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Abstract. We introduce Kummer surfaces X = Km(C × C) with the group
scheme G = µ2 acting on the self-product of the rational cuspidal curve in char-
acteristic two. The resulting quotients are normal surfaces having a configuration
of sixteen rational double points of type A1, together with a rational double point
of type D4. We show that our Kummer surfaces are precisely the supersingular
K3 surfaces with Artin invariant σ ≤ 3, and characterize them by the existence
of a certain configuration of thirty curves. After contracting suitable curves, they
also appear as normal K3-like coverings for simply-connected Enriques surfaces.
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Introduction

For each abelian surface A in characteristic p 6= 2 the quotient Z = A/{±1} by
the sign involution is a normal surface with sixteen rational double points of type
A1, and the minimal resolution of singularities X = Km(A) is a K3 surface called
Kummer surface. Over the complex numbers a K3 surface is a Kummer surface
if and only if it contains sixteen disjoint (−2)-curves (Nikulin [15]). In this paper
we call a non-singular rational curve on a K3 surface a (−2)-curve for simplicity. If
A = J is the jacobian variety of a curve of genus two, the Kummer surfaceX contains
thirty-two distinguished (−2)-curves forming the so-called (166)-configuration (e.g.
Griffiths and Harris [7], Chapter 6, page 787, Figure 21), and the existence of these
thirty-two (−2)-curves characterizes the Kummer surface associated with a curve of
genus 2 (Nikulin [14]).

Shioda [24] showed that a Kummer surface X = Km(A) in odd characteristics
is supersingular if and only if the abelian surface A is supersingular. For p = 2,
however, Shioda [23] and Katsura [9] observed that the singularities on Z = A/{±1}
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are more complicated, and that X is a K3 surface if and only if A is not supersingular
and then ρ(X) ≤ 20. Indeed, for any supersingular abelian surface the quotient
acquires an elliptic singularity, and X becomes a rational surface. Recall that an
abelian variety is supersingular if it is isogenous to a product of supersingular elliptic
curves.

The second author [20] obtained Kummer surfaces in characteristic p = 2 by
replacing the supersingular abelian surface A by the self-product C × C of the
rational cuspidal curve C, which is a non-normal surface, and the constant group
G = {±1} by the additive group scheme G = α2, which is non-reduced. It turns
out that for suitable G-actions, the quotients Z = (C × C)/G are normal, and
the minimal resolutions of singularities X are supersingular K3 surfaces with Artin
invariant σ ≤ 2. The configuration of singularities is either 5D4 or D4 + 2D8.

Recall that for supersingular K3-surfaces, the isomorphism class of the Picard
lattice is determined by a single integer 1 ≤ σ ≤ 10 called the Artin invariant. Ogus
[17] proved for odd primes that σ ≤ 2 means that X is Kummer. For the Kummer
surfaces X = Km(C × C) with group scheme G = α2 one also σ ≤ 2. Up to
isomorphism, there is a unique supersingular K3 surface with σ = 1. Dolgachev and
the first author [6] characterized it, among other things, by the existence of forty-two
(−2)-curves. Shimada and Zhang [22] showed that every supersingular K3 surface
with σ ≤ 2 is isomorphic to a Kummer surface with G = α2, by characterizing these
Kummer surfaces in terms of the configurations of twenty-six (−2)-curves with dual
graph given in Figure 2.

The main goal of this paper is to extend the construction X = Km(C × C) to
the multiplicative group scheme G = µ2. It turns out that Z = (C × C)/G has
only rational double points, and that their configuration is 16A1 +D4, which is very
close to the classical situation over the complex numbers. The Artin invariant now
becomes σ ≤ 3. Indeed, the construction of the Kummer surface with group scheme
G = µ2 has two moduli coming from the possible embeddings G → AutC×C . Our
principal result is a characterization of such Kummer surfaces.

Theorem. (See Thm. 4.1 and 5.2) Let X be a K3 surface in characteristic p = 2.
Then the following are equivalent:

(i) There is an isomorphism X ' Km(C×C) for a Kummer surface with group
scheme G = µ2.

(ii) There is a configuration of thirty (−2)-curves on X with simple normal
crossings and dual graph given in §3, Figure 1.

(iii) The K3 surface X is supersingular with Artin invariant σ ≤ 3.

Keum [10] showed that every Kummer surface X = Km(A) over the complex
numbers is the K3-covering of some Enriques surface Y . This was extended to odd
characteristics by Jang [8]. The first author [12], §3.3 established this also for our
Kummer surface with Artin invariant σ = 1. Here we extend this to all Kummer
surfaces X = Km(C × C) with group scheme G = µ2:

Theorem. (See Thm. 6.1) Let X be a supersingular K3 surface with Artin invariant
σ ≤ 3 in characteristic p = 2. Then there is a contraction X → X ′ of twelve (−2)-
curves such that that the normal K3 surface X ′ is the K3-like covering of some
simply-connected Enriques surface Y .
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The paper is organized as follows: In Section 1 we recall some facts on group
schemes G of height ≤ 1 and restricted Lie algebras g that will be used throughout.
Section 2 contains an analysis of G-actions on the self-product C×C of the rational
cuspidal curve. This is used in Section 3 to construct our Kummer surface X =
Km(C × C) with group scheme G, where we also determine the dual graph for
the distinguished curves and compute the Artin invariant. Our characterization
with such configuration of curves occupies Section 4. In Section 5 we give the
characterization with Artin invariants.

Acknowledgement. We wish to thank the referee for valuable comments and
pointing out inaccuracies. The research of the first author is partially supported
by Grant-in-Aid for Scientific Research (S) No. 15H05738. The research of the sec-
ond author is conducted in the framework of the research training group GRK 2240:
Algebro-geometric Methods in Algebra, Arithmetic and Topology, which is funded by
the DFG.

1. Some restricted Lie algebras

We start by discussing some restricted Lie algebras from a purely algebraic point
of view. Let k be a ground field of characteristic p > 0. Recall that a restricted
Lie algebra is a Lie algebra g, endowed with an additive self-map x 7→ x[p] called p-
map. The latter is related to scalar multiplication, Lie brackets and vector addition
according to the following three axioms:

(1) (λx)[p] = λpx, [x[p], y] = (adx)
p(y), (x+ y)[p] = x[p] + y[p] +

p−1∑
r=1

sr(x, y)

for all vectors x, y ∈ g and scalars λ ∈ k. Here adx(y) = [x, y] is the adjoint
representation, and sr(x, y) are certain universal expressions involving nested Lie
brackets. For example, we have s1(x, y) = [x, y] in characteristic two, and s1(x, y) =
[x, [x, y]] in characteristic three. For details, we refer to Demazure and Gabriel [5],
Chapter II, §7, No. 3.

A vector x ∈ g is called p-closed if it is nonzero, and x[p] ∈ λx for some scalar
λ ∈ k. In other words, the line kx ⊂ g is a restricted Lie subalgebra. For each
unit ε ∈ k×, we get (εx)[p] = εp−1λ(εx), and we see that the class of λ in k/k×p−1

depends only on the line, and not on the vector. One may regard this class as an
“eigenvalue” for the p-map, and x ∈ g as an “eigenvector”.

For each group scheme G, the Lie algebra g = Lie(G) is endowed with a p-map in a
canonical way. A group scheme G on which the relative Frobenius map F : G→ G(p)

is trivial is called of height ≤ 1. In fact, the functor G 7→ Lie(G) is an equivalence
between the category of finite group schemes of height ≤ 1 and the category of
finite-dimensional restricted Lie algebras ([5], Chapter II, §7, No. 4). Such group
schemes admit p-basis, and their order |G| = h0(OG) = pd is given by d = dimk(g).
In particular, the lines generated by p-closed vectors x ∈ g correspond to subgroup
schemes H ⊂ G of order p. These are twisted form of H = µp or H = αp. In
characteristic p = 2 we actually have H = µ2 or H = α2.

We now examine a special type of restricted Lie algebras: Let a be a finite-
dimensional restricted Lie algebra, with trivial Lie bracket [a, a′] = 0 and trivial
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p-map a[p] = 0. Let b = ke be the one-dimensional restricted Lie algebra, with basis
vector e ∈ b and p-map (λe)[p] = λpe. On the vector space sum a⊕ b, we define Lie
bracket and p-map via the formulas

(2) [a+ λe, a′ + λ′e] = λa′ − λ′a and (a+ λe)[p] = λp−1(a+ λe).

The former satisfies the axioms for Lie brackets, and the resulting Lie algebra is
written as g = a o b. This is indeed the semi-direct product with respect to the
homomorphism of Lie algebras b→ gl(a), e 7→ ida.

Proposition 1.1. The above p-map endows g = a o b with the structure of a
restricted Lie algebra, such that the inclusions of a and b are homomorphisms of
restricted Lie algebras. Moreover, this p-map is unique, and each vector in g is
p-closed.

Proof. Uniqueness follows from the axioms (1). Since the homomorphism of Lie
algebras ρ : b→ gl(a) satisfies ρ(x[p]) = ρ(x)p, the existence of a p-map follows from
Strade and Farnsteiner [27], Theorem 2.5. To check that it is given by our formula,
it suffices to treat the case a = ka, which was verified in loc. cit. example 4 on page
72. From (2) we see that each vector in the semidirect product is p-closed. �

Let G be the finite group scheme of height ≤ 1 with Lie(G) = g. Then the closed
subschemes H ⊂ G of order p correspond to lines in the vector space g, or points
on the projectivization P(g).

Now consider the direct sum g⊕g of restricted Lie algebras. Here the Lie bracket
and p-map are given by

[(x, x′), (y, y′)] = ([x, y], [x′, y′]) and (x, x′)[p] = (x[p], x′[p]).

A straight-forward computation shows:

Proposition 1.2. A vector (x, x′) ∈ g ⊕ g whose entries are non-zero is p-closed
if and only if x = a + λe and x′ = a′ + λe for some scalars λ, λ′ ∈ k satisfying
λp−1 = λ′p−1. In this case, we have (x, x′)[p] = λp−1(x, x′).

We see that the set of p-closed vectors is the union of the restricted Lie subalgebras
g⊕0 and 0⊕g and (a⊕a)ob, where the latter is formed with the graphs b = Γζ ⊂ b⊕b
from the mulitpication by (p− 1)-th roots of unity ζ ∈ k×.

2. Diagonal actions and rational points

Let k be a ground field of characteristic p = 2, and consider the rational cuspidal
curve

C = Spec k[u2, u3] ∪ Spec k[u−1].

As explained by the second author in [20], Section 3 the sheaf Ω1
C/k of Kähler differ-

entials is invertible modulo torsion, and the dual sheaf ΘC/k is invertible of degree
four. By Riemann–Roch, H0(C,ΘC/k) is four-dimensional. As a restricted Lie alge-
bra this is a semidirect product aob studied in the previous section, where the first
factor a is generated by the vector fields u−2Du, Du, u

2Du and the second factor b is
generated by uDu. Here the derivation Du : OC → OC is determined by Du(u) = 1.
Note that the basis vectors can be rewritten as

u−2Du = u−4Du−1 , Du = u−2Du−1 , u2Du = Du−1 and uDu = u−1Du−1 .
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By Proposition 1.1, each non-zero vector field δ ∈ H0(C,ΘC/k) is p-closed, and thus
defines a faithful action of the height-one group scheme G with Lie(G) = kδ. Note
that we have G ' α2 if δ ∈ a and G ' µ2 else.

We now consider the self-product C × C, which is a non-normal integral surface.
As discussed in Section 1, the restricted Lie algebra

(3) H0(C × C,ΘC×C/k) = (ao b)⊕ (ao b)

contains the restricted Lie subalgebra (a⊕ a) o b, whose elements have the form

(4) δ = (λ4u
−4 + λ2u

−2 + λ0)Du−1 + (µ4v
−4 + µ2v

−2 + µ0)Dv−1 + τ(uDu + vDv)

for some scalars λi, µi and a common τ = λ1 = µ1. Here we use the two indetermi-
nates u, v to describe the first and second factor in C × C, respectively.

Now let G be a local group scheme order p acting on C × C. In light of the de-
composition (3), this is the diagonal action stemming from G-actions on the factors.

We now additionally assume that the induced actions on both factors are faithful.
According to Proposition 1.2, such actions arise from the non-zero vector field δ as
in (4). Note that G = µ2 if and only if τ 6= 0, and G = α2 otherwise.

Consider the quotient Z = (C × C)/G, which is an integral surface. The second
projection pr2 : C × C → C induces a morphism

Z = (C × C)/G −→ C/G = P1.

Here the projective line is given by P1 = Spec k[v2] ∪ Spec k[v−2]. Write K =
k(v−2) for its function field. The generic fiber ZK = Z ⊗OP1

K is a twisted form
of the rational cuspidal curve CK = C ⊗k K. We compute its K-rational points in
dependence of the vector field δ:

Proposition 2.1. The set of K-rational points in the regular locus Reg(ZK) corre-
sponds to the solution (α, β) ∈ K2 of the system of equations

λ4α
4 + µ4α = 0, λ2α

2 + µ2α = 0, λ4β
4 + λ2β

2 + λ0 + τβ = µ0α.

Proof. Write L = k(v−1) for the function field of the rational cuspidal curve C =
Spec k[v2, v3] ∪ Spec k[v−1]. Each K-rational point on the regular locus of ZK ⊂ Z
has as preimage on CL ⊂ C × C a G-stable L-valued point. As explained by the
second author in [20], proof for Proposition 7.2, these correspond to G-equivariant
K-morphisms Spec(L)→ Reg(CK) = SpecK[u−1]. To make the actions explicit we
consider the polynomials

P (u−1) = λ4u
−4 + λ2u

−2 + λ0 + τu−1,

Q(v−1) = µ4v
−4 + µ2v

−2 + µ0 + τv−1

that appear in the vector field (4). ThenG acts on CK via the vector field P (u−1)Du−1

and on Spec(L) by the derivation Q(v−1)Dv−1 . The morphism Spec(L)→ Reg(CK)
is given by a homomorphism of K-algebras

K[u−1] −→ L, u−1 7−→ αv−1 + β.

for some α, β ∈ K. The G-equivariance means that the substitution u−1 = αv−1 +β
turns the derivation P (u−1)Du−1 into the derivation Q(v−1)Dv−1 . The latter con-
dition boils down to the equation P (αv−1 + β) = αQ(v−1). Comparing coefficients
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in this polynomial equation for the indeterminate v−1 gives the desired system of
equations in α, β. �

The solutions for the first two equations λ4α
4 +µ4α = 0 and λ2α

2 +µ2α = 0 form
a vector space over F2. One easily sees that the number of solutions is of the form
2m for some integer 0 ≤ m ≤ 2, provided that λ4 6= 0. This leads to a formula for
the number of rational points on the generic fiber:

Corollary 2.2. Suppose that λ4, µ4 6= 0, that the generic fiber ZK is normal, and
that k is algebraically closed. Let 0 ≤ m ≤ 2 be as above. Then the number of
rational points in the generic fiber for the morphism Z → P1 is given by

|ZK(K)| =


22+m if G = µ2;

21+m if G = α2 and λ2 6= 0;

2m if G = α2 and λ2 = 0.

For G = µ2, each 0 ≤ m ≤ 2 occurs for a suitable choice of λ2, µ2 ∈ k. For G = α2

the occuring values are m ∈ {0, 1} for λ2 6= 0, and m ∈ {0, 2} for λ2 = 0.

Proof. First note that all the solutions α, β ∈ K for the equations in Proposition 2.1
already lie in k, because this field is relatively algebraically closed in K. Moreover,
the set ZK(K) is contained in Reg(ZK), because the curve ZK is normal.

Suppose first that G = µ2, in other words τ 6= 0. Then the third equation
λ4β

4 + λ2β
2 + λ0 + τβ = µ0α is separable, thus for each solution α of the first

two equation one gets four solutions β of the third equation. This gives the desired
formula |ZK(K)| = 2m · 4. For λ2 generic the non-zero solution α = µ2/λ2 of the
second equation is not a solution of the first equation, thus m = 0. The other
extreme λ2 = µ2 = 0 yields m = 2, and for suitable choices of λ2, µ2 we also get
m = 1.

Now suppose G = α2, such that τ = 0. If λ2 6= 2, the second equation in
Proposition 2.1 has two solutions α′ = 0 and α′′ 6= 0, and the third equation also
has two solutions. Clearly, α′ = 0 solves the first equation, and by choosing µ4 in a
suitable way, α′′ a may or may not solve it. This gives m ∈ {0, 1}. Finally, suppose
λ2 = 0. Then the third equation has a single root, wheras the first equation has
four roots. All of them solve the second equation provided µ2 = 0, but only α = 0
is a root if µ2 6= 0. This gives m ∈ {0, 2}. �

3. Kummer surfaces associated with group schemes

We keep the assumptions of the previous section, such that the group scheme G
acts on the self-product C×C of the rational cuspidal curve in characteristic p = 2.
The action is given by some global vector field

(5) δ = (λ4u
−4 + λ2u

−2 + λ0)Du−1 + (µ4v
−4 + µ2v

−2 + µ0)Dv−1 + τ(uDu + vDv)

with seven coefficients λi, µi, τ ∈ k. We assume that the action is faithful on each
factor. For the sake of exposition, we also assume that k is algebraically closed.
Write Z = (C ×C)/G for the resulting quotient, which is an integral surface. As in
[20], Proposition 4.3 one verifies:

Proposition 3.1. The following conditions are equivalent:
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(i) The integral scheme Z = (C × C)/G is normal.
(ii) Both coefficients λ4, µ4 ∈ k are non-zero.

(iii) The G-actions on the two factors C are free at the singular point.

From now on we assume that indeed λ4, µ4 6= 0, and proceed to study the resulting
normal surface Z = (C × C)/G. The fixed scheme (C × C)G for the group scheme
action thus lies in the regular locus, and is thus the zero-scheme for the equations
λ4u

−4 + λ2u
−2 + λ0 + τu−1 = 0 and µ4v

−4 + µ2v
−2 + µ0 + τv−1 = 0. This is a finite

subscheme of length l = 16. The point on C ×C that lies over the singular point in
both factors is given by u2 = u3 = v2 = v3 = 0 and called the quadruple point.

Proposition 3.2. The G-action on C ×C and the normal surface Z = (C ×C)/G
has the following properties:

(i) The singular locus Sing(Z) consists of the images of the fixed points, together
with the image of the quadruple point. The latter is always a rational double
point of type D4.

(ii) For G = µ2, the fixed scheme (C × C)G is reduced, and its image on Z
consists of l = 16 points, which are rational double points of type A1.

(iii) For G = α2 the fixed scheme is non-reduced, and its image on Z either
consists of four rational double points of type D4, or two rational double
points of type D8, or one elliptic singularity. The latter holds if and only if
λ2 = µ2 = 0.

(iv) The minimal resolution of singularities X → (C × C)/G is a K3 surface if
and only if all singularities on (C × C)/G are rational, that is, λ2, µ2 ∈ k
do not vanish simultaneously.

Proof. The case that G is additive is already treated by the second author in [20],
under the assumption λ4 = µ4 = 1 and λ0 = µ0. The general case works in virtually
the same. Let us make the singularities at the fixed points explicit:

The fixed points are given by the vanishing of the polynomials P = λ4u
−4+λ2u

−2+
λ0 + τu−1 and Q = µ4v

−4 +µ2v
−2 +µ0 + τv−1. Moreover, the kernel R ⊂ k[u−1, v−1]

of the derivation δ is generated as k-algebra by the elements a = u−2 and b = v−2

and

c = τu−1v−1 + (µ4v
−4 + µ2v

−2 + µ0)u
−1 + (λ4u

−4 + λ2u
−2 + λ0)v

−1.

These three generators are subject to the single relation

c2 + τ 2ab+ (µ2
4b

4 + µ2
2b

2 + µ2
0)a+ (λ24a

4 + λ22a
2 + λ20)b = 0.

If G = µ2 the polynomials P and Q are separable, one easily checks that this
equation indeed defines sixteen rational double points of type A1. The remaining
assertions are as in [20], Section 5 and 6. �

From now on, we assume that the coefficients λ2, µ2 ∈ k do not vanish simulta-
neously, such that the minimal resolution X → (C × C)/G is a supersingular K3
surface. Note that the group scheme G, the action on C × C and the resulting K3
surface X all depend on the vector field (5). By abuse of notation we write

X = Km(C × C)

and call it the Kummer surface associated with the group scheme G. Note that we
either have G = µ2 or G = α2.
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The vector field in (5) depends on the seven parameters λi, µi, τ ∈ k. However,
the isomorphism class of the Kummer surface X = Km(C×C) has only two moduli,
because the image of the embedding G → AutC×C depends only on the line kδ ⊂
H0(C × C,ΘC×C) rather than the vector δ, and the canonical action of Ga o Gm

on the affine line A1, which extends to an action on C, yields re-parameterization
of the indeterminates u−1 and v−1.

Now suppose X = Km(C × C) is a Kummer surface with group scheme G = µ2.
Owing to its construction as minimal resolution of singularities X → (C × C)/G,
this K3 surface contains thirty distinguished curves

(6) Eij, Er, Cs, C ′s (1 ≤ i, j ≤ 4, 0 ≤ r ≤ 3, 0 ≤ s ≤ 4)

defined as follows: The two projections pr1, pr2 : C × C → C induce two fibrations
f, f ′ : X → P1. The Eij ⊂ X are the exceptional curves lying over the images
(ai, a

′
j) ∈ P1×P1 of the sixteen fixed points in C×C. The Er ⊂ X are the exceptional

curves over the image (a0, a
′
0) = (0, 0) of the quadruple point. Finally, the Cs, C

′
s ⊂

X are the strict transforms of the fibers f−1(as) and f ′−1(a′s), respectively.
For any genus-one fibration f : S → P1 on a K3 surface S with a section O ⊂ S,

the trivial lattice T (S/P1) is the sublattice inside Pic(S) generated by the irreducible
components of the closed fibers, together with the chosen section.

Proposition 3.3. For the group scheme G = µ2, the thirty distinguished curves
on the Kummer surface X = Km(C × C) listed in (6) form a configuration of
(−2)-curves with simple normal crossings whose dual graph is depicted in Figure 1.
Moreover, the Kummer surface X has Picard number ρ = 22.

Proof. This can be checked with a local computation with rings of invariants. How-
ever, we can also argue that subconfigurations like C1 + E11 + . . . + E14 appear as
set-theoretical fibers for genus-one fibrations f : X → P1. Hence the components
must be (−2)-curves with simple normal crossings, and the shape of the dual graph
follows.

The above genus-one fibration f : X → P1 is actually induced by the first pro-
jection pr1 : C × C → C, hence it is quasielliptic. It has five reducible fibers
with Kodaira symbol I∗0, and C ′1 ⊂ X is a section. In turn, the trivial lattice
T (X/P1) ⊂ Pic(X), which is generated by the vertical curves disjoint from C ′1, to-
gether with a fiber and C ′1, has rank 22 = 5 · 4 + 2. It follows that our K3 surface
X has Picard number ρ = 22. �

Note that removing the curves C0, C
′
0, E0, . . . , E3 yields the dual graph that occurs

in the classical Kummer surface X = Km(E1 × E2) in characteristic 0 attached to
the product of ellliptic curves, where the quotients Z = (E1 × E2)/{±1} acquires
sixteen rational double points of type A1. For the sake of completeness, we depict
the distinguished curves on the Kummer surface X = Km(C × C) associated with
the group scheme G = α2 and generic action in Figure 2.

A finitely generated free abelian group endowed with a non-degenerate Z-valued
bilinear form is called a lattice. A lattice L is p-elementary if the discriminant
group L∗/L is an elementary abelian p-group. Here L∗ = Hom(L,Z). Let L be
a 2-elementary even lattice of rank r ≥ 2 with signature sign(L) = (1, r − 1), and
assume that the discriminant bilinear form bL : L∗/L×L∗/L→ 1

2
Z/Z is alternating,
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C1

E11

E12

E13

E14

C2

E21

E22

E23

E24

C3

E31

E32

E33

E34

C4

E41

E42

E43

E44

E0

E1

E2

E3

C ′1

C ′2

C ′3

C ′4

C ′0

C0

Figure 1. Dual graph for the thirty distinguished (−2)-curves on
Kummer surface Km(C×C) associated with the group scheme G = µ2

in other words, the discriminant quadratic form qL : L∗/L → 1
2
Z/2Z factors over

Z/2Z. Regarding the latter as a quadratic form with values in Z/2Z = 1
2
Z/Z, we see

that bL becomes its associated bilinear form. Thus qL is non-degenerate and the F2-
vector space L∗/L is symplectic and thus even-dimensional, so disc(L) = (−1)r−122σ

for some integer σ ≥ 0.
According to Nikulin ([16], Theorem 3.6.2), the even indefinite 2-elementary lat-

tice L is determined up to isometry by the numerical invariants r ≥ 2 and σ ≥ 0.
Moreover, such a lattice with invariants r ≥ 2 and σ ≥ 0 exists if and only if
2σ ≤ r and furthermore r ≡ 2 modulo 4, where in the boundary cases σ = 0
and 2σ = r the congruence must hold modulo 8. The discriminant quadratic form
qL : L∗/L→ Z/2Z is given by

(7) qL =

{
q(t1, . . . , t2σ) if r ≡ 2 mod 8;

q(t1, . . . , t2σ) + t21 + t22 if r ≡ 6 mod 8

with the polynomial q(t1, . . . , t2σ) = t1t2 + . . .+ t2σ−1t2σ. Recall that up to isometry,
there are two non-degenerate quadratic forms on V = F⊕2σ2 with σ ≥ 1, which are
distinguished by the Arf invariant, or equivalently by the Witt index.

An even overlattice L ⊂ L′ corresponds to a subgroup H ⊂ L∗/L on which the
discriminant quadratic form qL vanishes, via the assignment H = L′/L. Such H
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C1 C4E0

E1

E2

E3

C ′1

C ′4

C ′0

C0

Figure 2. Dual graph for the twenty-six distinguished (−2)-curves
on Km(C ×C) associated with the group scheme G = α2 and generic
action

is called totally singular (Bourbaki’s terminology [4], §9, No. 2, Definition 2). The
discriminant group for the overlattice L′ is given by the subquotient H⊥/H, so the
bilinear form bL′ stays alternating. In turn, the invariants for the overlattice L′ are
given by the formulas r′ = r and σ′ = σ − dimF2(H). It is not difficult to count the
number of overlattices:

Lemma 3.4. The number n ≥ 0 of overlattices L ⊂ L′ with index [L′ : L] = 2 is
given by the formula n = 22σ−1 + (−1)ε2σ−1 − 1 for the exponent ε = (r − 2)/4.

Proof. The number of totally isotropic subgroups H ⊂ L∗/L of dimension 1 corre-
sponds to the number of non-trivial zeros for the quadratic equation qL = 0. As
above, set q = t1t2 + . . . + t2σ−1t2σ. The number of zeros for q = 0 is given by
22σ−1 + 2σ−1, whereas q + t21 + t22 = 0 has 22σ−1 − 2σ−1 zeros (see for example [26],
Theorem 4.16). The assertion follows from (7). �

For supersingular K3 surfaces X in arbitrary characteristics p > 0, the Picard
lattice L = Pic(X) has rank ρ = 22, the intersection form is even, and the discrimi-
nant group has order |L∗/L| = pn for some n ≥ 0. Artin [2] showed that the lattice
L is p-elementary, with even exponent n = 2σ, at least for odd characteristics. The
required results on flat cohomology where established a little later by Milne [13].
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Rudakov and Shafarevich extended this to p = 2 and established that the discrimi-
nant bilinear form bL is alternating (Rudakov and Shafarevich [18], Theorem 3). In
turn, the Picard lattice L = Pic(X) is determined up to isometry by the numbers
r = 22 and 1 ≤ σ ≤ 10. The latter is called the Artin invariant.

Proposition 3.5. For the group scheme G = µ2, the Artin invariant of the Kummer
surface X = Km(C × C) is an integer 1 ≤ σ ≤ 3, and each such number occurs.

Proof. Consider the fibration X → P1 induced from pr2 : C × C → C, and write
K = k(P1) for the function field of the projective line. We saw in Corollary 2.2 that
the number of K-rational points in the generic fiber XK takes the form |XK(K)| =
22+m with 0 ≤ m ≤ 2. Moreover, each such integer can be realized with suitable
vector fields δ ∈ H0(C × C,ΘC×C).

From Proposition 3.3 we deduce that X → P1 has exactly five singular fibers, all
of which are of type I∗0. In turn, the trivial lattice L = T (X/P1) inside P = Pic(X)
has discriminant disc(L) = −22·5, whereas the full Picard lattice has disc(P ) =
−22σ. Finally, the index for the sublattice is given by [P : L] = 22+m. This gives
10 = 2σ + 2(2 +m), and thus σ = 3−m. The assertion now follows. �

Let L ⊂ Pic(X) be the sublattice generated by the distinguished curves in Figure
1. This lattice has invariants r = 22 and σ = 3, and occurs for all Kummer surfaces
X = Km(C × C) associated with the group scheme G = µ2. By Lemma 3.4, there
are n2 = 27 overlattices L ⊂ L′ with invariant σ′ = 2. Moreover, for fixed L′ there
are five further overlattices L′ ⊂ L′′ with invariant σ′′ = 1. In total, there are
n1 = 5n2

3
= 45 such overlattices L ⊂ L′′. We saw above that at least one L′ and

one L′′ appears as Picard groups for Kummer surfaces X = Km(C×C). We do not
know which of them actually occur in this way.

4. Characterization with configurations of curves

Throughout this section we work over an algebraically closed ground field k of
characteristic p ≥ 0. Over the complex numbers, the classical Kummer surfaces X =
Km(A) with group G = {±1} attached to an abelian surface A can be characterized
by the existence of sixteen disjoint (−2)-curves (Nikulin [15]). Those coming from
jacobians of genus-two curves are characterized by a (166)-configuration of thirty-
two (−2)-curves (Nikulin [14]). Kummer surfaces of product type, which arise from
a product A = E1×E2 of elliptic curves, are also characterized by a double Kummer
pencil, which comprises twenty-four (−2)-curves, as in Figure 1 but without E0 +
. . .+ E3 (see Remark 4.2 and Shioda and Inose [25], Section 2). Our main result is
a characterization for the Kummer surfaces Km(C × C) associated with the group
scheme G = µ2:

Theorem 4.1. Let X be a K3 surface containing a configuration of thirty (−2)-
curves with normal crossings and dual graph as in Figure 1. Then the characteristic
must be p = 2, and X is isomorphic to a Kummer surface Km(C × C) associated
with the group scheme G = µ2.

Proof. We first construct a jacobian quasielliptic fibration f : X → P1. Consider
the following divisors:

(8) C0 + 2E0 + E1 + E2 + E3 and 2Ci + Ei,1 + . . .+ Ei,4, 1 ≤ i ≤ 4.
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These are pairwise disjoint, and each forms a singular fiber of type I∗0. Let f : X →
P1 be the resulting genus-one fibration. It is jacobian because the curve C ′1 provides
a section. The trivial lattice T (X/P1) has rank r ≥ 22. It follows that the K3
surface X has Picard number ρ = 22 and the Mordell–Weil group MW(X/P1) is
finite. Consequently the above five divisors are the reducible fibers, and we have
p > 0. The Picard lattice Pic(X) has discriminant −p2σ. The sublattice L ⊂ NS(X)
generated by the irreducible curves appearing in (8), together with a section is
isomorphic to U ⊕D⊕54 which has even discriminant −210, and we conclude p = 2.
Furthermore, the fibration f : X → P1 is quasielliptic (Rudakov and Shafarevich
[18], Proposition on page 150).

By symmetry, the curves

(9) C ′0 + 2E0 + E1 + E2 + E3 and 2C ′j + E1,j + . . .+ E4,j, 1 ≤ j ≤ 4

give another such fibration f ′ : X → P1. Using the dual graph, we compute the
intersection number f−1(∞) · f ′−1(∞) between the fibers as

(2C1 +
∑
i

E1,i) · (2C ′1 +
∑
j

Ej,1) = (2C1 + E11) · (2C ′1 + E11) = 2.

In turn, the resulting morphism (f, f ′) : X → P1 × P1 is an alteration of degree
two, which means a proper surjection between integral scheme whose generic fiber
has length two. Let X → Z → P1 × P1 be its Stein factorization. The morphism
contracts precisely the irreducible curves C ⊂ X that are vertical for both fibrations.
These curves correspond to the white vertices in the Figure 1, thus form an ADE-
configuration of the type 16A1 +D4. In turn, Z is a normal K3 surface with Picard
number ρ = 2, coming with a finite flat morphism Z → P1 × P1.

Let zij ∈ Z be the images of the exceptional curves Eij ⊂ X, and let z ∈ Z be
the image of E0 ∪ . . . ∪ E3. The complement of these seventeen singular points is
the regular locus U = Reg(Z). We now construct an invertible sheaf on U whose
class in Pic(U) has order two, such that the resulting µ2-torsor will lead to the
desired normal Kummer surface. Let g : Z → P1 be the morphism induced by the
fibration f : X → P1, and consider the images Fi ⊂ Z of the curves Ci ⊂ X. Then
F0, 2F1, . . . , 2F4 are schematic fibers for g, and it follows that the Weil divisor A =
2F0 − (F1 + . . .+ F4) has order two modulo principal divisors. Fix an identification
OZ(−2A) = OZ . For the reflexive rank-one sheaf F = OZ(A), we obtain a canonical
map F∨ ⊗F∨ → OZ , which endows the coherent sheaf A = OZ ⊕F∨ with the
structure of a OZ-algebra graded by the group Z/2Z. Let ε : Z̃ → Z be the
resulting finite Z-scheme, which is irreducible and Cohen–Macaulay. Note that this
construction depends on the identification OZ(−2A) = OZ , which is unique up to
factors from Γ(Z,OX)× = k×; it follows that the Z-scheme Z̃ is unique up to unique
isomorphism. The Z/2Z-grading on A corresponds to an action of the group scheme
G = µ2 on Z̃, with quotient Z = Z̃/G. Over the regular locus U = Reg(Z), the
action is free, and the quotient map becomes a G-torsor.

Let g′ : Z → P1 be the morphism induced by the fibration f ′ : X → P1. The
situation is actually symmetric in g and g′: Using the dual graph given in Figure 1,
one sees that the divisors

2C0 − (C1 + . . .+ C4) and 2C ′0 − (C ′1 + . . .+ C ′4)
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have the same intersection numbers with all curves occurring in the dual graph. Since
these generate the Picard group up to finite index and Picτ (X) = 0, we conclude
that the above divisors differ by a principal divisor. Let F ′i ⊂ Z be the images of
the curves C ′i ⊂ X, and set A′ = 2F ′0 − (F ′1 + . . .+ F ′4). Then 2F0 − (F1 + . . .+ F4)
and 2F ′0 − (F ′1 + . . . + F ′4) also differ by a principal divisor. In turn, our double
covering ε : Z̃ → Z defined with F = OZ(A) is equivariantly isomorphic to the
double covering defined with F ′ = OZ(A′).

The main task now is to identify Z̃ with the self-product C × C of the rational
cuspidal curve. We start by computing the Euler characteristic for the structure
sheaf, which boils down to compute χ(F ) on the normal K3 surface Z. First note
that the half-fibers Fi, 1 ≤ i ≤ 4 are copies of the projective line: To see this, write
h : X → Z for the contraction. For each A1-singularity zij ∈ Z, the schematic
fiber is given by h−1(zij) = Cij, according to [1], Theorem 4, and this ensures that
the induced morphism h : Ci → Fi is an isomorphism. Consider the disjoint union
F = F1 ∪ . . . ∪ F4. The short exact sequence 0 → OZ(−F ) → OZ → OF → 0
immediately gives χ(OZ(−F )) = χ(OZ) − 4χ(OP1) = −2. In contrast to the half-
fibers, the fiber F0 is a a copy of the rational cuspidal curve: The D4-singularity
z ∈ Z has schematic fiber h−1(z) = 2E0 + E1 + E2 + E3, again by [1], Theorem
4. In turn, h−1(z) ∩ C0 = C0 ∩ 2E0 is a local Artin scheme of length two, which
is mapped to the closed point z ∈ F0 under the induced morphism C0 → F0. It
follows that F0 is the rational cuspidal curve. Since F0 is a fiber, we furthermore
have 2F0 = F0⊗k[ε], where ε is an indeterminate subject to ε2 = 0. The short exact
sequence 0 → OZ(−F ) → OZ(2F0 − F ) → O2F0 → 0 yields χ(F ) = χ(OZ(−F )) +
χ(O2F0) = −2 + 2 · 0 = −2. In turn, we get χ(OZ̃) = χ(OZ) + χ(F ) = 2− 2 = 0.

Next note that Z̃ is reduced: If not, the structure morphism ε : Z̃ → Z admits
generically a section. By the Valuative Criterion for proper morphism, such a generic
section extends over an open subset V ⊂ Z containing all points of codimension one.
Thus ε−1(V )→ V is a trivial G-torsor, and it follows that the invertible sheaf F |U
is trivial. In turn, the Weil divisor A = 2F0 − (F1 + . . . + F4) is principal over V ,
hence on Z. However, this Weil divisor is not principal at each rational double point
of type A1, contradiction. Summing up, our surface Z̃ is integral.

Furthermore, we observe that the dualizing sheaf is isomorphic to the structure
sheaf. Indeed, we have ωZ = OZ , whence ωZ̃ is trivial over the open set ε−1(U).
Since ωZ is Cohen–Macaulay, we must have ωZ̃ = OZ̃ . We now get the cohomological

invariants: h0(OZ̃) = 1 because Z̃ is integral, h2(OZ̃) = 1 by Serre duality, and finally
h1(OZ̃) = 2 according to the computation of the Euler characteristic.

Consider the composition g̃ : Z̃ → P1 of the double covering Z̃ → Z with the
fibration g : Z → P1, and let D = Spec g̃∗(OZ̃) be the Stein factorization. Then D
is an integral curve, which turns out to be non-normal. The morphism D → P1 is a
finite universal homeomorphism, and we claim that it has degree two. Indeed, the
sheaf F and the structure sheaf OZ become isomorphic over the generic geometric
fiber S = f−1(η̄), and it follows that the G-torsor ε : Z̃ → Z becomes trivial when
pulled back to S. It follows that the locally free sheaf g̃∗(OZ̃) has rank two.

We observed at the beginning that f ′ : X → P1 is quasielliptic. So besides the
five reducible fibers corresponding to (9), all closed fibers are copies of the rational
cuspidal curve. The corresponding fibers Za = g′−1(a), a ∈ P1 on the normal K3
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surface Z are contained in Reg(Z), and the induced torsor Z̃a = ε−1(Za) → Za is
trivial. In turn, the reduction (Z̃a)red is another copy of the rational cuspidal curve.
Taking degrees in the commutative diagram

(Z̃a)red
ε−−−→ Za

g̃

y yg
D −−−→

can
P1,

we see that the finite dominant morphism g̃ : (Z̃a)red → D is birational. In particular
h1(OD) ≥ 1 holds.

By symmetry, the above reasoning also applies for the composition g̃′ : Z̃ → P1

of the double covering ε : Z̃ → Z with the other fibration f ′ : Z → P1, and the
ensuing Stein factorization D′ = Spec g̃′∗(OZ̃). Consider the resulting morphisms

Z̃ → D and Z̃ → D′ and the ensuing diagonal morphism ϕ : Z̃ → D ×D′ between
integral schemes, which is proper and dominant. We claim that it is birational: In
the commutative diagram

Z̃
ε−−−→ Z

ϕ

y y(g,g′)

D ×D′ −−−→ P1 × P1,

the upper map has degree two, the right map has degree two, and the lower map
has degree four. If follows that deg(ϕ) = 1.

Next, we claim that the integral curvesD,D′ have h1(OD) = h1(OD′) = 1. Seeking
a contradiction, we assume that this does not hold. Without restriction, we have
h1(OD) ≥ 2 and h1(OD′) ≥ 1. The canonical injection H1(OD) ⊂ H1(Z̃,OZ̃) must

be an equality, by dimension reasons. To proceed, consider a fiber Z̃a = g̃−1(a)
such that the induced projection g′ : Z̃a → D′ is birational. Then the composite
map H1(D′,OD′) → H1(Z̃,OZ̃) → H1(Z̃a,OZ̃a

) is surjective. Hence there is a

cohomology class α ∈ H1(Z̃,OZ̃) whose restriction to the fiber Z̃a = g−1(a) is non-
zero. On the other hand, any cohomology class lies in the image of g∗ : H1(D,OD)→
H1(Z̃,OZ̃), whence vanishes on Za, contradiction. Summing up, we have h1(OD) =
h1(OD′) = 1.

Since the morphism D → P1 and D′ → P1 are purely inseparable, we infer
that both D,D′ are copies of the rational cuspidal curve. Summing up, we have a
birational morphism ϕ : Z̃ → C × C between proper integral schemes, which are
Gorenstein with trivial dualizing sheaves. Consider the resulting conductor square

R −−−→ Z̃y y
B −−−→ C × C,

where B ⊂ C × C is defined by the annihilator ideal for ϕ∗(OZ̃)/OC×C , and
R = ϕ−1(C) is its schematic preimage. If non-empty, the schemes B,R are equidi-
mensional of dimension one, and without embedded components, because both Z̃



KUMMER SURFACES WITH GROUP SCHEMES 15

and C×C are Cohen–Macaulay. The adjunction formula gives ωZ̃ = ϕ∗(ωC×C)(−R).

It follows that R and hence also B is empty, thus ϕ : Z̃ → C×C is an isomorphism.
Summing up, our normal K3 surface Z is isomorphic to the quotient for a faithful

action of G = µ2 on the self-product Z̃ = C ×C. In other words, the K3 surface X
is a Kummer K3 surface Km(C × C) formed with the group scheme G = µ2. �

Note that the crucial identification Z̃ = C × C could also be established with
explicit computations of coordinate rings, as the referee pointed out. The above
coordinate-free argument might be useful in more general situations, when C×C is
replaced by non-normal surfaces without product sturctures.

Remark 4.2. Assume that a K3 surface X is defined over an algebraically closed
field k of characteristic p 6= 2 and contains a double Kummer pencil. Recall that this
is a configuration of twenty-four (−2)-curves as in Figure 1 but without E0+. . .+E3.
The divisors E11 + E12 + E13 + E14 + 2C1 and E11 + E21 + E31 + E41 + 2C ′1 define
elliptic fibrations with four singular fibers of type I∗0. It follows that the divisor∑

1≤i,j≤4Eij is divided by 2 in Pic(X) which defines a double covering Y → X
branched along sixteen curves Eij. The preimages of Ci, C

′
i are elliptic curves and

those of Eij are exceptional curves. By contracting these sixteen exceptional curves,
we obtain an abelian surface A. The surface A contains two elliptic curves E,E ′

(e.g. the preimages of C1 and C ′1) meeting transversally at one point. This implies
that A ' E × E ′ and hence X ' Km(E × E ′).

5. Characterization with Artin invariants

Let k be an algebraically closed ground field of characteristic p ≥ 0, and let X be
a K3 surface. Then Pic(X) is a free abelian group of rank ρ ≤ 20 or ρ = 22 endowed
with a non-degenerate intersection pairing.

Lemma 5.1. Suppose X and X ′ are K3-surfaces such that there is an isometry
between Picard groups. Let C1, . . . , Cr ⊂ X be (−2)-curves. Then there are (−2)-
curves C ′1, . . . , C

′
r ⊂ X ′ so that the intersection matrices N = (Ci · Cj) and N ′ =

(C ′i · C ′j) coincide.

Proof. By assumption there is an isomorphism f : NS(X) → NS(X ′) respecting
the intersection pairing. According to Rudakov and Shafarevich [19], Section 3,
Proposition one may choose f that the induced map between real vector space yields
a bijection Nef(X) → Nef(X) between the nef cones (see also Shimada and Zhang
[22], Proposition 3.1). In turn, it induces a bijection NE(X) → NE(X ′) between
the cones of curves, which are dual to the nef cones. But on any smooth projective
surface S, the extremal rays R≥0c ⊂ NE(S) with c2 < 0 correspond to the integral
curves C ⊂ S with C2 < 0, according to Kollár [11], Lemma 4.12. On K3 surfaces,
these are exactly the (−2)-curves. In turn, our chosen map f : NS(X) → NS(X ′)
induces a bijection between the classes of (−2)-curves on X and X ′, and respects
their intersection numbers. �

Now suppose that X is a K3-surface with ρ = 22. Then we are in characteristic
p > 0, the K3-surface is supersingular, and the Picard group Pic(X) is determined
up to isometry by the Artin invariant 1 ≤ σ ≤ 10.
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Theorem 5.2. Let X be a supersingular K3 surface in characteristic 2 with Artin
invariant σ ≤ 3. Then X is isomorphic to a Kummer surface Km(C×C) associated
with the group scheme G = µ2.

Proof. According to Proposition 3.5, there is a Kummer surface X ′ associated with
the group scheme G = µ2 whose Artin invariant coincides with the given σ. Note
that X ′ depends on the chosen embedding h′ : G→ AutC×C . According to Proposi-
tion 3.3 it contains thirty (−2)-curves with simple normal crossings and dual graph
as in Figure 1. By Lemma 5.1 such a configuration also exists on X. According
to Theorem 4.1 the K3 surface X must be a Kummer surface associated with the
group scheme G, for another embedding h : G→ AutC×C . �

6. Enriques surfaces and K3-like coverings

Keum [10] showed that every Kummer surface X = Km(A) over the field k = C of
complex numbers admits a free action of the group H = Z/2Z. Hence the quotient
Y = X/H is an Enriques surface, and the Kummer surface arises as its K3-covering.
The result was extend to characteristic p 6= 2 by Jang [8]. If the abelian surface is
a product A = E × E ′, the Lieberman involutions

E × E ′ −→ E × E ′, (a, a′) 7−→ (a+ ζ,−a′ + ζ ′)

induce such free H-actions on X = Km(E × E ′), where ζ, ζ ′ denote non-zero 2-
division points.

We now establish an analogue for Kummer surfaces associated with group schemes.
The case of Artin invariant σ = 1 was already treated by the first author [12].

Theorem 6.1. Let X be a supersingular K3 surface with Artin invariant σ ≤ 3
over an algebraically closed ground field k of characteristic p = 2. Then there is a
contraction X → X ′ of twelve (−2)-curves such that the normal K3 surface X ′ is
the K3-like covering of some simply-connected Enriques surface Y .

Proof. According to Theorem 5.2, our K3 surface can be written as a Kummer
surface X = Km(C × C) associated with the group scheme G = µ2. By Theorem
4.1 it contains a configuration of thirty (−2)-curves Eij, Cr, C

′
r, Es with dual graph

in Figure 1. The curves

E11 + E14 + E41 + E42 + E22 + E23 + E33 + E34 +
4∑
i=1

(Ci + C ′i)

form a singular fiber of type I16. Let f : X → P1 be the resulting elliptic fibration.
The connected curve E0+ . . .+E3 is vertical with respect to this fibration, hence be-
longs to some fiber, say f−1(∞). Let s ≥ 1 be the number of irreducible components
in this fiber. Then the trivial lattice T (X/P1) has rank r ≥ 15+(s−1)+2 = s+16.
Since this lattice has rank at most ρ = 22, we infer that s ≤ 6. It follows that
f−1(∞) has Kodaira symbol I∗n with n ≤ 1, and that it is the only non-reduced
fiber.

Let X → X ′ be the contraction of the eight disjoint curves C1, . . . , C4, C
′
1, . . . , C

′
4

together with E0 + . . . + E3. Then X ′ is a normal K3 surface with eight rational
double points of type A1, together with a rational double point of typeD4. Moreover,
f : X → P1 descends to a fibration f ′ : X ′ → P1. We will apply a result of the
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second author ([21], Theorem 6.4) to see that X ′ is a K3-like covering; for this we
have to verify certain conditions (E0), (E2), (E5) and (E6):

First note that the fibers of f ′ : X ′ → P1 are reduced, because f−1(∞) is the only
non-reduced fiber for f : X → P1 and all components with multiplicity m 6= 1 are
contracted by X → X ′. Thus condition (E0) is satisfied.

Recall that the Tjurina number of an isolated hypersurface singularity given by a
power series equation f(t1, . . . , tn) = 0 is the colength of the ideal a ⊂ k[[t1, . . . , tn]]
generated by f and its partial derivatives ∂f/∂ti, compare the discussion in [21],
Section 1. Each A1-singularity is formally isomorphic to z2 + xy = 0, whence its
Tjurina number is τ = 2. According to Artin’s computations, there are exactly two
formal isomorphism classes of D4-singularities, one of which is simply-connected
([3], Section 3). In light of the universal homeomorphism P1 × P1 → (C × C)/G,
our rational double point must be simply-connected, hence is formally given by
z2 +x2y+xy2 = 0, with Tjurina number τ = 8. We see that the Tjurina numbers of
the singularities add up to n = 24, so (E2) holds. Moreover, all singular local rings
OX′,a are Zariski singularities, hence (E6) is true. In particular the stalks ΘX′,a of
the tangent sheaf are isomorphic to O⊕2X′,a, see [21], Corollary 1.6.

The configuration C1 + E13 + C ′3 + E43 + C4 + E42 + C ′2 + E12 defines another
elliptic fibration g : X → P1, which descends to an elliptic fibration g′ : X ′ → P1.
It follows that there is an elliptic curve F ⊂ X ′ that is horizontal for f ′ : X ′ → P1.
This establishes condition (E5).

Summing up, [21], Theorem 6.4 applies, and we conclude that ΘX′/k = O⊕2X′ , all
members of the restricted Lie algebra g = H0(X,ΘX′/k) are p-closed, and for almost
all non-zero vectors δ ∈ g the corresponding local group scheme H ⊂ AutX′/k of
order p acts freely, such that the quotient Y = X ′/H is an Enriques surface, with
X ′ as the K3-like covering. �
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[21] S. Schröer: Enriques surfaces with normal K3-like coverings. Preprint, arXiv:1703.03081.
[22] I. Shimada; D.-Q. Zhang: On Kummer type construction of supersingular K3 surfaces in

characteristic 2. Pacific J. Math. 232 (2007), 379–400.
[23] T. Shioda: Kummer surfaces in characteristic 2. Proc. Japan Acad. 50 (1974), 718–722.
[24] T. Shioda: Algebraic cycles on certain K3 surfaces in characteristic p. In: A. Hattori (ed.),

Manifolds–Tokyo 1973, pp. 357–364. Univ. Tokyo Press, Tokyo, 1975.
[25] T. Shioda, H. Inose: On singular K3 surfaces. In: Complex analysis and algebraic geometry,

pp. 119–136. Iwanami Shoten, Tokyo, 1977.
[26] C. Small: Arithmetic of finite fields. Marcel Dekker, New York, 1991.
[27] H. Strade, R. Farnsteiner: Modular Lie algebras and their representations. Marcel Dekker,

New York, 1988.

Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
Email address: kondo@math.nagoya-u.ac.jp

Mathematisches Institut, Heinrich-Heine-Universität, 40204 Düsseldorf, Ger-
many

Email address: schroeer@math.uni-duesseldorf.de


	Introduction
	1. Some restricted Lie algebras
	2. Diagonal actions and rational points
	3. Kummer surfaces associated with group schemes
	4. Characterization with configurations of curves
	5. Characterization with Artin invariants
	6. Enriques surfaces and K3-like coverings
	References

