturalmapM → (M∗)∗ is an isomorphism. It follows
from the facts in the previous paragraph and [21, Theorem 1.9], that when S is normal, then
KS is reflexive.

Recall that a prime ideal p of height 1 in a normal ring S is reflexive, and that there is
a natural isomorphism of groups between the class group Cl(S) and the rank one reflexive
class group, which sends the class of p to the class of p [67, Theorem 1].

We return now to the ring A with a G-action as at the beginning of this section, and denote
by KAG the canonical module for the complete local ring AG . Since it follows from above
that KAG is reflexive, we can consider the element

[KAG ] ∈ Cl(AG),

called the canonical class of AG .

Remark 9.5 In general, the canonical class [KAG ] need not be trivial. Indeed, it is possible to
exhibit in dimension n = 2 diagonal actions on products of ordinary algebraic curves over an
algebraically closed field k such that the associated quotient singularities are rational singu-
larities [34, 4.1]. In general, these singularities are not Gorenstein since the only Gorenstein
rational singularities are the double points [63, 2.5].

Our next theorem shows that when AG is obtained from a moderately ramified action,
then its canonical class is trivial.

Theorem 9.6 Let A be a complete local regular noetherian ring of dimension n ≥ 2, charac-
teristic p > 0, and endowed with a moderately ramified action of a cyclic group G of order
p. Then the canonical class [KAG ] is trivial in Cl(AG).

The proof of Theorem 9.6 uses some methods from non-commutative algebra and is
presented after the proof of Proposition 9.11. Recall that the free A-module on the elements
of G can be endowed with an associative multiplication, turning it into a ring called the skew
group ring A ∗ G. On elements of the form aσ and bη with a, b ∈ A and σ, η ∈ G, the
multiplication is

aσ · bη := (aσ(b))(ση),

and this multiplication is extended to all elements by bilinearity. SinceG is abelian, the center
of this associative algebra is AG ∗ G. Using the inclusion AGe ⊂ AG ∗ G, where e ∈ G is
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the neutral element, we may regard the associative ring A ∗ G as an algebra over the central
subring AG , or over any subring R of AG .

The ring A is endowed with the structure of a left A ∗ G-module as follows: for c, a ∈ A
and σ ∈ G, let (cσ)a := cσ(a). The following injective homomorphism of AG -algebras

AG −→ EndA∗G(A), a �−→ (x �→ ax), (9.7)

is easily seen to be an isomorphism. Indeed, given ϕ : A → A in EndA∗G(A), we have
ϕ(σ · 1) = σ(ϕ(1)) = ϕ(σ(1)), so that ϕ(1) ∈ AG . We also have ϕ(a) = aϕ(1) for all
a ∈ A. We show below in Proposition 9.9 that in the case of moderately ramified actions the
natural homomorphism of AG -algebras

A ∗ G −→ EndAG (A), aσ �−→ (x �→ aσ(x)), (9.8)

is also an isomorphism.
Let R ⊂ AG be a normal noetherian subring such that AG is a finite R-algebra. Let

p ∈ Spec R. Let M be a finitely generated left A ∗ G-module. Then Mp and (A ∗ G)p are
well-defined Rp-modules. It turns out that (A ∗ G)p is in fact an Rp-algebra when endowed
with the natural multiplication (λ/s) · (λ′/s′) := (λλ′)/(ss′), where λ, λ′ ∈ A ∗ G and
s, s′ ∈ R\p. In addition, Mp is a left (A ∗ G)p-module. Recall that the A ∗ G-module M
is projective if the functor N �→ HomA∗G(M, N ) is exact, and that homological algebra in
module categories is the same over any ring, commutative or not (see for instance [54]).

Proposition 9.9 Keep the above notation. Assume that the G-action on A is unramified in
codimension one. Let R ⊂ AG be a normal noetherian subring such that AG is a finite
R-algebra.

(i) The R-modules AG, A, A ∗ G, and EndAG (A) are reflexive.
(ii) The homomorphism A ∗ G → EndAG (A) in (9.8) is an isomorphism.
(iii) For each p ⊂ R of height one, the left (A ∗ G)p-module Ap is projective.

Proof (i) According to [21, Theorem 1.9], a finitely generated R-module M �= 0 is reflexive
if and only if it satisfies Serre’s Condition (S2). Since R is local, this means depth(M) ≥ 2.
It follows that the reflexivity of M does not depend on the chosen subring R, as remarked in
[25, page 1094]. Applying this principle to R ⊂ A, we see that the R-module A is reflexive,
and it follows that A ∗ G is reflexive as well. To proceed, let g1, . . . , gr ∈ AG be a system
of module generators over R. Then we have a short exact sequence

0 −→ EndAG (A) −→ EndR(A) −→
r⊕

i=1

EndR(A),

where the map on the right sends an R-linear map f : A → A to the tuple of commutators
f gi − gi f . The two terms on the right are reflexive R-modules, that is, satisfy Serre’s
Condition (S2). Using local cohomology, we infer that the term on the left satisfies (S2),
whence is reflexive. Analogous arguments apply to EndA∗G(A).

(ii) For this, we regard A ∗ G, EndAG (A) and AG as modules over AG . These modules
are reflexive by (i). Hence Theorem 1.12 in [21] shows that it suffices to check that the
maps are bijective after localizing at each prime ideal p ⊂ AG of height one. So we may
replace AG by the localization (AG)p. By faithfully flat descent we even may replace it by
the strict henselization (AG)p ⊂ C . Since the G-action is free in codimension one, we get
an isomorphism A ⊗AG C � C × G = C p of C-algebras, with the permutation action of
G = Z/pZ.
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The first map in question takes the form (C × G) ∗ G → EndC (C × G). Since domain
and range are free C-modules of rank p2, it suffices to check that the map is surjective, by
Nakayama’s Lemma. Let σ, η ∈ G. Since matrix rings are generated by elementary matrices,
it suffices to check that the endomorphism that is zero on all standard basis vectors except
that (1, σ ) �→ (1, η) lies in the image. Indeed, it is the image of (1, η)σ−1 ∈ (C × G) ∗ G.

(iii) We have to show that Ext1(Ap, M) vanishes for each module M over the ring (A ∗
G)p. This Ext group can be computed with injective resolutions of M , or alternatively with
free resolutions of Ap. Being a finitely generated Rp-module, the associative ring (A ∗
G)p is noetherian, whence we may choose a free resolution with finitely generated terms.
Consequently, the formation of Ext1(Ap, M) commutes with flat base-change in Rp. Thus
we can reduce to the strict henselization Rp ⊂ D. Let p1, . . . , pr ⊂ AG be the prime ideals
lying over p ⊂ R. Then C = (AG) ⊗R D decomposes as C = C1 × . . . × Cr , where
(AG)pi ⊂ Ci are the strict henselizations. As above, we get A ⊗R D = C × G = C p , and
(C ×G)∗G = EndC (C p). As a left module, C p is a direct summand of EndC (C p), whence
a projective module. �	

Let S be a commutative ring, and let � be an associative S-algebra. Then the S-module
� carries the structure of a �-bimodule via a · x · b := axb, for all a, b, x ∈ �. Similarly,
the dual S-module HomS(�, S) becomes a �-bimodule, via

(a · φ · b)(x) := φ(bxa),

for all φ ∈ HomS(�, S) and a, b, x ∈ �. Any homomorphism of left �-modules � →
HomS(�, S) is of the form y �−→ yφ for some φ ∈ HomS(�, S). We leave the proof of our
next lemma to the reader.

Lemma 9.10 Any homomorphism� → HomS(�, S) of�-bimodules is of the form y �→ yφ
for some element φ ∈ HomS(�, S) with φ(xy) = φ(yx) for all x, y ∈ �.

As in [25, page 1095], the S-algebra� is called symmetric if the�-bimodulesHomS(�, S)

and � are isomorphic. In other words, the S-algebra � is symmetric if there exists some φ ∈
HomS(�, S) such that φ(xy) = φ(yx) for all x, y ∈ �, and such that � → HomS(�, S),
y �→ yφ, is bijective.

Proposition 9.11 Let k be a field of characteristic p > 0, and let R := k[[x1, . . . , xn]]. Let
a1, . . . , an ∈ mR be arbitrary elements, not all zero. Let A be the regular (see Theorem 6.19)
complete local noetherian ring given by

A := R[u1, . . . , un]/(u p
1 − a p−1

1 u1 − x1, . . . , u
p
n − a p−1

n un − xn).

Let G denote the subgroup of automorphisms of A fixing R generated by the natural auto-
morphism of order p which sends ui to ui + ai for i = 1, . . . , n. Then the R-algebra A ∗ G
is symmetric.

Proof We abused notation in the above statement and did not distinguish between ui ∈
R[u1, . . . , un] and its class in A. We will continue to do so in the proof below to lighten
our notation. First observe that the skew group ring A ∗ G is a free R-algebra of rank pn+1

because the groupG has order p and the R-algebra A is free of rank pn . In fact, the elements

ui11 · · · uinn σ i ∈ A ∗ G, 0 ≤ i1, . . . , in, i ≤ p − 1,
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form an R-basis. Following Braun [11], who studied the linear case, we consider the element
φ ∈ HomR(A ∗ G, R) given on the basis elements by

ui11 · · · uinn σ i �−→
{
1 if i1 = . . . = in = p − 1 and i = 0;
0 else.

Consider the map

A ∗ G −→ HomR(A ∗ G, R), y �−→ yφ. (9.12)

We claim this map is an isomorphism of A ∗ G-bimodules. Let us start by showing that it
is a homomorphism of bimodules. For this, it suffices to verify that φ(xy) = φ(yx) for all
x, y ∈ A ∗ G (Lemma 9.10).

Obviously it suffices to show that for any x ∈ A ∗ G and any basis element y =
u j1
1 · · · u jn

n σ j , we have φ(xy) = φ(yx). We proceed using induction on j1 + · · · + jn + j .
Assume that the conclusion holds for j1 + · · · + jn + j < t and let us prove it for
j1 + · · · + jn + j = t . When t > 1, it is always possible to write y = y1y2, where
y1 and y2 are two basis vectors to which we can apply the induction hypothesis. Then
φ(xy) = φ(x(y1y2)) = φ(y2(xy1)) = φ(y1(y2x)) = φ(yx). It remains to prove the case
where j1 + · · · + jn + j = 1. This means y = σ or y = us for some 1 ≤ s ≤ n. To show
that φ(xy) = φ(yx), it is easy to see that it suffices to treat the case where x := ui11 · · · uinn σ i

is itself a basis vector.
Consider first the case y = σ . We have σ(ur ) = ur + ar , which implies that

xy = ui11 · · · uinn σ i+1 and yx = (u1 + a1)
i1 · · · (un + an)

inσ i+1.

Expanding the factors of yx shows that yx = xy + h with h a linear combination of basis

vectors u
i ′1
1 · · · ui ′nn σ i+1 with 0 ≤ i ′r < ir for r = 1, . . . , n. In particular 0 ≤ i ′1, . . . , i ′n <

p − 1. Consequently φ(h) = 0, and we find that φ(yx) = φ(xy).
Now let y = us for some 1 ≤ s ≤ n. Using σ i (us) = us + ias , we get

xy = ui11 · · · uinn (us + ias)σ
i and yx = ui11 · · · uis+1

s · · · uinn σ i .

By definition, both φ(xy) and φ(yx) vanish if i �= 0. In the remaining case where i = 0, one
gets xy = yx , and we again find that φ(xy) = φ(yx).

It remains to check that the homomorphism (9.12) is bijective. Since the domain and range
are both finitely generated free R-modules of the same rank, it suffices to verify that this map
of R-modules is surjective. By Nakayama’s Lemma, it is enough to show that the induced
map

(A ∗ G) ⊗R R/mR −→ HomR(A ∗ G, R) ⊗R R/mR (9.13)

is surjective. Let A := A ⊗R R/mR = k[[u1, . . . , un]]/(u p
1 , . . . , u p

n ). Since the action of
G is given by σ(us) = us + as with as ∈ mR , we find that G acts trivially on A, and
(A ∗ G) ⊗R R/mR is isomorphic to the commutative algebra

A ∗ G = k[u1, . . . , un, σ ]/(u p
1 , . . . , u p

n , σ p − 1).

The right-hand side of (9.13) is isomorphic to the k-vector space Homk(A ∗ G, k), because
the R-module A ∗ G is finitely generated. Let φ̄ ∈ Homk(A ∗ G, k) denote the class of φ.

Let x := ui11 · · · uinn σ i be any basis vector, and consider the linear form ϕx : A ∗ G → k
such that ϕx (x) = 1 and ϕx (z) = 0 for any other basis vector z. We exhibit now an element
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y such that yφ̄ = ϕx . Consider the element y := u j1
1 · · · u jn

n σ j with the complementary
exponents

j1 := p − 1 − i1, . . . , jn := p − 1 − in, and j = p − i .

Then (yφ̄)(x) = φ̄(xy) = 1 by definition of φ. For every other basis vector z =
u
j ′1
1 · · · u j ′n

n σ j ′ , we have (yφ̄)(z) = φ̄(zy) = 0. It follows that A ∗ G → Homk(A ∗ G, k) is
surjective. �	
Proof of Theorem 9.6 Byhypothesis, A is a complete regular local domain of dimensionn ≥ 2
with field of representatives k and endowed with a moderately ramified action of the cyclic
group G of order p. Then Theorem 6.11 shows that the ring A, as a k-algebra with G-action,
is isomorphic to

k[[x1, . . . , xn]][u1, . . . , un]/(u p
1 − a p−1

1 u1 − x1, . . . , u
p
n − a p−1

n un − xn),

where x1, . . . , xn are indeterminates, the elements a1, . . . , an ∈ k[[x1, . . . , xn]] form a sys-
tem of parameters of k[[x1, . . . , xn]], and the natural automorphism of order p which sends
ui to ui + ai and fixes k[[x1, . . . , xn]] induces under this isomorphism a generator of G. As
usual, we let R := k[[x1, . . . , xn]]. Clearly R ⊂ AG ⊂ A, and we may thus consider the
skew group ring A ∗ G as an R-algebra.

Using 9.4 and the fact that KR = R because R is regular, we find that KAG =
HomR(AG , R). To prove Theorem 9.6, it thus suffices to show that there exists an iso-
morphism of AG -modules AG → HomR(AG , R). For this we need the following fact
(Proposition 2.4 (3) in [25]):

9.14 Suppose that S is a normal noetherian ring, and � is an associative S-algebra that is
finitely generated as S-module. Let M be a finitely generated left �-module such that M is
reflexive as an S-module, and such that given any prime ideal p ⊂ S of height one, Mp is
a projective �p-module. If the S-algebra � is symmetric, then the S-algebra End�(M) is
symmetric as well.

Let us now check that we can apply 9.14 to the case where S := R, � := A ∗ G and
M := A. Clearly R is normal since it is regular, and A ∗G is a finitely generated R-module.
According to Proposition 9.9, the R-module A is reflexive, and for each prime ideal p ⊂ R
of height one, the (A ∗ G)p-module Ap is projective. Finally, Proposition 9.11 shows that
A ∗ G is a symmetric R-algebra. Thus 9.14 can be applied and we find that the R-algebra
EndA∗G(A) is symmetric: In otherwords, we have an isomorphism of EndA∗G(A)-bimodules
between EndA∗G(A) and HomR(EndA∗G(A), R). Using (9.7), we find an isomorphism of
AG -algebras AG → EndA∗G(A). Hence, the AG -modules AG and KAG = HomR(AG , R)

are isomorphic, as desired. �	
Remark 9.15 Recall thatwhen a complete local ring isCohen–Macaulay, its canonicalmodule
is free of rank 1 if and only if the ring is Gorenstein [22, 5.9]. Local ringswith trivial canonical
class are called quasi-Gorenstein by Platte and Storch [47, page 5]. Theorem 9.6 provides
a rich supply of quasi-Gorenstein rings which are not Cohen–Macaulay when they have
dimension bigger than 2 (use Proposition 3.2 (i)).

Recall also that if a finite group G acts on a Cohen–Macaulay ring A and |G| is invertible
in A, then the ring AG is Cohen–Macaulay [24, Proposition 13]. A necessary and sufficient
condition for AG to be Gorenstein when A is regular is given in [65, Theorem 2]. Theorem 4
in [64] shows that AG is Gorenstein if the image of the associatedmap λ : G → GL(mA/m2

A)
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1140 D. Lorenzini, S. Schröer

is in SL(mA/m2
A). See also Conjecture 5 in [28] when |G| is not invertible in A = k[V ],

where V is a k-vector space with an action of G.
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