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THE p-RADICAL CLOSURE OF LOCAL NOETHERIAN RINGS

STEFAN SCHRÖER

Given a local noetherian ring R whose formal completion is integral, we introduce and study the p-
radical closure Rprc. Roughly speaking, this is the largest purely inseparable R-subalgebra inside the
formal completion R̂. It turns out that the finitely generated intermediate rings R ⊂ A ⊂ Rprc have
rather peculiar properties. They can be used in a systematic way to provide examples of integral local
rings whose normalization is nonfinite, that do not admit a resolution of singularities, and whose formal
completion is nonreduced.

Introduction

In commutative algebra and algebraic geometry, one frequently considers integral closures R ⊂ R′ of an
integral noetherian domain R with respect to finite extensions F ⊂ F ′ of the field of fractions F =Frac(R).
The whole theory of number fields and their rings of integers hinges on this process. Moreover, the
induced morphism Spec(R′)→ Spec(R) can be regarded as a higher-dimensional analogue of branched
coverings of Riemann surfaces.

Indeed, under very general assumptions, the R-algebras R′ are finite, as in the case of number rings
and Riemann surfaces. This holds, for example, if the field extension F ⊂ F ′ is separable, or if the ring
R is essentially of finite type over a field, or a complete local noetherian ring. This finiteness is also a
consequence of the defining conditions for excellent rings, a class introduced by Grothendieck [12] that
is stable under forming algebras of finite type, localizations and completions. A recent overview was
given by Raynaud and Laszlo in [22, exposé I].

However, the finiteness property does not hold for each and every noetherian ring, not even for all
discrete valuation rings. To my knowledge, the first counterexamples were devised by Akizuki [1] in
characteristic zero, see also Reid’s discussion [34, Section 9.5], and Schmidt [23] in characteristic p > 0.
A counterexample that is a discrete valuation ring was given by Nagata [29, Example (E3.3) on page 207]:
the tensor product ring R = k p

[[T ]] ⊗k p k, which is a discrete valuation ring with R̂ = k[[T ]]. Here k
is a field of positive characteristic p > 0 with infinite p-degree, that is, [k : k p

] = ∞. He also found
intermediate discrete valuation rings R ⊂ A ⊂ R̂ with Â = k[[T ]] so that A ⊂ Â is an infinite integral
extension of finite degree p. The study of intermediate rings R ⊂ A ⊂ R̂ initiated by Nagata has a
long tradition: Bennett [2] gave a detailed study, via birational geometry, of bad one-dimensional local
noetherian rings. Olberding [32] analyzed which discrete valuation rings appear as normalization of
such rings. Heinzer, Rotthaus and Wiegand studied various aspects of intermediate rings R ⊂ A ⊂ R̂ in
a series of papers, among others in [17; 18; 19; 20].
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Recall the following terminology: An integral domain R is called japanese if for every finite extension
F ⊂ F ′ of its field of fractions, the integral closure R′ is a finite R-algebra. Now let us restrict our
consideration to local noetherian domains R. Then R′ is a finite R-algebra provided the generic formal
fiber R̂⊗R F is geometrically reduced [4, chapitre IX, §4, no. 3, proposition 3]. In fact, Rees [33] showed
that the generic formal fiber is reduced if and only if all the intermediate rings R ⊂ R′ ⊂ Frac(R) that are
finitely generated R-algebras have finite normalization. A comprehensive account on rings without finite
normalization is given by Olberding [31]. Recently, Kollár [24] reformulated the theory of normalizations
in terms of pairs (X, Z) consisting of noetherian scheme X and a closed subscheme Z ⊂ X , which yields
notions that are preserved under formal completion and work well even for schemes with nonreduced
formal fibers.

The goal of this paper is to introduce and study the p-radical closure R ⊂ Rprc for a local noetherian
ring R whose formal completion R̂ is integral. If R̂ is normal, this equals the integral closure of R with
respect to the relative p-radical closure of Frac(R)⊂ Frac(R̂), where p ≥ 1 is the characteristic exponent
of the fields of fractions. In some sense, it might be viewed as the purely inseparable analogue of the
henselization Rh

⊂ R̂. It would be interesting to compute the p-radical closure in concrete examples.
Here, however, our main goal is to uncover interesting general facts and formal consequences for rings
having nontrivial R ( Rprc.

It turns out that the intermediate rings between R and its p-radical closure Rprc have amazing prop-
erties, and yield, in a rather systematic way, examples of local noetherian rings with bad behavior. Key
features are as follows: If R ( A ⊂ Rprc is an intermediate ring that is finite as an R-algebra, then its
formal completion Â contains nilpotent elements, and we actually have ( Â)red = R̂. The latter is our
key observation, and most of the paper hinges on this result. These rings A are also examples of local
noetherian rings that do not admit resolutions of singularities. In the one-dimensional situation, they
must be nonnormal, and the normalization map is nonfinite.

However, if R ( B ⊂ Rprc is an intermediate ring that is noetherian, with reduced generic formal
fibers, then B̂ = R̂ holds and R ⊂ B is not finite; it follows that the extension R ⊂ B is faithfully flat,
and B inherits regularity and Cohen–Macaulay properties from R. It would be interesting to know under
what circumstances the family of such intermediate rings is cofinal. From this it would follow that the
whole p-radical closure Rprc belongs to this family, at least if R is regular.

In the case where R is a discrete valuation ring, the theory simplifies a lot: This is due to the Krull–
Akizuki theorem, and the fact that there is only one relevant formal fiber R̂⊗R κ(p), namely the generic
formal fiber.

The paper is organized as follows: In the first section, we review several well-known facts pertaining
to extensions and formal completions of local rings used throughout. Since we have to cope with non-
noetherian rings, we do not restrict our discussion to the noetherian case. In Section 2 we introduce the
p-radical closure for local noetherian rings R that are formally integral, and establish its basic properties.
The heart of the paper is Section 3: here we study the intermediate rings between R and its p-radical
closure Rprc. In the final Section 4, we specialize our findings to the case of discrete valuation rings.

1. Extensions and completions of local rings

Here we recall some well-known basic facts on local rings and their formal completions that will be used
throughout the paper. Even though we are mainly interested in noetherian rings, the nonnoetherian rings
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are included in our discussion, because they may show up naturally when it comes to taking integral
closures.

A homomorphism ϕ : R→ A between local rings is local if ϕ−1(mA) = mR . An extension of local
rings is an injective local homomorphism ϕ : R→ A between local rings, and we then usually write
R ⊂ A. In general, one has the following two numerical invariants

e = lengthA(A/mR A), and f = [κ(A) : κ(R)],

which we refer to as the ramification index e ≥ 1 and the residual degree f ≥ 1 for ϕ : R→ A. Here
κ(R) = R/mR and κ(A) = A/mA are the residue fields, and the numerical invariants are regarded as
elements from {1, 2, . . .} ∪ {∞}. If R is integral, with field of fractions F = Frac(A), there is another
invariant

n = [A⊗R F : F]

called the degree n ≥ 0 of the homomorphism R→ A. In case that the R-algebra A flat, finitely presented
and finite, that is, the underlying R-module is free of finite rank, the famous formula n = e f holds. These
numerical invariants originate from the theory of number fields and Riemann surfaces, and I find them
quite useful in the general context. Throughout, we are particularly interested in extensions of local
rings with invariants e = f = 1. In the context of valuation theory, such extension are called immediate
extensions.

The formal completion of the local ring R is written as

R̂ = lim
←−−
n≥0

R/mn
R.

This is another local ring, with maximal ideal mR̂ =mR R̂ and residue field κ(R̂)= κ(R) [5, chapitre III,
§2, no. 13, proposition 19]. The canonical map R → R̂, a 7→ (a, a, . . .) is local, with numerical
invariants e = f = 1. The local ring R is called complete if R→ R̂ is bijective. Clearly, the kernel of
the canonical map is the intersection

⋂
n≥0 m

n
R . It is trivial if R is noetherian, or more generally if R,

viewed as a topological ring with respect to the mR-adic topology, is Hausdorff. On the other hand, the
kernel coincides with the maximal ideal if R is an fppf-local ring, as studied by Gabber and Kelly in [10,
Section 3] and myself in [37, Section 4]. Using [5, chapitre III, §2, no. 10, corollaire 5], we immediately
get:

Proposition 1.1. The complete local ring R̂ is noetherian if and only if the cotangent space mR/m
2
R has

finite dimension as vector space over the residue field κ(R)= R/mR .

If ϕ : R→ A is a local homomorphism between local rings, we get an induced local map ϕ̂ : R̂→ Â,
making the diagram

R̂
ϕ̂
// Â

R

can

OO

ϕ
// A

can

OO

commutative. Consequently, the residual degree f ≥ 1 for R→ A and R̂→ Â coincide. Furthermore:
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Proposition 1.2. If the fiber ring A/mR A is noetherian, then the ramification indices e ≥ 1 for the local
maps R→ A and R̂→ Â coincide.

Proof. The ramification indices in question are the lengths of the rings B = A/mR A and B ′ = Â/mR̂ Â=
Â/mR Â. The latter is complete, so the canonical map B→ B ′ factors over B̂, and the resulting map
B̂→ B ′ is bijective. Replacing A by B, we thus reduce to the situation where A is noetherian.

Now consider the complements U ⊂ Spec(A) and U ′ ⊂ Spec( Â) of the closed point. The resulting
morphism f :U ′→U is quasicompact and faithfully flat. Let M be a finitely generated A-module, and
F be the quasicoherent sheaf on U obtained by restricting the quasicoherent sheaf M̃ on Spec(A). By
fpqc-descent, the preimage f ∗(F ) vanishes if and only if F vanishes [14, exposé VIII, §1, corollaire 1.3].
If follows that M has finite length if and only if M̂ =M⊗A Â has finite length. In this situation, mn

A M = 0
for some n ≥ 0, whence M̂ = M , and one easily infers that lengthA(M) = length Â(M̂). Applying this
for M = A/mR A yields the assertion. �

The schematic fibers of the morphism Spec(R̂)→ Spec(R) are called the formal fibers of R. The
corresponding rings R̂⊗R κ(p), where p⊂ R are the prime ideals, are called the formal fiber rings. Note
that these are noetherian rings, provided that R̂ is noetherian. They are endowed with the structure of an
algebra over the fields κ(p)= Rp/pRp, but these algebras are usually not finitely generated. The closed
fiber equals the spectrum of the residue field k = R̂/mR̂ = R/mR , whence is of little interest. Rather
important are the generic formal fibers, which are given by the rings R̂⊗R κ(p), where p ⊂ R are the
minimal prime ideals. Let us recall:

Proposition 1.3. Let R be a local noetherian ring. Then the complete local scheme Spec(R̂) is reduced
or irreducible if and only if the respective property holds for the local scheme Spec(R) and its generic
formal fiber.

Proof. Suppose R̂ is reduced. Then so is the subring R ⊂ R̂. Let p⊂ R be a minimal prime ideal, and
write S = R r p for the ensuing multiplicative system. Being a localization of a reduced ring, the generic
formal R̂⊗R κ(p)= S−1 R̂ is reduced.

Conversely, suppose that R and its generic formal fiber is reduced. We have to show that R̂ contains
no embedded prime, and is regular in codimension zero. According to [27, Corollary in (9.B)], each
associated point η ∈ Spec(R̂) lies over a generic point of Spec(R), and is generic in its formal fiber. Thus
η ∈ Spec(R̂) is generic. Moreover, the local ring corresponding to η ∈ Spec(R̂) is regular, according to
[12, corollaire 6.5.2]. Thus R̂ is reduced. The arguments for irreducibility are analogous, and left to the
reader. �

Note that it may happen that R is integral, yet there are embedded primes p ⊂ R̂, as examples of
Ferrand and Raynaud reveal [9]. Such behavior is ubiquitous, according to Lech [26]. In this situation,
however, we must have p∩ R = 0, that is, Ass(R̂) maps to the generic point of Spec(R).

We say that R is formally reduced if the equivalent conditions for reducedness of Proposition 1.3 hold.
In [29], the term analytically unramified was used. We prefer the former locution, because “unramified”
now is used in algebraic geometry in a different way [13, §17]. We say that R is formally integral if
the equivalent conditions for integrality hold. In [29], such rings are called analytically irreducible. The
following observation, which is a consequence of [29], (18.3) and (18.4), applies in particular to the
formal completion R ⊂ R̂ of formally integral local noetherian rings:
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Lemma 1.4. Let B ⊂ C be a faithfully flat extension of domains. Then we have B = C ∩ Frac(B) as
subsets of Frac(C).

If R ⊂ A is an extension of local noetherian rings, the induced map R̂→ Â stays injective provided
that the R-algebra A is finite, by [5, chapitre III, §3, no. 4, théorème 3]. In general, however, the map
is not injective, for example if A but not R is formally reduced. We shall encounter such behavior later.
The following is a situation in which injectivity is preserved without any finiteness assumptions. The
second assertion can be seen as a generalization of [31, Lemma 3.1], which dealt with discrete valuation
rings:

Proposition 1.5. Let R⊂ A be an extension of local noetherian rings with numerical invariants e= f = 1.
Assume that dim(A)= dim(R), and that R is formally integral. Then the induced map R̂→ Â is bijective,
and the R-algebra A is faithfully flat. Moreover, for any intermediate ring R ⊂ R′ ( A, the R′-algebra
A is not finite.

Proof. The local map R̂→ Â has invariants e = f = 1, by Proposition 1.2. Hence the map is surjective,
according to [5, chapitre III, §2, no. 9, proposition 11]. Write Â = R̂/a for some ideal a⊂ R̂. Using

dim(A)= dim(R)= dim(R̂)≥ dim( Â)= dim(A),

we infer that dim(R̂)= dim( Â). Since R̂ is integral, we can apply Krull’s principal ideal theorem and
conclude that a= 0, whence the local map R̂→ Â is bijective. This ensures, by [5, chapitre III, §3, no. 5,
proposition 10], that the R-algebra A is faithfully flat.

Now assume that for some intermediate ring R ⊂ R′ ⊂ A the R′-algebra A is finite. We have to verify
that R′ = A. The map Spec(A)→ Spec(R′) is closed since it is finite. It is also dominant, whence
surjective, because the homomorphism R′→ A is injective. Consequently, R′ is local, and R′ ⊂ A and
whence R ⊂ R′ are extensions of local rings. By the Eakin–Nagata theorem ([8] or [30]), the local ring
R′ is noetherian. The extension of local rings R′ ⊂ A has invariants e = f = 1, because this holds for
R⊂ A. Taking formal completions thus gives a finite extension of complete local rings R̂′⊂ Â= A⊗R′ R̂′

with invariants e = f = 1, whence the inclusion is an equality. By faithfully flat descent, the inclusion
R′ ⊂ A is an equality [14, exposé VIII, corollaire 1.3]. �

Now suppose that our local noetherian ring R is integral, with field of fractions F = Frac(R). Then
R is called japanese if for every finite extension F ⊂ F ′, the integral closure R ⊂ R′ inside F ′ is a finite
R-algebra. This automatically holds if the ring R is normal and the field F has characteristic zero (see
[27, Proposition 31.B]).

A ring R is called universally japanese if each integral R-algebra of finite type is japanese. Such rings
are also known as pseudogeometric, J -rings or Nagata rings. A local ring R is called excellent if it is
noetherian, universally catenary, and has geometrically regular formal fibers; such rings are universally
japanese (see [12, scholie 7.8.3(i) et (vi)]).

2. The p-radical closure

Throughout this section, R denotes a local noetherian ring that is formally integral. The extension of
local rings R ⊂ R̂ induces an extension of fields of fractions Frac(R) ⊂ Frac(R̂). We write p ≥ 1
for the characteristic exponent of these fields. Recall that p = 1 if the prime field is Q, and equals the
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characteristic p≥ 2 otherwise. In the latter case, the canonical map Z→ R ⊂ Frac(R) yields an inclusion
Fp ⊂ R. Consider the subset

Rprc
= {b ∈ R̂ | bpν

∈ R for some exponent ν ≥ 0}.

Clearly, this subset is a subring Rprc
⊂ R̂ containing R; we call it the p-radical closure of R. Note that

if p = 1, that is, the fields of fractions have characteristic zero, we have Rprc
= R, and the situation is of

little interest. In general, set F = Frac(R) and let F ⊂ F∞ ⊂ Frac(R̂) be the relative p-radical closure
in the sense of field theory.

Proposition 2.1. We have Rprc
= R̂ ∩ F∞ inside the field of fractions Frac(R̂). This is also the integral

closure of R with respect to R ⊂ F∞, provided that R̂ is normal.

Proof. The inclusion Rprc
⊂ R̂ ∩ F∞ is obvious. For the reverse inclusion, suppose b ∈ R̂ is a root of a

polynomial T pν
−a with a ∈ F . The task is to verify a ∈ R. Indeed, we have a= bpν

∈ R̂, and Lemma 1.4
tells us that a ∈ R̂ ∩ F = R. Now suppose that R̂ is normal, and let R ⊂ R′ ⊂ F∞ be the integral closure.
Then R′ ⊂ R̂, because the latter is normal, and consequently Rprc

⊂ R′ ⊂ R̂ ∩ F∞. Since the right-hand
side is contained in Rprc, the assertion follows. �

The p-radical closure is closely related to the generic formal fiber:

Proposition 2.2. Consider the following three conditions:

(i) The inclusion R ⊂ Rprc is an equality.

(ii) The generic formal fiber of R is geometrically reduced.

(iii) The local ring R is japanese.

Then (ii)⇒ (iii) holds. If R is normal, we also have (i)⇐ (ii). The converse (i)⇒ (ii) holds provided
that R̂ is normal and the field extension F ⊂ Frac(R̂) can be written as an purely inseparable extension
followed by a separable extension.

Proof. The implication (ii)⇒ (iii) is [4, chapitre IX, §4, no. 3, proposition 3]. Now suppose that R is
normal, and that (ii) holds. Set F = Frac(R), and write B = R̂⊗R F for the generic formal fiber ring.
Suppose that Rprc

6= R. Then there is some b ∈ Rprc with b 6∈ R but a = bp
∈ R. Since R is normal, we

also have b 6∈ F , and get a field extension F ( F(a1/p). Hence the element c = b⊗ 1− 1⊗ a1/p from
the ring B⊗F F(a1/p) is nonzero and satisfies cp

= 0, thus B is not geometrically reduced.
Finally, suppose that R̂ is normal, that the field extension F ⊂ Frac(R̂) can be written as a purely

inseparable extension F ⊂ F ′ followed by a separable extension F ′ ⊂ Frac(R̂), and that condition (i)
holds, that is, R = Rprc. We shall verify (ii). Clearly, the intermediate field F ′ coincides with the
relative p-radical closure F∞. First, we check that F = F∞: Suppose b/b′ ∈ Frac(R̂) is an element with
(b/b′)p

= a/a′ for some a, a′ ∈ R. Then (a′b/b′)p
= aa′p−1

∈ R ⊂ R̂. Since R̂ is normal, we must have
a′b/b′ ∈ R̂, and thus a′b/b′ ∈ Rprc

= R. Consequently b/b′ = (a′b/b′)/a′ ∈ Frac(R)= F . This shows
F = F∞, and it follows that the field extension F ⊂ Frac(R̂) is separable.

Being a localization of the integral ring R̂, the formal fiber ring B= R̂⊗R F is integral, with Frac(B)=
Frac(R̂). For any field extension F ⊂ F ′, the inclusion B ⊂ Frac(R̂) induces an inclusion B ⊗F F ′ ⊂
Frac(R̂)⊗F F ′. The right-hand side is reduced, because the field extension F ⊂ Frac(R̂) is separable,
and thus the left-hand side is reduced as well. Hence B is geometrically reduced. �
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Note that there are nonseparable field extension F ⊂ E whose relative p-radical closure is F∞ = F .
There are examples where F ⊂ E is finite (the exceptional field extensions from [6, Chapter V, Exercises 1
and 2 for §7]), or where F ⊂ E is relatively algebraically closed (related to quasifibrations X→ B of
proper normal schemes with geometrically nonreduced generic fiber, compare the discussion in [36]).

The following functoriality property is immediate from the definition of the p-radical closure:

Proposition 2.3. Let R ⊂ A be an extension of local noetherian rings, both of which are formally integral.
Then the induced map R̂→ Â sends Rprc to Aprc.

Note that the induced map R̂→ Â is not necessarily injective; this phenomenon was analyzed by
Hübl [21]. If the map is injective, one may view both Rprc and A as subrings inside Â. Combining with
Proposition 2.2, we get the following property of the p-radical closure:

Corollary 2.4. Assumptions as in Proposition 2.3. Additionally suppose that the induced map R̂→ Â
is injective. If the generic formal fiber of A is geometrically reduced and A is normal, then we have
Rprc
⊂ A as subrings inside Â.

Let us call a polynomial over a field purely inseparable if it has exactly one root in the algebraic
closure. With an additional hypothesis, we may regard the p-radical closure as a purely inseparable
algebraic closure:

Proposition 2.5. Suppose the extension of local rings Rprc
⊂ R̂ is flat. Write F = Frac(R). Then Rprc

⊂ R̂
is the set of all elements b ∈ R̂ that satisfy an algebraic equation f (b)= 0 for some nonzero polynomial
f ∈ R[T ] that is purely inseparable as polynomial over F.

Proof. Clearly, every b ∈ Rprc satisfies the condition. Conversely, suppose that b ∈ R̂ is the root of such a
polynomial f ∈ R[T ]. Since this polynomial is purely inseparable it must be of the form f (T )= c(T−b)n

for some nonzero c ∈ R and some integer n ≥ 1. Write n = pνm for some exponent ν ≥ 0 and p -m.
Then

f (T )= c(T pν
− bpν )m = cT pνm

+ cmbpνT pν(m−1)
+ · · ·+ cbpνm .

Comparing coefficients and using m ∈ R×, we see cbpν
∈ R. The element cb ∈ R̂ thus has (cb)pν

∈ R,
hence cb∈ Rprc, so b= cb/c∈ R̂∩Frac(Rprc). Now we use that assumption that Rprc

⊂ R̂ is flat. It follows
from Proposition 3.1 below that it is faithfully flat; whence Lemma 1.4 ensures that R̂∩Frac(Rprc)= Rprc.

�

Note that this interpretation makes no reference to the characteristic exponent; perhaps this would
lead to a meaningful definition of p-radical closure for arbitrary local noetherian rings, which need not
be formally integral.

Moreover, it reveals a striking analogy between p-radical closure and henselization: if A is any local
noetherian ring, with henselization Ah , the formal completion Â is also henselian, and the universal
property of henselization gives inclusions A ⊂ Ah

⊂ Â, see [13, théorème 18.6.6]. Note that if A is
formally irreducible, then Ah is irreducible, which in turn means that A is unibranch.

If A is formally normal and universally japanese, then the henzelization Ah coincides with the alge-
braic closure of A inside the formal completion Â, according to [29, Theorem 44.1]. In other words, Ah

is the set of elements b ∈ Â that satisfy an algebraic equation f (b)= 0 for some nonzero f ∈ A[T ]; note
that here f is not necessarily monic. This even holds if A is merely integral, and its formal fibers are
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reduced, and the generic formal fiber is normal, according to [25, Proposition 2.10.2]. This was further
generalized to Hensel couples in [11, Theorem 3, see also Remark 2].

We have the following variant, which says that for our formally integral local noetherian ring R
the henselization is the separable algebraic closure inside the formal completion, under a rather mild
assumption:

Theorem 2.6. Suppose the henselization Rh has geometrically connected generic formal fiber. Write
F = Frac(R). Then Rh

⊂ R̂ is the set of all elements b ∈ R̂ that satisfy an algebraic equation f (b)= 0
for some nonzero polynomial f ∈ R[T ] that is separable as polynomial over F.

Proof. First, we check that each b ∈ Rh satisfies the conditions. By definition of the henselization in [13,
Section 18.6] we have b ∈ Bp, where B is an étale R-algebra, and p⊂ B is a prime ideal lying over the
maximal ideal mR ⊂ R. After localization, we may assume that B is integral, because R is unibranch. Let
g ∈ F[T ] be the minimal polynomial for the element b ∈ Frac(B). Then g is separable, and multiplying
with a suitable nonzero element r ∈ R yields a polynomial f (T ) = rg(T ) with coefficients in R. The
canonical inclusions Bp ⊂ Rh

⊂ R̂ reveal that b satisfies the desired conditions. Note that this holds
without the assumption on the generic formal fiber of Rh .

Conversely, suppose that we have b ∈ R̂ satisfying f (b)= 0 for some polynomial

f (T )= cT m
+ λm−1T m−1

+ · · ·+ λ0

with coefficients in R and leading coefficient c 6= 0, such that f (T ) is separable over F . Our goal is to
show b ∈ Rh . Let us first assume that the algebraic equation is integral, that is, c = 1. Consider the Rh-
subalgebra B = Rh

[b] inside R̂. The ring B is integral, and the Rh-algebra B is finite. Let n = [B : Rh
].

It suffices to verify n = 1, because then b ∈ R̂ ∩ Frac(Rh) = Rh , by Lemma 1.4. Indeed, it follows
from [13, théorème 18.6.6] that the canonical map R̂h→ R̂ is bijective, so we may regard the inclusion
Rh
⊂ R̂ as the formal completion. Seeking a contradiction, we now suppose n ≥ 2.

By assumption, the generic formal fiber of Rh is geometrically connected. It follows that B ⊂ B⊗Rh R̂,
x 7→ x ⊗ 1 corresponds to a morphism on schemes whose generic fiber is connected. On the other hand,
using that B ⊂ R̂, we get a bijection

(B⊗Rh B)⊗B R̂→ B⊗Rh R̂, x ⊗ y⊗ z 7→ xy⊗ z.

Since Frac(Rh) ⊂ Frac(B) is a separable extension of degree n ≥ 2, it follows from the Galois corre-
spondence that the inclusion B ⊂ B⊗Rh B, y 7→ 1⊗ y corresponds to a morphism of schemes whose
generic fiber is disconnected. In turn, the composite map

B→ B⊗Rh B→ (B⊗Rh B)⊗B R̂→ B⊗Rh R̂,

which is nothing but the canonical inclusion B ⊂ B⊗Rh R̂, induces a morphism of schemes with discon-
nected generic fiber, contradiction.

We finally treat the general case, where the leading coefficient c ∈ R an arbitrary nonzero element.
Clearly, the element b′ = cb from R̂ is a root for the monic polynomial

T m
+ c0λm−1T m−1

+ · · ·+ cm−1λ0 = cm−1 f (T/c),
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which is separable over F . By the preceding paragraph, we have b′ ∈ Rh , and in turn b = b′/c ∈
R̂ ∩Frac(Rh). Since Rh

⊂ R̂ is faithfully flat, Lemma 1.4 applies, which gives R̂ ∩Frac(Rh)= Rh . �

Note that the formal fibers of Rh indeed are geometrically connected provided they are geometrically
normal, according to [13, théorème 18.9.1]. I do not know an example where the generic formal fiber of
Rh is geometrically disconnected. This does not happen if Rh has the approximation property, and the
latter implies, according to [35], that Rh and whence R are excellent.

Let me also make a comment on étale cohomology: Given a scheme X , we denote by Et(X) the
site of all étale morphisms U → X , endowed with the Grothendieck topology whose covering families
(Uα → U )α∈I are those with

⋃
α∈I Uα → U is surjective. Let Xet be the resulting topos of sheaves.

For any abelian étale sheaf F on X , that is, an abelian sheaf on the site Et(X), in other words an
object in the category Xet, one gets the cohomology groups H r (Xet, F). Now set X = Spec(R) and
Xprc
= Spec(Rprc). According to [14, exposé IX, théorème 4.10], together with footnote (5), the pullback

functor Et(X)→ Et(Xprc), U 7→U ×X Xprc is an equivalence of categories. It induces a continuous map
of topoi

ε = (ε∗, ε
∗) : (Xprc)et→ Xet,

where the adjoint functors ε∗, ε∗ are equivalences of categories. In particular, computing étale cohomol-
ogy on X amounts to the same as computing it on Xprc.

3. Intermediate rings

Let R be a local noetherian ring that is formally integral. We now want to study intermediate rings
between R and its p-radical closure Rprc. Let us first record:

Proposition 3.1. For every intermediate ring R ⊂ A ⊂ Rprc, the induced morphisms

Spec(Rprc)→ Spec(A) and Spec(A)→ Spec(R)

are integral universal homeomorphisms. The extensions of local rings R ⊂ A ⊂ Rprc have numerical
invariant f = 1. Moreover, the local rings A are separated with respect to the mA-adic topology.

Proof. By definition, the morphisms are integral. By the going-up theorem, they are universally closed.
Since the ring homomorphisms are injective, the induced maps on affine schemes are dominant, whence
surjective. For each point x ∈Spec(R), the fibers of Spec(Rprc)→Spec(R) and Spec(A)→Spec(R) over
x are affine, and given by algebras C over K = κ(x) where each c ∈ C has some cpν

∈ K . If follows that
C⊗K K 1/p∞ is a ring containing precisely one prime ideal, with trivial residue field extension. In light of
[16, proposition 3.7.1], the morphisms Spec(Rprc)→ Spec(A) and Spec(A)→ Spec(R) are universally
bijective. Being universally closed and universally bijective, they are universal homeomorphisms.

The assertion on residue fields holds, because all rings are contained in Â, and the extension of local
rings A ⊂ Â has trivial residue field extension. Finally, suppose we have some f ∈

⋂
n≥0 m

n
A. Using the

extension of local rings A ⊂ R̂, we see that f ∈
⋂

n≥0 m
n
R̂
= 0, thus A is separated. �

In particular, such A are integral local rings, the topological space Spec(A) is noetherian, with
dim(A) = dim(R). Moreover, R ⊂ A is an extension of local rings, and we thus get an induced map
R̂→ Â on formal completions. Note, however, that there is no a priori reason that A should be noetherian.
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Now consider the direct system Aλ ⊂ Rprc, λ ∈ L of all finite R-subalgebras, that is, the underlying
R-module is finitely generated. The rings Aλ are noetherian by Hilbert’s basis theorem. Clearly, the
direct system is filtered, and we have

Rprc
=

⋃
λ∈L

Aλ = lim
−−→
λ∈L

Aλ.

The index set, viewed as an ordered set, has a smallest element λmin ∈ L . To simplify notation, we denote
this smallest element as λmin = 0, such that A0 = R. Let us write Âλ = Âλ for the formal completions
of the local noetherian rings Aλ, and consider the reduced formal completions

( Âλ)red = Âλ/Nil( Âλ)

and the composite map R̂→ Âλ→ ( Âλ)red. The following is our key result:

Theorem 3.2. For each λ ∈ L , the composite map R̂→ ( Âλ)red is bijective.

Proof. The assertion is trivial if Rprc
= R. In light of Proposition 2.2, it thus suffices to treat the case

that F = Frac(R) has positive characteristic p > 0, such that R contains the prime field Fp. First note
that since R ⊂ Aλ is finite, the canonical map

Aλ⊗R R̂→ Âλ, x ⊗ y 7→ xy

is bijective [27, Theorem 55 on page 170]. Now we use that the R-algebra Aλ is contained in R̂, and
observe that the resulting map

(Aλ⊗R Aλ)⊗Aλ R̂→ Aλ⊗R R̂, (x ⊗ y)⊗ z 7→ xy⊗ z

is bijective. Clearly, the composite surjection

(Aλ⊗R Aλ)⊗Aλ R̂→ Aλ⊗R R̂→ Âλ→ ( Âλ)red

factors over R̃ = (Aλ⊗R Aλ)red⊗Aλ R̂. Applying Lemma 3.11 below with B = R and C = Aλ, we infer
that the mapping Aλ→ (Aλ⊗R Aλ)red, a 7→ a⊗ 1 is bijective. Consequently, we get a surjection

R̂→ Aλ⊗Aλ R̂→ (Aλ⊗R Aλ)red⊗Aλ R̂→ ( Âλ)red.

This map is given by a 7→ 1⊗a 7→ (1⊗1)⊗a 7→a, whence coincides with the canonical map R̂→ ( Âλ)red.
Therefore, the latter is surjective.

Let d ≥ 0 be the Krull dimension of the local noetherian ring R. In light of Proposition 3.1, this is also
the dimension of Aλ, and thus of ( Âλ)red. By assumption, the ring R̂ is integral, whence the surjective
map R̂→ ( Âλ)red has trivial kernel, by Krull’s principal ideal theorem. �

Corollary 3.3. For each λ 6= 0, the intermediate rings Aλ is an integral local noetherian ring whose
generic formal fiber is nonreduced, and whose spectrum Spec(Aλ) does not admit a resolution of singu-
larities.

Proof. Suppose the generic formal fiber of Aλ is reduced. By Proposition 1.3, this means that Âλ is
reduced. In light of the Theorem, the map Â→ Âλ is bijective. By faithfully flat descent [14, exposé VIII,
corollaire 1.3], the inclusion A ⊂ Aλ is an equality. But this means λ= 0, contradiction.
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Thus the generic formal fiber of Aλ is nonreduced, and in particular nonregular. According to [12,
proposition 7.9.3] this implies that the scheme Spec(Aλ) admits no resolution of singularities. �

We see that formally integral local noetherian rings R with R ( Rprc give rise, in a rather systematic
way, to families of integral local noetherian rings without resolutions of singularities. In dimension one,
this means:

Corollary 3.4. Suppose dim(R)= 1. Then for each λ 6= 0, the intermediate rings Aλ is an integral local
noetherian ring with dim(Aλ)= 1 whose normalization Aλ ⊂ A′λ is not a finite extension.

Proof. If the normalization Aλ ⊂ A′λ is finite, then the normal one-dimensional ring A′λ is noetherian,
thus a Dedekind domain. Hence Spec(A′λ)→ Spec(Aλ) is a resolution of singularities, in contradiction
with Corollary 3.3. �

Now let R ⊂ B ⊂ Rprc be an arbitrary intermediate ring. If B is not a finite R-algebra, it may or
may not be noetherian. Indeed, Nagata [29] describes on page 207 examples constructed from regular
local rings of the form k p

[[x1, . . . , xn]] ⊗k p k, which yield nonnoetherian B: In Example 4 the ring R
is integral of dimension two, and in Example 5 we have R regular of dimension three. In any case,
R ⊂ B is an extension of local rings, hence we get an induced map on formal completions R̂→ B̂. Here
B̂ = lim

←−−
B/mn

B .

Corollary 3.5. The image of the canonical map B→ (B̂)red is contained in the image of R̂→ (B̂)red.

Proof. Let b ∈ B, and write b̄ ∈ (B̂)red for its image. Choose some index λ∈ L with b ∈ Aλ⊂ B. Consider
the commutative diagram

R̂ // ( Âλ)red // (B̂)red

R

OO

// Aλ

OO

// B

OO

According to the theorem, the upper left vertical map is surjective. By construction, the class b̄ lies in
the image of the upper right vertical map. It follows that b̄ is also in the image of R̂→ (B̂)red. �

Corollary 3.6. The reduced local ring (B̂)red is noetherian. The local ring B̂ is noetherian if and only if
its nilradical is finitely generated.

Proof. Since the local ring B̂ is complete, so is the residue class ring C = (B̂)red. It suffices to check that
the latter has a finite cotangent space, according to Proposition 1.1. Since each vector from mC/m

2
C comes

from some element in B, Corollary 3.5 reveals that it also comes from some element of R. This implies
that the canonical map mR̂/m

2
R̂
→ mC/m

2
C is surjective. These vector spaces are finite-dimensional,

because R̂ is noetherian.
The condition in the second assertion is trivially necessary. It is also sufficient: Suppose the nilradical

N ⊂ C is finitely generated. Tensoring the exact sequence N →mB̂→mC → 0 of B̂-modules with the
residue field k gives an exact sequence

N ⊗B̂ k→mB̂/m
2
B̂
→mC/m

2
C → 0.

Consequently, the k-vector space in the middle is finite-dimensional. Using Proposition 1.1, we deduce
that the complete local ring B̂ is noetherian. �
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Our second main result deals with intermediate rings that are well-behaved:

Theorem 3.7. Suppose the intermediate ring R ⊂ B ⊂ Rprc is noetherian, and that its generic formal
fiber is reduced. Then the extension of local rings R ⊂ B has invariants e = f = 1, is faithfully flat, and
the induced map on formal completions R̂→ B̂ is bijective. Furthermore, if B 6= R then the R-algebra
B is not finite.

Proof. We have f = 1 by Proposition 3.1. In order to see e = 1, we first check that the induced map on
cotangent spaces

(1) mR/m
2
R→mB̂/m

2
B̂

is surjective. Let b̄ ∈ mB̂/m
2
B̂

. Since B is noetherian, the map mB/m
2
B → mB̂/m

2
B̂

is bijective, and we
may choose an element b ∈mB mapping to b̄. Since the generic formal fiber of B is reduced, the formal
completion B̂ is reduced, by Proposition 1.3. According to Corollary 3.5, there is an element a′ ∈mR̂
mapping to b̄. Its class in the cotangent space ā ∈mR̂/m

2
R̂

is the image of some element a ∈mR . Whence
the map (1) on cotangent spaces is surjective.

Now choose some a1, . . . , ar ∈ mR so that their images in the cotangent space form a vector space
basis. According to the Nakayama Lemma, the elements a1, . . . , ar ∈mB generate this maximal ideal.
It follows that the extension of local rings R ⊂ B has invariant e = 1.

According to Proposition 1.5, the map R̂→ B̂ is bijective and R ⊂ B is faithfully flat. Furthermore,
if the inclusion R ⊂ B is not an equality, then B is not a finite R-algebra. �

Corollary 3.8. Suppose the intermediate local ring R ⊂ B ⊂ Rprc is noetherian, and its generic formal
fiber is reduced. If the local ring R is regular, or Cohen–Macaulay, the same holds for B.

Proof. A local noetherian ring is regular or Cohen–Macaulay if and only if the respective property holds
for its formal completion [15, propositions 17.1.5 et 16.5.2]. If R is regular, or Cohen–Macaulay, the
same holds for R̂ = B̂, and thus for B. �

The assumption that the local ring B is noetherian, with reduced generic formal fiber, can be rephrased
as a flatness condition:

Proposition 3.9. The intermediate ring R ⊂ B ⊂ Rprc is noetherian, with reduced generic formal fiber
if and only if the extension of local rings B ⊂ R̂ is flat, and the induced map B̂→ R̂ is injective.

Proof. The condition is necessary: The composite map

R̂→ B̂→ R̂

is the identity, the map R̂→ B̂ on the left is bijective by Theorem 3.7. Whence the map B̂→ R̂ on the
right is even bijective. Since B→ B̂ is flat, so must be the composition B→ B̂→ R̂.

The condition is also sufficient: The composite mapping

Spec(R̂)→ Spec(B)→ Spec(R)

is surjective, the map Spec(B)→ Spec(R) on the right is bijective according to Proposition 3.1, whence
the map Spec(R̂)→ Spec(B) on the left is surjective. Therefore, the inclusion B ⊂ R̂ is faithfully flat.
Now let b0 ⊂ b1 ⊂ · · · be an ascending chain of ideals in B. The ascending chain b0 R̂ ⊂ b1 R̂ ⊂ · · · of
ideals in the noetherian ring R̂ is stationary. By flatness, the canonical map bi ⊗B R̂→ bi R̂ is bijective,
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and by faithfully flat descent, the original ascending chain is stationary as well. Thus the local ring B is
noetherian. Since B̂→ R̂ is injective and R̂ is reduced, the ring B̂ is reduced. By Proposition 1.3, the
integral local ring B has reduced generic formal fiber. �

Suppose from now on that the complete local noetherian ring R̂ is normal. According to Proposition 2.1,
also Rprc is normal. Write Aλ⊂ Rλ⊂ Rprc for the normalization of the finite R-algebras Aλ. This gives an-
other filtered direct system Rλ⊂ Rprc, λ∈ L of subrings containing R, with Rprc

=
⋃
λ∈L Rλ. By the Mori–

Nagata theorem the Rλ are Krull domains (see [3, chapitre VII, §1, no. 8, proposition 12]). Such rings are
not necessarily noetherian. Note, however, that if R is one-dimensional, all the Rλ are discrete valuation
rings, by the Krull–Akizuki theorem (see [3, §2, no. 5, corollaire 2 de proposition 5]). If R is two-
dimensional, the local rings Rλ at least remain noetherian, by a result of Nagata [28] attributed to Mori.

We now want to give a sufficient condition for the p-radical closure Rprc to be noetherian. To proceed,
consider the subset L ′ ⊂ L of all indices λ so that the local Krull domain Rλ is noetherian, and its generic
formal fiber is reduced. The latter happens, for example, if the Rλ are regular.

Theorem 3.10. Suppose that all formal fibers of the local noetherian ring R are reduced, and that the
subset L ′ ⊂ L is cofinal. Then the local ring Rprc is noetherian, its generic formal fiber is reduced, the
extension of local rings R ⊂ Rprc is faithfully flat, with invariants e = f = 1, and the canonical map
R̂→ R̂prc is bijective.

Proof. First note that the order set L ′ is filtered, because it is cofinal in the filtered ordered set L . We
thus have a filtered direct system Rλ, λ ∈ L ′ of local noetherian rings. All transition maps are faithfully
flat, and local with invariants e = f = 1. Clearly, Rprc

=
⋃
λ∈L ′ Rλ. It follows that the extension of local

rings R ⊂ Rprc also has invariants e= f = 1. Consequently, the maximal ideal mRprc =mR Rprc is finitely
generated.

The main issue is to verify that the ring Rprc is noetherian. This means that every ideal is finitely
generated. According to Cohen’s theorem [7], it suffices to check this merely for the prime ideals p⊂ Rprc.
Set pλ = p ∩ Rλ. For each λ ≤ µ, we have an inclusion pλRµ ⊂ pµ, and p = lim

←−−
pλ. Since R0 =

R is noetherian, it suffices to check that the inclusion p0 Rµ ⊂ pµ is an equality for all µ ∈ L ′. By
Proposition 3.1, the corresponding closed embedding Spec(Rµ/pµ)⊂ Spec(Rµ/p0 Rµ) is a bijection. It
remains to verify that the scheme Spec(Rµ/p0 Rµ) is reduced.

Set Y = Spec(R0) and X = Spec(Rµ), write f : X → Y for the canonical morphism, with induced
map f̂ : X̂→ Ŷ on formal completions, and consider the resulting commutative diagram of schemes

Ŷ

q
��

X̂
f̂

oo

p
��

Y X
f

oo

According to Theorem 3.7, the upper vertical arrow is an isomorphism. Let C ⊂ Y be the integral closed
subscheme defined by the ideal p0 ⊂ R0 = R. Since the formal fibers of Y are reduced, the scheme
q−1(C) is reduced, whence also

p−1( f −1(C))= f̂ −1(q−1(C)).
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Since the morphism p : X̂→ X is faithfully flat, the scheme f −1(C)= Spec(Rµ/p0 Rµ) must be reduced.
We next check that the extension of local rings R ⊂ Rprc has numerical invariants e = f = 1. The

residual degree is f = 1, which holds for all intermediate rings by Proposition 3.1. Since each extension
of local rings R ⊂ Rλ, λ ∈ L ′ has invariants e = 1, the same holds for the union Rprc

=
⋃
λ∈L ′ Rλ.

Finally, we examine the generic formal fiber. By assumption, the ring R is formally integral, so
Proposition 3.1 ensures that dim(R) = dim(Rprc). We thus may apply Proposition 1.5 and infer that
R̂→ R̂prc is bijective. In particular, the local noetherian ring Rprc is formally reduced. Thus its generic
formal fiber is reduced, according to Proposition 1.3. �

It is perhaps worthwhile to point out that there is a canonical exhaustive ascending chain of interme-
diate rings

R = B0 ⊂ B1 ⊂ · · · ⊂ Rprc

given by heights: Recall that F∞ denotes the relative p-radical closure of F = Frac(R)⊂ Frac(R̂). Let
Fn ⊂ F∞ be the set of elements a ∈ F∞ of height ≤ n, that is, of degree [F(a) : F] ≤ pn , and define Bn

to be the integral closure of R with respect to the field extension F ⊂ Fn . Then we have Rprc
=

⋃
n≥0 Bn;

it would be interesting to know whether these Bn are noetherian, with reduced generic formal fiber.
In the proof of Theorem 3.2, we have used the following basic fact:

Lemma 3.11. Let B be a reduced Fp-algebra, and B ⊂ C be a ring extension such that every element
c ∈ C has cpν

∈ B for some exponent ν ≥ 0. Then the homomorphism

C→ (C ⊗B C)red, c 7→ (c⊗ 1 modulo nilradical)

is bijective.

Proof. Let f :C→C⊗B C be the homomorphism given by c 7→ c⊗1, and write f̄ :C→ (C⊗B C)red for
the composite map. The multiplication map g : C ⊗B C→ C given by c⊗ c′ 7→ cc′ satisfies g ◦ f = idC .
It factors over (C ⊗B C)red, because C is reduced. Thus f̄ is injective.

To see that f̄ is surjective, it suffices to show that the class of each 1⊗ c lies in the image of f , up to
nilpotent elements. Choose an exponent ν ≥ 0 with cpν

∈ B. Using Fp ⊂ B, we have (c⊗1−1⊗c)pν
= 0.

Thus c⊗ 1− 1⊗ c is nilpotent. From

1⊗ c = f (c)− (c⊗ 1− 1⊗ c)

we see that f̄ is surjective. �

4. Discrete valuation rings

We now specialize our results to the case that our local noetherian ring R is a discrete valuation ring.
The field of fractions is given by F = Frac(R)= R[1/a], where a ∈ R is any nonzero nonunit. Its formal
completion R̂ is an excellent discrete valuation ring. Obviously, there are only two formal fibers: the
closed formal fiber, which is the spectrum of the residue field k = R̂/mR̂ = R/mR and of little interest,
and the generic formal fiber, which is

(2) R̂⊗R F = R̂[1/a] = Frac(R̂).

From this one deduces the following well-known fact:



THE p-RADICAL CLOSURE OF LOCAL NOETHERIAN RINGS 149

Proposition 4.1. Consider the following three conditions:

(i) The inclusion R ⊂ Rprc is bijective.

(ii) The field extension F ⊂ Frac(R̂) is separable.

(iii) The integral ring R is japanese.

(iv) The discrete valuation ring R is excellent.

Then the implications (i)⇐ (ii)⇔ (iii)⇔ (iv) hold. The four conditions are equivalent provided that the
field extension F ⊂ Frac(R̂) can be written as a purely inseparable extension followed by a separable
extension.

Proof. The implications (i)⇐ (ii)⇒ (iii) are special cases of Proposition 2.2. If R is japanese, then for
every prime ideal p⊂ R the residue class ring R/p is japanese; hence the implication (ii)⇐ (iii) follows
from the Zariski–Nagata theorem [12, théorème 7.6.4]. The implication (iv)⇒ (ii) is trivial. Conversely,
if F ⊂ Frac(R) is separable, then the two formal fibers of R are geometrically regular. The other two
conditions for excellence also hold: The ring is obviously noetherian, and since it is one-dimensional, it
must be universally catenary, compare [12, remarque 7.1.2]. Thus (ii)⇒ (iv) holds. Under the additional
assumption on the field extension F ⊂ Frac(R̂), the equivalence of all four conditions again follows from
Proposition 2.2. �

Let us examine the p-radical closure R ⊂ Rprc
⊂ R̂ of our discrete valuation ring in more detail. Recall

that R ⊂ Aλ ⊂ Rprc, λ ∈ L denotes the filtered direct system of all finite R-subalgebras. Each Aλ is a
one-dimensional integral local noetherian ring, and the extensions of local rings R ⊂ Aλ is finite and flat.
We write nλ = rankR(Aλ) for the degrees.

Proposition 4.2. The local extension R ⊂ Aλ has numerical invariants f = 1 and e= nλ. If nλ 6= 1, then
the rings Rλ are not normal.

Proof. The first assertion follows from Proposition 3.1. Since Aλ is finite and flat, the formula n =
e f holds, and thus the ramification index coincides with the degree. The last assertion follows from
Corollary 3.4. �

Let Aλ ⊂ Rλ be the normalization inside the field Frac(R̂). According to Proposition 2.1, we have
Rλ ⊂ Rprc. This gives another filtered direct system of R-subalgebras Rλ ⊂ Rprc, with Rprc

=
⋃
λ∈L Rλ.

Clearly, we have

nλ = rankR(Aλ)= [Rλ⊗R F : F],

where F = Frac(R) is the field of fractions.

Proposition 4.3. Each Rλ is a discrete valuation ring, and the extension of local rings R ⊂ Rλ has
numerical invariants e = f = 1 and n = nλ. If nλ 6= 1, then Rλ is not a finite R-algebra.

Proof. By the Krull–Akizuki theorem (see [3, §2, no. 5, corollaire 2 de proposition 5]), the normalization
Rλ is a discrete valuation ring, an in particular noetherian, with regular formal fibers. The other assertions
thus follow from Theorem 3.7. �
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Theorem 4.4. Suppose that the field extension F ⊂ Frac(R̂) can be written as a purely inseparable
extension followed by a separable extension. Then the p-radical closure Rprc is an excellent discrete
valuation ring. The extension of local rings R ⊂ Rprc has invariants e = f = 1 and n = supλ∈L{nλ},
and the induced map on formal completions R̂→ R̂prc is bijective. If R is not excellent, then the ring
extension R ⊂ Rprc is integral but not finite.

Proof. Obviously, for every index λ ∈ L , the local Krull domain A′λ = Rλ is noetherian and regular, in
particular its formal fibers are reduced. Thus Theorem 3.10 applies, and the result follows. �

We now can give the following universal property:

Corollary 4.5. Assumptions as in the theorem. Let R ⊂ A be an extension of local rings. If A is an
excellent discrete valuation ring, or more generally any formally integral local noetherian ring with
geometrically reduced generic formal fiber, then we have Rprc

⊂ A inside the field of fractions Frac( Â).

Proof. Since R is a discrete valuation ring, the induced map R̂→ Â is injective: Otherwise it would
factor over R̂/mR̂ , and the image of Spec( Â)→ Spec(R̂) consists of the closed points. The same then
holds for composite map Spec( Â)→ Spec(A)→ Spec(R). The latter maps, however, are dominant,
contradiction. We thus may apply Corollary 2.4, and the assertion follows. �

Let me close this paper with the following question: do similar results as for discrete valuation rings
hold for regular local noetherian rings?
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