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Abstract. We study moduli spaces and moduli stacks for representations of as-
sociative algebras in Azumaya algebras, in rather general settings. We do not
impose any stability condition and work over arbitrary ground rings, but restrict
attention to the so-called Schur representations, where the only automorphisms
are scalar multiplications. The stack comprises twisted representations, which are
representations that live on the gerbe of splittings for the Azumaya algebra. Such
generalized spaces and stacks appear naturally: For any rational point on the clas-
sical coarse moduli space of matrix representations, the machinery of non-abelian
cohomology produces a modified moduli problem for which the point acquires
geometric origin. The latter are given by representations in Azumaya algebras.
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Introduction

In algebraic geometry, the discrepancy between a coarse moduli space and a fine
moduli stack is an endless source of puzzlement, wonder and research. Loosely
speaking, a “moduli space” is a geometric object that parameterizes a given class
of other geometric objects, in an “optimal way”. For example, the Hilbert scheme
HilbX/k parameterizes the closed subschemes Z of a given projective scheme X,
say over a ground field k. This is the prime example of a fine moduli space, which
represents the corresponding functor of families of closed subschemes. If X is merely
proper, not necessarily having an ample invertible sheaf, HilbX/k still exists as an

2020 Mathematics Subject Classification. 14D22, 14D23, 14A20, 16G10, 16G20, 16H05.
1



RATIONAL POINTS IN COARSE MODULI SPACES 2

algebraic space, which are certain sheaves (Aff/k)→ (Set) on the category of affine
schemes over k that are closely related to schemes. Despite this additional layer of
technicalities, HilbX/k remains a fine moduli space.
In most other cases of interest, the situation is more difficult, due to non-trivial

automorphisms of objects. Here the prime example is the coarse moduli space Mg

that parameterizes smooth curves of genus g ≥ 2. Although it is true that Mg(Ω)
corresponds to isomorphism classes of such curves defined over algebraically closed
fields Ω, this does not hold true for general fields k, let alone rings R. Similar
things can be said about the Picard scheme PicX/k. In fact, in presence of non-
trivial automorphisms a fine moduli space never exists, a fact that cannot be over-
emphasized.

To cope with such issues, one has to replace schemes (X,OX) or algebraic spaces
X : (Aff/k) → (Set) by stacks X → (Aff/k), which are certain categories fibered
in groupoids. This turns all our players into categories. In particular, a scheme or
an algebraic space X becomes the stack X = (Aff/X) via the comma construc-
tion. A fundamental insight of Deligne and Mumford [14] and Artin [4] was that
the geometric intuition stemming from schemes still works very well in the realm of
Deligne–Mumford stacks or even Artin stacks. For comprehensive general presenta-
tions, see [34], [43] and [50].

Our initial motivation was to generalize a beautiful work of Hoskins and Schaff-
hauser [28] on rational points on moduli of quiver representations into an abstract
setting. Recall that a quiver ∆ is a finite directed graph, with loops and mul-
tiple arrows allowed. A quiver representation attaches to each vertex i ∈ ∆ a
finite-dimensional vector space Ei, and to each arrow i

α→ j in ∆ a linear map
fα : Ei → Ej. Let M∆/k be the resulting coarse moduli space of stable quiver repre-
sentations over some ground field k, with fixed dimension vector and with respect to
some stability condition, both omitted from notation. The construction involves the
formation of a GIT quotient [42], and consequently the rational points x ∈M∆/k(k)
do not necessarily come from an actual quiver representation (Ei | fα)i,α∈∆. In [28]
the obstructions are analyzed in an explicit, down-to-earth way, and a geometric
interpretation in terms of modified data are given, of course involving the Brauer
group Br(k).

We put ourselves into a general, abstract and categorified situation, which encom-
passes all sorts of applications: Let us work in a topos T with final object S, and a
central extension of group objects 1 → N → G → H → 1, with H acting freely on
some object X, with ensuing quotient Q = X/Hop. Intuitively, we think of X as a
space that “over-parameterizes” a certain class of geometric objects. The H-action
corresponds to the isomorphism relation, whereas N reflects automorphisms. In
turn, one may say that Q “under-parameterizes” our class of geometric objects.

We now say that an S-valued point g : S → Q is of geometric origin if it admits
a lifting g̃ : S → X. One obtains an obstruction map ob : Q(S) → H2(S,N). By
non-abelian cohomology and twisted forms we construct, with fixed g ∈ Q(S) and
in a canonical way, a “modified moduli problem” X̃ and 1 → N → G̃ → H̃ → 1,
without changing the quotient Q. Our first result is:
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Theorem. (See Thm. 1.2) With respect to the quotient Q = X̃/H̃op for the modified
moduli problem, the given S-valued point g ∈ Q(S) acquires geometric origin.

In one form or another, this appears to be well-known (compare the monograph

of Skorobogatov [49], Section 2.2). The moduli spacesMθ−gs
∆,d′,D = Repθ−gs∆,d′,D /G∆,d′,D

constructed by Hoskins and Schaffhauser ([28], Theorem 1.3), which comprise rep-
resentations of a quiver ∆ over a perfect ground field k that are geometrically stable
with respect to a chosen stability condition θ and twisted by a central division
algebra D, can be seen as a special case of the above general procedure.

As a basic application we also give a sufficient criterion at the end of Section 2 for
all S-valued points of Q to be of geometric origin for S = Spec(K) the spectrum of
a field, which could be imperfect. Of course, every such point is of geometric origin
if S is the spectrum of an algebraically closed field K. However, in an arithmetic
setting, and already over the field K = R, this usually fails.
We apply our theory to representations of associative algebras Λ over ground

rings R. Note that this encompasses representations of groups Γ via the group
algebra Λ = R[Γ], representations of quivers ∆ via the path algebra Λ = R[∆]. This
apparently applies to coherent sheaves on projective schemes as well, by an ingenious
construction of Álvarez-Cónsul and King [1] relying on Kronecker modules ; it would
be very interesting to pursue this further.

For simplicity we assume that the associative algebra Λ is finitely presented. To
work with H = PGLn and G = GLn, we have to restrict to representations whose
endomorphism ring comprises only scalars. Note that there is no consistent designa-
tion for this important property. Following Derksen and Weyman ([16], Section 2.3)
we like to call them Schur representations. One also finds the terminology “brick”
([6], Chapter VII, Definition 2.4) and “stably indecomposable” ([33], Section 2.6).
In all other respects we work in far greater generality than customary in geometric
invariant theory, without any stability conditions and over arbitrary ground rings.
Note that over fields, the Schur representations contain all geometrically stable rep-
resentations.

According to Grothendieck’s fundamental insight [25], the twisted forms H̃ of
the group scheme H = PGLn correspond to Azumaya algebras. Consequently, it
becomes imperative to consider representations of Λ not only in matrix algebras
Matn(R), but in general Azumaya algebras Λazu of degree n ≥ 1. Our second main
result is:

Theorem. (See Thm. 3.5) Suppose Λ is finitely presented as an associative R-
algebra, and Λazu is an Azumaya algebra of degree n ≥ 1. Then the functor X =
XΛazu

Λ/R of Schur representations is representable by a quasiaffine scheme of finite pre-
sentation. Moreover, the group scheme H = AutΛazu/R acts freely, and the quotient
Q = X/Hop is an algebraic space that is of finite presentation.

For the path algebra Λ = R[∆] of a quiver we also give an independent argu-
ment using Grassmann varieties and vector bundles. Note that algebraic spaces
are generalizations of schemes introduced by Artin ([2], [32], [34], [43]) that allow
the formation of quotients which usually do no exist as schemes. Moreover, they
are indispensable in the very definition of Artin stacks. Note that algebraic spaces
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like Q = X/Hop are frequently non-separated, and easily become non-schematic
(compare [48]).

In general, such quotients are non-separated, and this seems to be the reason
why they have received comparatively little attention even for Λazu = Matn(R)
in the literature so far. In geometric representation theory and in particular in
quiver representation theory it is customary to instead choose a stability condition
θ, restrict to the locus Repθ−gs of geometrically θ-stable representations and form the
quotient Mθ−gs = Repθ−gs /PGLop

n by means of GIT, where PGLn coincides with
H = AutMatn(R)/R. Since every geometrically θ-stable representation is in particular

Schur, Repθ−gs ⊂ X = X
Matn(R)
Λ/R is an open H-stable subset. Therefore the quotients

Mθ−gs arise as quasiprojective open subschemes in the above Q = X/Hop. The
latter then should be crucial to understand how these GIT quotients change when
the stability conditions are changed, a phenomenon often called “wall crossing”.

The union of the quotientsMθ−gs forms the open subspace Q′ ⊂ Q of represen-
tations which are geometrically stable for some stability condition θ. It should be
pointed out that Q′ is usually not equal to Q, meaning that there are Schur repre-
sentations which are not geometrically stable for any θ, already over the field K = C
of complex numbers. We will give examples of such at the end of Section 3.

Our third main result is a description of the moduli stack [X/G/Q], where G =
UΛazu/R is the group scheme of units of the Azumaya algebra Λazu. Quotient stacks
are constructed in the geometric language of principal homogeneous spaces. Our
description is in a representation-theoretic way, much closer to the moduli problem
at hand: We define a twisted Schur representation of Λ in Λazu over an affine scheme
V as a pair (E ′, ρ′), where E ′ is a locally free sheaf of rank n = deg(Λazu) and weight
w = 1 on the gerbe V ′ of splittings for Λazu ⊗R OV ′ , and ρ′ : Λ ⊗R OV ′ → End(E )
is a Schur representation. This of course relies on the notion of twisted sheaves,
which where introduced by Căldăraru ([10], [11]), de Jong [13] and Lieblich ([37]
and [38]), and have attracted tremendous interest in the past decades. Earlier,
Edidin, Hassett, Kresch and Vistoli [17] already established a deep link between
the existence of Azumaya algebras representing a given Brauer class and internal
properties of the Artin stacks of splittings. Our third main result is:

Theorem. (See Thm. 6.4) The stack of twisted Schur representations

M Λazu

Λ/R = {(V,E ′, ρ′)}

is equivalent to the quotient stack [X/Gop/Q], where X = XΛazu

Λ/R is the quasiaffine
scheme that represents the functor of Schur representations of Λ in Λazu.

In other words, M Λazu

Λ/R is the “true” moduli stack for representations of associative

rings Λ in Azumaya algebras Λazu. The algebraic space Q = X/Hop is the coarse
moduli space over S = Spec(R). In particular, the above answers the question of
Hoskins and Schaffhauser to describe the ring-valued points in the quotient stack of
quiver representations ([28], end of Section 4.3), which was also considered by Le
Bruyn [36].
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Given some g ∈ Q(S), we now can determine when it has geometric origin, and
describe the modified moduli problem Q = X̃/H̃, for which g has acquired geometric
origin:

Theorem. (See Thm. 7.2 and 7.1) If the non-abelian cohomology set H1(S,GLn) is
a singleton and the category M Λazu

Λ/R (S) is non-empty, then g has geometric origin for

Q = X/Hop. In any case, the twisted form X̃ is the scheme of Schur representations
of Λ in the Azumaya algebra Λ̃azu obtained by twisting Λazu.

Our fourth main result deals with the tautological sheaf TM on the moduli stack
M = M Λazu

Λ/R . Locally, this is a Hom sheaf between two locally free sheaves on the
gerbe of splittings of weight one. Its endomorphism algebra has weight zero, and
thus yields an Azumaya algebra AQ over the algebraic space Q = X/Hop, which
contains a smaller Azumaya algebra A 0

Q as the commutant of Λazu. Their classes in

the Brauer group Br(Q) ⊂ H2(Q,Gm) have the following meaning:

Theorem. (See Thm. 8.3) In the cohomology group H2(Q,Gm) of the algebraic
space Q = X/Hop, we have [AQ] = ∂[X] and [A 0

Q] = [Λazu ⊗R OQ].

Here [X] ∈ H1(Q,H) is the torsor class for the quotient map X → Q, and ∂[X]
is its Brauer class stemming from the non-abelian coboundary map.

The paper is structured as follows: In Section 1 we collect some generalities on
torsors, introduce the points of geometric origin, and the technique of modifying
moduli problems. Section 2 contains generalities on quotient stacks and gerbes. In
Section 3 we introduce the notion of Schur representations of an associative algebra
Λ in another associative algebra Λ′ over arbitrary ground rings R, and establish
representability results for the functor X = XΛazu

Λ/R and quotient Q = X/Hop. In
Section 4 we give an alternative approach for quiver representations. Section 5
contains a detailed and explicit discussion of splitting gerbes for Azumaya algebras.
The central part of the paper is Section 6, where we introduce the Artin stack M =
M Λazu

Λ/R of twisted Schur representations, and show that it is equivalent to a quotient

stack [X/G/Q]. In Section 7, we apply our findings to understand the modification
of the moduli problem of Schur representations. In Section 8 we introduce the
tautological sheaf TM on the moduli stack M , and use it to explain various Azumaya
algebras and Brauer classes.

Acknowledgement. This research was also conducted in the framework of the
research training group GRK 2240: Algebro-Geometric Methods in Algebra, Arith-
metic and Topology, which is funded by the Deutsche Forschungsgemeinschaft. The
first author received support by the GRK 2240 via a start-up funding grant.

1. Points of geometric origin

In this section we review the theory of torsors and twisting, and introduce the
notation of S-valued points of geometric origin. We will freely use the language of
sites, topoi, stacks, torsors, and gerbes, but sometimes recall and comment on some
relevant issues along the way. For details we refer to [20], [5], [18], [34], [43], [49].
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Let C be a site and T = Sh(C) be the ensuing topos of sheaves. To simplify
exposition, we assume that C contains a terminal object S, all fiber products exist,
and all representable functors C → (Set) satisfy the sheaf axiom. The latter gives,
via the Yoneda Lemma, a fully faithful embedding C ⊂ T , and in particular we can
regard S as terminal object in T . One then also says that the Grothendieck topology
is subcanonical. Throughout, all objects belong to this T if not said otherwise.
Let G be a group object, acting on another object Z. For each G-torsor P , we

thus obtain a twisted form

PZ = P ∧G Z = G\(P × Z) = (P × Z)/Gop

of Z. Here G acts diagonally on the product P × Z, and Gop denotes the oppo-
site group, which indeed acts from the right rather than the left. Note that the
construction is functorial in Z, and commutes with products. In particular, if Z is
endowed with some algebraic structure respected by the G-action, the twisted form
PZ inherits the algebraic structure. In the special case Z = G, on which G acts via
conjugation, we thus get a new group object PG. More generally, if Z is endowed
with an object of operators Ω (in the sense of [8], Chapter I, §3, No. 1), and G acts
on Z and Ω in a compatible way, that is, Ω × Z → Z is G-equivariant, then PZ is
endowed with operators PΩ.

Suppose now that Z = P , and write P0 for the underlying object where the G-
action is omitted, giving an inclusion AutP/S ⊂ AutP0/S. Combining [29], Section 9
and [47], Lemma 3.1, we have a canonical homomorphism

PG× PGop −→ PAutG0/S = AutP0/S

stemming from the action of G×Gop on G by left-right multiplication (g1, g2) · g =
g1gg2. This endows the underlying object P0 of the G-torsor P with the additional
structures of a PG-torsor and a PGop-torsor. In fact, PGop becomes the automorphism
group object for the G-torsor P , in other words

(1) AutP/S = PGop.

Write (G-Tors/S) and (PG-Tors/S) for the groupoids of torsors for G and PG, re-
spectively. We then get the torsor translation functor

(PG-Tors/S) −→ (G-Tors/S), T 7−→ P ∧PG T,

where the G-action is via P . This is indeed well-defined, because in light of (1) the
left G-action on P commutes with the right PG-action. It sends the trivial torsor
T = PG to the torsor P , which usually is non-trivial. Likewise, we have a functor in
the other direction

(G-Tors/S) −→ (PG-Tors/S), T 7−→ IsomG(P, T ),

where the PG-action is via P , again given by (1). This sends T = P to the trivial
torsor IsomG(P, P ) = G · idP . The above functors are mutually inverse equivalences,
where the adjunction maps

T −→ IsomG(P, P ∧
PG T ) and P ∧PG IsomG(P, T ) −→ T
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are given by t 7→ (p 7→ p ∧ t) and p ∧ f 7→ f(p), respectively. On the sets of
isomorphism classes, we get mutually inverse torsor translation maps

(2) H1(S, PG) −→ H1(S,G) and H1(S,G) −→ H1(S, PG)

of sets. Note that in general these maps do not respect the distinguished points.
Suppose now that G→ H is a homomorphism of group objects. For each G-torsor

P we get an induced H-torsor H ∧G P . If G → H is an epimorphism with kernel
N , this becomes N\P = P/Nop. Conversely, for general G → H, we say that an
H-torsor T admits a reduction of structure group if there is some G-torsor P with
H ∧G P ≃ T . If the homomorphism is a monomorphism G ⊂ H, this simply means
that T/Gop admits a section. Reduction to G = {e} boils down to the triviality of
the H-torsor.

Now let X be an object, and H be a group object acting freely on X, and write

Q = H\X = X/Hop

for the resulting quotient. Note that the canonical map X(S) → Q(S) is not
surjective in general, because the formation of quotients involves sheafification. The
objects HQ = H × Q and X are endowed with canonical morphisms to Q, via the
second projection and the quotient map, respectively. In turn, we may view them
as objects in the comma category T/Q, comprising pairs (U, g) with U an object and

g : U → Q a morphism from T . This is again a topos ([5], Éxpose IV, Theorem
1.2). Furthermore, HQ has the structure of a group object in T/Q, with X as an
HQ-torsor.
Given an S-valued point g : S → Q of the quotient Q = X/Hop, we get an

induced torsor g∗(X) = X ×Q S with respect to H = g∗(HQ) = (H ×Q)×Q S. The
following locution will be useful throughout:

Definition 1.1. In the above setting, we say that the S-valued point g : S → Q
of the quotient Q = X/Hop is of geometric origin if the induced H-torsor g∗(X) is
trivial.

The condition simply means that the projection g∗(X)→ S admits a section. By
the cartesian diagram

g∗(X) −−−→ Xy y
S −−−→

g
Q,

this also means that g ∈ Q(S) lies in the image of X(S). This of course is automatic
if X → Q admits a section, but in general the map X(S) → Q(S) is far from
surjective.

A first instructive example arises from the polynomial ring R = R[u] and the
extension A = R[t]/(f) given by the polynomial f(t) = t2 + ut + 1. Write X and
Q for the respective spectra of the localizations A∆ and R∆ with respect to the
discriminant ∆ = u2 − 4. Then X → Q is a finite étale Galois covering with Galois
group H = Z/2Z, and we see that an R-valued point s ∈ Q given by u = λ is of
geometric origin if and only if |λ| > 2.
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Our motivation for the terminology stems from the following: Think of X as a
space that over-parameterizes geometric objects stemming from some moduli prob-
lem, in such a way that the H-orbits correspond to the isomorphism classes. One
may regard Q as a coarse moduli space, the S-valued points g : S → Q as S-families
of isomorphism classes, and the S-valued points g̃ : S → X as the more significant
S-families of geometric objects. The mapX(S)→ Q(S) is not necessarily surjective,
and coping with this failure is the main topic of this paper. In praxis, H often sits
in an exact sequence 1 → N → G → H → 1, where N reflects the automorphisms
in the moduli problem, a situation studied in the next section.

The following example elucidates what we have in mind: Fix a ground ring R,
endow the category C = (Aff/R) of affine schemes with the fppf topology, and
consider the functor Y (A) = Matn(A) ×Matn(A) of matrix pairs. The projective
linear group H = PGLn acts via simultaneous conjugation, and we consider the
subfunctor X ⊂ Y of matrix pairs whose stabilizer is trivial. Note that G = GLn
and N = Gm give the short exact sequence 1→ N → G→ H → 1, that the functor
X is a quasiaffine scheme (see Theorem 3.5 below), and that the quotient X/Hop can
be seen as the coarse moduli space of certain n-dimensional representations of the
associative algebra Λ0 = R⟨t1, t2⟩, namely those with only scalars as automorphisms.
Also note that if R = K is a field, Λ0 is the proto-typical example of a wild algebra.
In other words, its representation theory “contains” the representation theory of
every finite-dimensional K-algebra Λ (compare [31], Section 7.1).
Back to the general setting. We now fix an S-valued point g : S → Q, and consider

the resulting H-torsor P = g∗(X) = X×QS. With respect to the conjugation action

of H on itself, we obtain a twisted form H̃ = P ∧HH. Recall that X is a torsor with
respect to HQ, and the same holds for the pull-back PQ = P × Q. We now apply
the above considerations in the comma category T/Q, and regard the twisted form

X̃ = IsomHQ
(PQ, X)

as a torsor for H̃Q = (PH)Q = PQ(HQ). By construction, both quotients X/Hop and

X̃/H̃op coincide with the terminal object Q from the comma category, and thus

X/Hop = Q = X̃/H̃op.

Our first main result is the following foundational fact, now almost a triviality:

Theorem 1.2. With respect to the quotient Q = X̃/H̃op, the given S-valued point
g : S → Q has acquired geometric origin.

Proof. Making a base-change, it suffices to treat the case that S = Q, g = idQ and

P = X. Then X̃ is just the image of T = P under the torsor translation map

H1(S,H) −→ H1(S, PH), T 7−→ IsomH(P, T ).

We already remarked that the object IsomH(P, P ) admits the identity as section. □

Intuitively, one should regard the passage from X to X̃ as modifying the mod-
uli problem without changing the coarse moduli space. Thus g : S → Q, which
is just an S-family of isomorphism classes for the initial moduli problem, is pro-
moted to an S-family of geometric objects for the modified moduli problem. For
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a given concrete moduli problem X, this raises the question to understand the geo-
metric meaning of the new moduli problem X̃. In the following sections we will
obtain answers for certain moduli of representations. Note that the moduli spaces
Mθ−gs

∆,d′,D = Repθ−gs∆,d′,D /G∆,d′,D constructed by Hoskins and Schaffhauser ([28], Theo-
rem 1.3), which comprise representations of a quiver ∆ over a perfect ground field
k that are geometrically stable with respect to a chosen stability condition θ and
twisted by a central division algebra D, can be seen as a special case of the above
general procedure.

Also note that the set Q(S) comes with a partition

Q(S) =
⋃̇

[P ]∈H1(S,H)

Q(S)P

where the Q(S)P comprise the g : S → Q for which g∗(X) is isomorphic to P .
Note that these are exactly the S-valued points which acquire geometric origin with
respect to the quotient Q = X̃/H̃op, where X̃ and H̃ are obtained by twisting X
and H with P . In the context of quiver moduli, the above partition was already
obtained by Hoskins and Schaffhauser, where the quotient map Q(S) → H1(S,H)
was called the type map ([28], Theorem 1.1 and Remark 3.5).

2. Quotient stacks

We keep the set-up of the preceding section. Let X be an object from the topos
T = Sh(C), and H be a group object, acting freely on X with quotient Q = X/Hop.
In this section, we additionally assume that H sits in some short exact sequence

(3) 1 −→ N −→ G −→ H −→ 1

of group objects, where we assume that the epimorphism G → H locally admits
sections, not necessarily respecting the group laws. Note that this holds with G =
GLn and H = PGLn, but fails for G = H = Gm and taking powers by d ≥ 2.
We now ask whether the H-torsor g∗(X) = X ×Q S, for fixed g ∈ Q(S), admits
a reduction of structure group with respect to the epimorphism G → H. This of
course holds if the torsor is trivial, but is in general a much weaker condition.

If N is non-trivial, the G-action on X is non-free. Instead of forming the quotient
X/Gop = X/Hop = Q, which loses too much information, we consider the category

[X/Gop/Q] = {(U, g, P, f) | f : P → XU}

whose objects are quadruples where U is an object from C, and g : U → Q is a
morphism in T , and P is a GU -torsor, and f : P → XU is a morphism that is
GU -equivariant. Note that the latter condition holds if and only if the composite

map P
f→ XU

pr1→ X is G-equivariant. Also note that g is determined as the map
induced from pr1 ◦f .
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Morphisms (U ′, g′, P ′, f ′) → (U, g, P, f) are defined as pairs (u, p) of morphisms
u : U ′ → U and p : P ′ → P such that the diagram

XU ′
f ′←−−− P ′ −−−→ U ′ g′−−−→ Q

id×u
y yp yu yid

XU ←−−−
f

P −−−→ U −−−→
g

Q

is commutative, and the resulting P ′ → P ×U U ′ is GU ′-equivariant. The category
comes with a forgetful functor

[X/Gop/Q] −→ C/Q, (U, g, P, f) 7−→ (U, g)

to the comma category of objects U ∈ C endowed with a structure morphism to
Q ∈ T .

Proposition 2.1. The above functor gives [X/Gop/Q] the structure of a category
fibered in groupoids over C/Q.

Proof. For each (U, g) ∈ C/Q, a morphism (u, p) : (U, g, P ′, f ′) → (U, g, P, f) in the
fiber category has u = idU , and is thus determined by the morphism p : P ′ → P
of GU -torsors. Any morphism of torsors is necessarily an isomorphism, so the fiber
categories are groupoids.

It remains to check that every morphism (u, p) : (U ′, g′, P ′, f ′) → (U, g, P, f) is
cartesian. The induced morphism in C/Q is u : U ′ → U , and p is already determined
by the isomorphism P ′ → P ×U U ′. The universal property of fiber products in T
reveals that (u, p) is cartesian. □

We now regard the comma category C/Q as a site: A family ((Uλ, gλ)→ (U, g)) is
a covering if and only if (Uλ → U) is a covering family for the site C.

Proposition 2.2. [X/Gop/Q] → C/Q satisfies the stack axioms, and is actually a
gerbe.

Proof. Using that for Sh(C) all descent data are effective, one easily shows that every
descent datum for [X/Gop/Q] → C/Q is effective. Now let (U, g, P, f) be an object
over some (U, g). For each morphism (U ′, g′) → (U, g) in the comma category, we
choose pullbacks (U ′, g′, P ′, f ′) in [X/Gop/Q]. Using the sheaf property of P ∈ T ,
one easily checks that the resulting presheaf

(U ′, g′) 7−→ Aut ((U ′, g′, P ′, f ′)/(U ′, g′)) ,

satisfies the sheaf axiom. Note that the automorphism group is formed in the fiber
category. Summing up, [X/Gop/Q]→ C/Q is a stack.

It remains to check that all objects in the stack over a fixed (U, g) are locally
isomorphic. Fix two objects (U, g, P1, f1) and (U, g, P2, f2), and choose a covering
family (Uλ → U) that trivializes the GU -torsors P1 and P2. This reduces us to the
special case Pi = GU . Write f1(eG) = σ · f2(eG) for some section σ : U → HU .
Choose another covering family (Uµ → U) such that σ|Uµ admits a lift to GUµ .
Note that here we use our standing assumption that the epimorphism G → H
locally admits sections, not necessarily respecting the group laws. This reduces our
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problem to the case that σ : U → HU arises from some σ̃ : U → GU . Then (idU , σ̃)
defines the desired isomorphism between (U, g, P1, f1) and (U, g, P2, f2). □

For each (U, g) ∈ C/Q, we have a canonical identification of comma categories
(C/Q)/(U,g) = C/U . We now seek to compute the sheaf of groups

Aut(U,g,P,f)/(U,g) ⊂ AutP/U = PGop
U ,

where the last identification comes from (1). On the other hand, twisting the exact
sequence (3) yields another exact sequence 1 → PNU → PGU → PHU → 1, which
gives an inclusion PNop

U ⊂ PGop
U = AutP/U .

Proposition 2.3. We have Aut(U,g,P,f)/(U,g) =
PNop

U as subsheaves inside AutP/U .

Proof. The problem is local in U , so it suffices to treat the case that P = GU , and
thus PNop

U = Nop
U . Given a section a : U → NU , we write p : GU → GU for the right-

multiplication with a. Then (idU , p) is the desired automorphism of (U, g, P, f).
Conversely, each automorphism (idU , p) yields a commutative diagram

XU ←−−− GU

id

y yp
XU ←−−− GU .

The map on the right takes the form p(x) = xg for some g ∈ G(U). Since the
H-action on X is free, the above diagram ensures g ∈ N(U). □

Let us say that N is central if the subgroup object N ⊂ G is contained in the
center Z(G). In turn, N is abelian, the conjugation action of G on N is trivial, and
(3) is a central extension. In particular we have identifications PNop

U = Nop
U = NU .

Thus for each object (U, g, P, f) ∈ [X/Gop/Q] we get an isomorphism

φ(U,g,P,f) : NU −→ Aut(U,g,P,f)/(U,g),

which are compatible with respect to morphisms. In other words:

Corollary 2.4. If N is central, the datum of the above maps endows the stack
[X/Gop/Q] over C/Q with the structure of an NQ-gerbe.

Suppose N is central. For each g : U → Q, the resulting NU -gerbe yields a
cohomology class

cl([g∗X/Gop/U ]) = g∗ cl([X/Gop/Q]) ∈ H2(U,NU),

which are compatible with respect to pullbacks. We refer to [18], Chapter IV,
Section 3.4 for more details. In fact, by the geometric interpretation of low-degree
cohomology, one may view H1(U,NU) as the set of isomorphism classes of NU -
torsors, and H2(U,NU) as the set of equivalence classes of NU -gerbes. Together
with H0(U,NU) = Γ(U,NU), these indeed form a delta functor in degree i ≤ 2, in
the sense of [21].

For U = S, we obtain the so-called obstruction map

ob : Q(S) −→ H2(S,N), g 7−→ g∗ cl([X/Gop/Q]).

Under an additional assumption, this is precisely the obstruction against having
geometric origin:
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Theorem 2.5. Suppose N is central, and that the canonical map H1(S,N) →
H1(S,G) is surjective. Then g ∈ Q(S) is of geometric origin if and only if the
obstruction ob(g) ∈ H2(S,N) is zero.

Proof. Saying that g : S → Q has geometric origin means that the H-torsor g∗(X)
is trivial. Then it obviously admits a reduction of structure group with respect to
G→ H, and thus ob(g) vanishes. Conversely, suppose that ob(g) = 0. Then g∗(X)
arises from a G-torsor P . The latter comes from an N -torsor T , by assumption.
Thus g∗(X) is induced from an N -torsor T with respect to the composite map
N → G→ H, which is trivial, and thus g∗(X) is trivial. □

Let us now specialize the above result to the case that G = GLn and N = Gm,
and C = (Aff/R) is the category of affine schemes over a ground ring R, endowed
with the fppf topology. The final object then is S = Spec(R).

Corollary 2.6. In the above setting, suppose that the ground ring R is

(i) semilocal,
(ii) or a polynomial ring in finitely many indeterminates, either over a field or

a principal ideal domain,
(iii) or a factorial Dedekind domain.

Then g ∈ Q(S) is of geometric origin if and only if ob(g) ∈ H2(S,Gm) vanishes.

Proof. According to Hilbert 90, every GLn-torsor over a scheme is trivial in the
Zariski topology. If R is semilocal, the set H1(S,GLn) is thus a singleton, and the
assumption of the Theorem obviously holds.

If R is a Dedekind ring, the structure theory of locally free modules of finite
rank gives that the determinant map H1(S,GLn) → H1(S,Gm) is bijective. If
Pic(S) = 0, in other words R is factorial, the set H1(S,GLn) must be a singleton.
By the Quillen–Suslin Theorem ([44] and [51]), the same is true if R = k[T1, . . . , Tr]
or R = D[T1, . . . , Tr], where k is a field and D is a principal ideal domain. □

If R = K is a field, the cohomology group H2(S,Gm) coincides with the Brauer
group Br(K). If the latter vanishes, we conclude with the above result that every
rational point g ∈ Q(K) is of geometric origin. This generalizes [28], Example
3.8, which dealt with quiver moduli spaces. Recall that the Brauer group vanishes
for separably closed fields or C1-fields, and in particular for function fields over
algebraically closed fields (Tsen’s Theorem). Note that this includes imperfect fields.

3. Spaces of Schur representations

Throughout, an associative ring is an abelian group Λ, endowed with a bilinear
multiplication that possesses a unit element and satisfies the axiom of associativ-
ity. If additionally the axiom of commutativity holds it is simply called ring. An
associative algebra over a ring R is an associative ring Λ, together with a homomor-
phism φ : R→ Λ whose image φ(R) belongs to the center Z(Λ). Then for each ring
homomorphism R → A, the tensor product Λ ⊗R A carries in a canonical way the
structure of an A-algebra.
Let R be a ground ring, and Λ and Λ′ be two associative R-algebras. Important

special cases arise when Λ = R[Γ] is a group algebra of some group Γ, or the path
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algebra Λ = R[∆] of some quiver ∆, and Λ′ is a matrix algebra or more generally
an Azumaya algebra. For each R-algebra A we can form the set

F (A) = FΛ′

Λ/R(A) = HomA-Alg(Λ⊗R A,Λ′ ⊗R A).

The construction is functorial in A, and defines a set-valued contravariant functor
on the category (Aff/R) of affine R-schemes, which is opposite to the category of
R-algebras. The elements ρ ∈ F (A) are called A-valued representations of Λ in Λ′.

Proposition 3.1. The above contravariant functor F : (Aff/R) → (Set) satisfies
the sheaf axiom with respect to the fpqc topology.

Proof. Let A be an R-algebra, A ⊂ A0 be a faithfully flat ring extension, and
A1 = A0 ⊗A A0. We have to check that

F (A) F (A0) F (A1)

is an equalizer diagram of sets. In other words, the arrow on the left is injective, and
its image comprises the ρ0 ∈ F (A0) whose two images in F (A1) coincide. Consider
the larger functor G(A) = HomA-Mod(Λ ⊗R A,Λ′ ⊗R A) given by linear maps, not
necessarily preserving multiplication and unit element. By fpqc descent, the above
diagram with G instead of F is an equalizer ([26], Exposé VIII, Corollary 1.2). It
follows that F (A)→ F (A0) is injective, and each ρ0 ∈ F (A0) whose images in F (A1)
coincide descends to some ρ ∈ G(A). It remains to check that ρ(xy) = ρ(x)ρ(y) for
all x, y ∈ Λ⊗R A, and ρ(1) = 1. This follows from the commutative diagram

Λ⊗R A
ι−−−→ Λ⊗R A0

ρ

y yρ0
Λ′ ⊗R A −−−→

ι′
Λ′ ⊗R A0,

because the canonical map ι′ is injective, and ι, ρ0 and ι
′ respect multiplications and

unit element. □

Suppose from now on that the structure map R→ Λ′ is locally a direct summand
of R-modules; this ensures that all induced maps A→ Λ′ ⊗A remain injective. We
then consider the subsets

F 0(A) ⊂ F (A)

comprising the homomorphisms ρ : Λ⊗RA→ Λ′⊗RA such that for each prime ideal
p ⊂ A, the only elements in Λ′⊗Rκ(p) that commute with all ρ(x), x ∈ Λ⊗Rκ(p) are
the members of R⊗Rκ(p) = κ(p), in other words, the scalars. Clearly, the formation
of F 0(A) ⊂ F (A) is functorial in A, and thus defines a subfunctor F 0 ⊂ F . The
sheaf axiom with respect to the fpqc topology holds for F 0, because it holds for F ,
and the formation of commutants commutes with field extensions. The elements
ρ ∈ F 0(A) are called A-valued Schur representations of Λ in Λ′.

Proposition 3.2. Suppose Λ′ is locally free of finite rank as R-module. Then the
inclusion F 0 ⊂ F is relatively representable by open embeddings.
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Proof. Let V = Spec(A) be an affine R-scheme, and ρ : Λ ⊗R A → Λ′ ⊗R A be
some homomorphism. By the Yoneda Lemma, we may regard it as a natural trans-
formation ρ : V → F , and have to check that the ensuing fiber product F 0 ×F V
is representable by a scheme, and that the projection to V is an open embedding.
Clearly, the projection F 0 ×F V → V is a monomorphism.

Without loss of generality we may assume A = R, and that the R-module Λ′ is
free of rank r ≥ 1. Let U ⊂ V be the set of points a ∈ V where the canonical
morphism Specκ(a)→ V factors over F 0 ×F V . Suppose for the moment that this
is an open set, and thus defines an open subscheme. By the very definition of F 0

and U , the two monomorphisms F 0 ×F V → V and U → V factor over each other,
hence the former is represented by the latter.

It remains to verify that the subset U is indeed open. Fix a point a ∈ U , in other
words, κ(a) ⊂ Λ′⊗ κ(a) is the commutant for ρ⊗ κ(a). Using that the vector space
Λ′ ⊗ κ(a) is finite-dimensional, we find finitely many g1, . . . , gn ∈ Λ such that κ(a)
is the commutant for the ρ(gi)⊗ 1, 1 ≤ i ≤ n. Consider the R-linear map

Ψ : Λ′ −→
n⊕
i=1

Λ′, f 7−→ (fρ(gi)− ρ(gi)f)1≤i≤n

between free R-modules of finite rank. For each point v ∈ V , the kernel for Ψ⊗κ(v)
contains κ(v), hence rank(Ψ ⊗ κ(v)) ≤ r − 1. For v = a this becomes an equality.
Viewing Ψ as an rn×r-matrix, we see that some (r−1)-minor h ∈ R does not vanish
in κ(a). Replacing R by the localization R[h−1] we may assume that the minor is
a unit. This ensures that the function v 7→ rank(Ψ ⊗ κ(v)) takes constant value
r − 1. By [22], Chapter 0, Proposition 5.5.4 the image of Ψ is locally free of rank
r − 1, hence the kernel is invertible. For each point v ∈ V the unit element 1 ∈ Λ′

generates Ker(Ψ)⊗κ(v), so the inclusion R ⊂ Ker(Ψ) is an equality. It follows that
κ(v) ⊂ Λ ⊗ κ(v) is the commutant for the ρ(gi) ⊗ 1, and thus for ρ ⊗ κ(v), for all
v ∈ V . This shows U = V . □

We also have an absolute representability statement:

Proposition 3.3. Suppose Λ′ is locally free of finite rank as R-module. Then F :
(Aff/R) → (Set) is representable by an affine scheme. It is of finite type provided
that Λ is finitely generated.

Proof. Suppose first that the associative algebra Λ = R⟨Ti⟩i∈I is free. One easily
checks that F is represented by the spectrum of

B =
⊗
i∈I

Sym•(Λ′∨) = Sym•(
⊕
i∈I

Λ′∨),

by using various universal properties and biduality Λ′ = Λ′∨∨.
For the general case, express the associative algebra Λ in terms of generators

gi ∈ Λ, i ∈ I and relations rj ∈ R⟨Ti⟩i∈I , j ∈ J . The preceding paragraph gives
a monomorphism F ⊂ Spec(B), and we have to check that this is relatively repre-
sentable by closed embeddings. This is a local problem, so we may assume that Λ′
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admits a basis e1, . . . , er as R-module. For each P ∈ R⟨Ti⟩i∈I , the equation

P (. . . , xi, . . .) =
r∑

k=1

Pk(. . . , xi, . . .) · ek

inside Λ′ defines polynomial maps Pk :
⊕

i∈I Λ
′ → R. These maps stem from ele-

ments Pk ∈ Sym•(
⊕

i∈I Λ
′∨) = B, because multiplication in Λ′ is bilinear. One easily

checks that F ⊂ Spec(B) is the closed subscheme defined by the ideal generated by
the P1, . . . , Pr, where P = rj, j ∈ J ranges over the relations. □

Suppose now that Λ′ is an Azumaya algebra of degree n ≥ 1, that is, a twisted
form of Matn(R). Note that Λ′ = Matn(R) is indeed an important special case.
Write UΛ′/R and AutΛ′/R for the group-valued sheaves on (Aff/R) defined by

UΛ′/R(A) = (Λ′ ⊗R A)× and AutΛ′/R(A) = Aut(Λ′ ⊗R A).
These are twisted forms of GLn and PGLn, confer the discussion in [47], Lemma
3.1. In particular, UΛ′/R and AutΛ′/R are smooth affine group schemes of finite type.
The conjugacy map defines an exact sequence

1 −→ Gm −→ UΛ′/R
conj−→ AutΛ′/R −→ 1,

where the inclusion on the left comes from the structure inclusion R ⊂ Λ′.
The group scheme G = AutΛ′/R acts on the sheaf F : (Aff/R) → (Set) via

composition (g, ρ) 7→ g ◦ ρ. Now let Λ̃′ be a twisted form of Λ′, that is, another
Azumaya algebra of the same degree n. Write P for the corresponding G-torsor,
and let F̃ : (Aff/R)→ (Set) be the sheaf defined with Λ and Λ̃′.

Proposition 3.4. Notation as above. Then F 0 ⊂ F is G-stable, the induced G-
action on F 0 is free, and we have canonical identifications

P ∧G F = F̃ and P ∧G F 0 = F̃ 0

of contravariant functors on (Aff/R).

Proof. The open subfunctor F 0 is clearly G-stable. Suppose we have an R-algebra A,
and elements g ∈ G(A) and ρ ∈ F 0(A) with g ◦ ρ = ρ. Choose some fpqc extension
A ⊂ A0 so that Λ′ ⊗R A0 ≃ Matn(R0). Then g0 = g ⊗ A0 becomes an element in
PGLn(A0). Replacing A0 by some further fpqc extension, we may assume that it
stems from some S ∈ GLn(A0). Setting ρ0 = ρ⊗A0, we obtain g0 ◦ ρ0 = S · ρ0 ·S−1.
In other words, S · ρ0 = ρ0 · S. Using that ρ is a Schur representation, we see that
S must be a scalar matrix. Thus g0 and hence also g are trivial. Consequently, the
G-action on F 0 is free.
For the last assertion we first assume that there is an isomorphism ψ : Λ′ → Λ̃′

of Azumaya algebras. This corresponds to an equivariant map ψ : G→ P , and the
arrows in

P ∧G F ψ←− G ∧G F = F
ψ−→ F̃

yield the desired canonical identification P ∧G F = F̃ .
In the general case, we find an fpqc extension R ⊂ R0 and an isomorphism

ψ0 : Λ
′⊗RR0 → Λ̃′⊗RR0, with corresponding equivariant ψ0 : G⊗RR0 → P ⊗RR0.

This yields P ∧G F = F̃ if we restrict the contravariant sheaves along the forgetful
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functor (Aff/R0) → (Aff/R). Since both P ∧G F and F̃ satisfy the sheaf axiom
with respect to the fpqc topology, and since every fpqc extension A ⊂ A′ of R-
algebras can be refined to an fpqc covering A ⊗R R0 ⊂ A′ ⊗R R0 of R0-algebras,
the identification P ∧G F = F̃ already holds over (Aff/R). Since the G-action on F
stabilizes F 0, we get an induced identification P ∧G F 0 = F̃ 0. □

Let us summarize our findings:

Theorem 3.5. Suppose Λ is finitely presented as an associative R-algebra, and
Λazu is an Azumaya algebra of degree n ≥ 1. Then the functor X = XΛazu

Λ/R of
Schur representations is representable by a quasiaffine scheme of finite presentation.
Moreover, the group scheme H = AutΛazu/R acts freely, and the quotient Q = X/Hop

is an algebraic space that is of finite presentation.

Proof. By Proposition 3.2 and 3.3, the functor X is representable by some open set
in some affine scheme of finite type. Obviously, the structure morphism H → S is
flat and locally of finite presentation. Since the H-action on X is free, the quotient
Q = X/Hop exists as an algebraic space (see for example [35], Lemma 1.1). It
follows from [24], Proposition 2.7.1 that Q is locally of finite type. Moreover, Q is
of finite presentation if this holds for X.

It remains to check that X is quasicompact and locally of finite presentation. In
light of loc. cit., we may replace R by some fppf extension, and assume that Λazu =
Matn(R). Since the associative algebra Λ involves only finitely many structure
constants, we may furthermore assume that the ground ring R is finitely generated
over Z. Using that X is open in some affine scheme of finite type, we see that it is
noetherian. □

To close this section, let us relate Schur representations to other notions from rep-
resentation theory, for simplicity when R = K is a field. Let M be a Λ-module that
is finite-dimensional as K-vector space, and E = EndΛ(M) be its endomorphism
ring. One says that M is geometrically simple if for all field extensions K ⊂ L, the
base change ML =M ⊗K L is simple as representation of ΛL = Λ⊗K L. The notion
of geometrically indecomposable is formed in a similar way. The alternative terms
absolutely simple and absolutely indecomposable are also frequently in use. Recall
that the associative ring E is local if the non-units form a left ideal m. This is indeed
maximal and two-sided, giving the residue skew field κ = E/m.

Lemma 3.6. In the above situation, the following holds:

(i) If the module M is simple, then E is a skew field.
(ii) The module M is indecomposable if and only if E is local.
(iii) If M is geometrically simple, then M is Schur.

Moreover, if M is indecomposable and L is purely inseparable, then the ΛL-module
ML is indecomposable.

Proof. The first assertion is Schur’s Lemma. Statement (ii) can be found in [12],
Proposition 6.10. For (iii) choose a separably closed extension L. SinceML is simple
and the Brauer group Br(L) vanishes, the inclusion L ⊂ EL must be an equality.
Hence the same holds for K ⊂ E, and M is Schur.
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Finally, let M be indecomposable and L purely inseparable. To check that ML

is indecomposable it suffices to treat the case that L ⊂ K1/p, where p > 0 is the
characteristic. Let f, g ∈ EL be two non-units. Then fp, gp are non-units that
belong to E ⊂ EL. They vanish in the residue skew field κ, so the same holds for
f, g. It follows that f + g vanishes in the residue class ring κL of EL, so f + g ∈ EL
is a non-unit. Consequently, the non-units form a left ideal. □

Lemma 3.6(ii) shows in particular that Schur representations are geometrically
indecomposable, because Schur representations are preserved by base change. Note
that Kraft and Riedtmann ([33], Theorem in 2.6) showed that a quiver representation
M is Schur if and only if the point M in the representation space admits an open
neighborhood where all points are geometrically indecomposable.

Also note that moduli spaces of representations are traditionally formed in the
realm of Geometric Invariant Theory [42], which relies on the choice of stability
conditions. The latter ensure, by design, that the geometrically stable objects are
Schur representations. In fact the geometrically stable objects for any given stability
condition form an open subset of X. In turn, all possible GIT quotients are simul-
taneously contained as schematic open subsets in our algebraic space Q = X/Hop.
However, the semistable objects, which frequently appear on the boundary in GIT
quotients, often fail to be Schur and are thus beyond the scope of this paper.

We want to conclude this section by giving examples of Schur representations
which are not geometrically stable. All of our examples are from the realm of quiver
representations, which will also be the topic of Section 4 below. See for example [28],
Section 2 for a discussion of geometrically stable representations in this context.

Example 3.7. Let Λ = K⟨t1, . . . , tm⟩ be the free associative algebra in m ≥ 2
generators over K. Note that Λ can also be viewed as the path algebra of the quiver
∆ consisting of a single vertex and m loops (see (4) below). For every stability
parameter θ ∈ Z∆0 = Z the associated slope function µθ is constant, hence, a
representation of Λ is θ-stable if and only if it is simple.

A K-valued representation of Λ is given by an m-tuple (x1, . . . , xm) of square
matrices xi ∈ Matn(K), an endomorphism is a square matrix f ∈ Matn(K) which
commutes with each xi and a subrepresentation is a K-linear subspace V ⊂ Kn

which is xi-stable for all i.
Assume that n ≥ 2 and fix scalars λ, µ, λ′, µ′ ∈ K satisfying λ ̸= µ and λ′ ̸= µ′.

We define

x1 =

(
J2(λ) 0
0 Jn−2(µ)

)
, x2 =

(
λ′ 0
0 Jn−1(µ

′)

)
, and xi = 0 for i ≥ 3

where Jl(λ) denotes the lower triangular Jordan block of size l. By computing the
centralizers of Jordan blocks one sees that the only matrices commuting which x1
and x2 are the scalar matrices, so the representation is Schur. Conversely the n-th
standard basis vector is a simultaneous eigenvector of all xi and therefore spans a
proper non-trivial subrepresentation showing that the representation is not stable,
so in particular not geometrically stable.
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Example 3.8. Let Λ be the associativeK-algebra on five generators e1, e2, α1, α2, α3

with relations

e21 = e1, e
2
2 = e2, e1e2 = 0 = e2e1

and

e2αk = αk = αke1 and αke2 = 0 = e1αk for k = 1, 2, 3

Λ arises as the path algebra of the quiver ∆ consisting of two vertices i1 and i2 and
three arrows αk each with source i1 and target i2.
We consider the representation ρ : Λ→ Mat4(K) given by

ρ(e1) =

(
0 0
0 E2

)
, ρ(e2) =

(
E2 0
0 0

)
where E2 ∈ Mat2(K) denotes the unity matrix, and

ρ(α1) =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ρ(α2) =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , ρ(α3) =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


The representation ρ can also be viewed as a quiver representation of ∆ with di-
mension vector v = (2, 2), while the span of the first and third standard basis vector
form a subrepresentation of dimension w = (1, 1) (see the next Section for more on
the correspondence between quiver representations and representations of path alge-
bras). If θ ∈ Z∆0 = Z2 is any stability parameter, then µθ(v) =

1
2
(θ1 + θ2) = µθ(w)

showing that ρ is not stable for any θ. However a straightforward computation
shows that ρ is a Schur representation:

An endomorphism of ρ is a square matrix f ∈ Mat4(K) which commutes with
ρ(x) for every x ∈ Λ. Such an f in particular preserves the eigenspaces of ρ(e1),
so it has a block form f =

(
f1 0
0 f2

)
with f1, f2 ∈ Mat2(K). Now the condition

fρ(αk) = ρ(αk)f for k = 1, 2, 3 shows that f is scalar matrix.

4. Quiver representations

Our initial motivation for this paper was to understand twisting of quiver repre-
sentations, as studied by Hoskins and Schaffhauser [28]. In this section we indeed
take a closer look at representations of quivers in Azumaya algebras, as a special case
of the general theory developed so far, and show that the resulting space of Schur
representations embeds into a product of Grassmann varieties and vector bundles.

Recall that a quiver is a finite directed graph ∆, with loops and multiple arrows
allowed. Formally, it comprises a set of vertices ∆0 and a set of arrows ∆1, together
with source and target maps ∆1 ⇒ ∆0. An arrow α starting at a vertex i and ending
at a vertex j thus has i = source(α) and j = target(α). By abuse of notation, we
write i, α ∈ ∆ instead of i ∈ ∆0, α ∈ ∆1 to denote both vertices and arrows from the
quiver. No confusion is possible, since we always use Latin letters for vertices, and
Greek letters for arrows. A quiver representation over a field k is a collection of vector
spaces Vi for the vertices i ∈ ∆, together with linear maps fα : Vsource(α) → Vtarget(α)
for the arrows α ∈ ∆. We usually write this datum in the form (Vi | fα)i,α∈∆. With
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the obvious notion of homomorphisms, the quiver representations form a k-linear
abelian category.

Now fix a ground ring R and write Λ = R[∆] for the resulting path algebra, which
is the associative R-algebra generated by formal symbols ei and fα, for the vertices
and arrows i, α ∈ ∆, subject to the relations

(4) eiej = δi,jei and fαei = δsource(α),ifα and ejfβ = δj,target(β)fβ,

where δi,j denotes the Kronecker delta. From the relations one immediately sees that
multiplication with

∑
i∈∆ ei, from either the left or the right, fixes each generator,

and thus
∑

i∈∆ ei = 1. One also says that the ei ∈ Λ, i ∈ ∆ form a partition of
unity into orthogonal idempotents. Recall that quiver representations over R can
be identified with left modules over the path algebra R[∆] (compare [31], Theorem
1.7).

We will now generalize this correspondence to representations of R[∆] in an Azu-
maya algebra Λazu. Let U be a scheme and A be an associative OU -algebra whose
underlying OU -module is quasicoherent. We call a datum of the form (Vi | fα)i,α∈∆,
where Vi is a sheaf of right A -modules and fα : Vsource(α) → Vtarget(α) is a morphism
of A -modules, a quiver representation of ∆ in right A -modules. Note that this is an
incarnation of the more general setup of quiver representations in abelian categories
studied in [19] and [41]. We will discuss at the end of this section that this indeed
generalizes the ordinary notion of quiver representations.

Now let ρ : OU [∆] = Λ ⊗R OU → A be a homomorphism of associative OU -
algebras. The subsheaves

ei ·A = ρ(ei ⊗ 1) ·A ⊂ A

yield a direct sum decomposition
⊕

i∈∆(ei · A ) = A of right A -modules, in light
of
∑

i∈∆ ei = 1. By the relations (4), each arrow α ∈ ∆ defines A -linear maps
between the summands via left multiplication with ρ(fα⊗ 1). By abuse of notation
these maps are denoted by fα : ei · A → ej · A . All of them vanish, except for
i = source(α) and j = target(α). Hence, (ei ·A | fα)i,α∈∆ is a quiver representation
of ∆ in right A -modules and we will see in the proof of Proposition 4.1 below that
ρ : OU [∆]→ A is already determined by (ei ·A | fα)i,α∈∆. Note that if A is locally
free of finite rank as an OU -module, the same holds for the summands ei ·A .
Fix an Azumaya algebra Λazu of degree n ≥ 1, and set H = AutΛazu/R. We

now examine the quasiaffine scheme X = XΛazu

R[∆]/R of Schur representations in the
Azumaya algebra Λazu. Our observation here is that X can also be described in
terms of Grassmann varieties and vector bundles: Given a projective R-module E
of finite rank r ≥ 0, we write

A1 ⊗R E = Spec Sym•(E∨) and GrassdE∨/R

for the corresponding vector bundle of rank r and Grassmann varieties of relative
dimension d(r − d). The elements in the bidual E = E∨∨ and the locally free
quotients ψ : E∨ → M of rank d give the respective sets of R-valued points. The
latter can also be seen as the locally direct summands N ⊂ E of corank d, via
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N =M∨. By the discussion above, we have a canonical morphism

(5) X = XΛazu

R[∆]/R ⊂ FΛazu

R[∆]/R −→
⋃̇
m

(∏
i∈∆

Grassn
2−mi

(Λazu)∨/R×
∏
α∈∆

A1 ⊗R Λazu

)
,

where the disjoint union is indexed by tuples m = (mi)i∈∆ of natural numbers
subject to

∑
i∈∆mi = n2. It sends an A-valued path algebra representation ρ :

A[∆]→ Λazu⊗RA to the quiver representation (ei ·Λazu⊗RA | fα)i,α∈∆. The group
scheme H = AutΛazu/R acts in a canonical way on X, and also on the disjoint union
on the right. Note that by our choice of conventions, the action is in both cases
indeed from the left.

Proposition 4.1. The above morphism is H-equivariant, and an embedding of
quasiprojective schemes.

Proof. Write Y for the right-hand side of (5). The group elements σ ∈ H(A) act via

σ · φ = σ ◦ φ and σ · (ei · Λazu ⊗R A | fα) = (σ(ei · Λazu ⊗R A) | σ ◦ fα ◦ σ−1),

so equivariance ofX → Y is clear. We now actually prove that this morphism is rela-
tively representable by embeddings. Note that this gives, for quiver representations,
a proof for representability independent of Theorem 3.5.

Let us start by checking that X → Y is a monomorphism. Suppose we have
an A-valued representation ρ : A[∆] → Λazu ⊗R A of the path algebra, and set
ai = ei · Λazu ⊗R A. We need to show that ρ can be reconstructed from the datum
(ai | fα)i,α∈∆, and for this it suffices to treat the case A = R. As explained in
[9], Chapter VIII, §8, No. 4 the decomposition Λazu =

⊕
i∈∆ ai into right ideals

corresponds to a partition of unity into orthogonal idempotents ei ∈ Λazu, i ∈ ∆.
Together with the fα ∈ Λazu, α ∈ ∆ we recover the path algebra representation
ρ : R[∆]→ Λazu.
Given a morphism S → Y from some affine scheme S = Spec(A), it remains to

verify that X ′ = X ×Y S is representable by a scheme, and that the projection to
S is an embedding. In other words, it factors as a closed embedding inside some
open set. Again it suffices to treat the case A = R. Let (ai | fα)i,α∈∆ be the datum
defining S → Y . So ai ⊆ Λazu are locally free R-submodules and fα ∈ Λazu are
arbitrary elements.

The cokernel M for the canonical mapping
⊕

i∈∆ ai → Λazu is of finite presen-
tation, so its support defines a closed set Z ⊂ S, and X ′ → S factors over the
complementary open set. Replacing R by suitable localizations, we thus may as-
sume that

⊕
i∈∆ ai → Λazu is surjective. Since both R-modules are locally free of

the same rank, the map is actually bijective.
Next we fix a vertex i ∈ ∆, and choose algebra generators g1, . . . , gr ∈ Λazu. The

R-submodule ai ⊂ Λazu is a right ideal if and only if the cokernels Mij for the right

multiplications ai
gj→ Λazu/ai are zero. The support of Mij defines a closed set and

X ′ → S factors over the complementary open set. As in the preceding paragraph,
we may replace R by suitable localizations, and assume that the ai are right ideals.

Now we fix an arrow α ∈ ∆, and write i, j ∈ ∆ for its source and target. The
right multiplication fα : Λazu → Λazu sends ai to aj and vanishes on ar, r ̸= i if
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and only if the induced maps ai → Λazu/aj and ar → Λazu vanish. These are closed
conditions.

This shows that F = FΛazu

R[∆]/R → Y is relatively representable by embeddings.

Since X = F 0 ⊂ F is relatively representable by open embeddings by Proposition
3.2, we obtain that X → Y is relatively representable by embeddings as well. □

To close this section, let us discuss the special case of matrix algebras, and verify
that the quiver representations in right modules over Λazu = Matn(R) corresponds
to the classical notation of quiver representations over R. Recall that the functors

M 7−→M ⊗Matn(R) Matn×1(R) and N 7−→ N ⊗R Mat1×n(R)

are quasi-inverse equivalences between the category of right modulesM over the ma-
trix algebra Matn(R) and modules N over the commutative ring R (Morita equiva-
lence, compare also the result of Watts [53]). Set V = Matn×1(R). Under the above
equivalences, the decomposition Matn(R) =

⊕
i∈∆ ai into right ideals corresponds

to the decomposition V =
⊕

i∈∆ Vi into submodules Vi, where the summands are
locally free of some rank vi, subject to

∑
vi = n. From ai = Vi ⊗R Mat1×n(R) we

see vi = mi/n.
In the theory of quiver representations, the tuple (vi)i∈∆ is called dimension vector.

Analogously to Proposition 4.1 one obtains an embedding

(6) X = X
Matn(R)
R[∆]/R −→

⋃̇
v

(∏
i∈∆

Grassn−viMatn×1(R)∨/R×
∏
α∈∆

A1 ⊗R Matn(R)

)
,

where the disjoint union now runs over all tuples v = (vi)i∈∆ subject to
∑
vi =

n. In the theory of quiver representations, it is customary to fix the dimension
vector v, and a decomposition Matn×1(R) =

⊕
i∈∆ Vi with rank(Vi) = vi. The

corresponding closed subscheme X ′ ⊂ X becomes an open subscheme of the vector
bundle

∏
α∈∆A1 ⊗R Hom(Vsource(α), Vtarget(α)), which can be seen as a subbundle in∏

α∈∆A1⊗RMatn(R). Note that this also shows that X is smooth, a fact that could
also be proven by using that path algebras of quivers are formally smooth, in the
sense of associative algebras. This shows more generally that XΛazu

R[∆]/R is smooth over
R for any Azumaya algebra Λazu, because smoothness can be checked locally and
Λazu is locally isomorphic to Matn(R).

5. The gerbe of splittings for an Azumaya algebra

In this section we develop some facts on splittings of Azumaya algebras in the
context of stacks. The material is well-known (confer the work of Lieblich [37], [38],
[39]), but for our purposes we need it in a form that makes the involved fibered
categories, the resulting topoi of sheaves, and the continuous maps between them
explicit.

Fix a ground ring R, and some Azumaya algebra Λazu of degree n ≥ 1. Note that
now all rings, schemes etc. are considered as objects over the ground ring R. For any
scheme V , let us write V ′ for the Gm,V -gerbe of splittings for the Azumaya algebra
Λazu ⊗R OV . This is the category

V ′ = {(U, h,F , ψ) | ψ : End(F )→ Λazu ⊗R OU}
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whose objects are quadruples (U, h,F , ψ) where U is an affine scheme, h : U → V
is a morphism of schemes, F is a locally free sheaf of rank n over U , and ψ :
End(F )→ Λazu ⊗R OU is an isomorphism of sheaves of associative algebras.
Arrows (U1, h1,F1, ψ1) → (U2, h2,F2, ψ2) in the category V ′ are pairs (g,Ψ)

where g : U1 → U2 is a morphism of schemes with h2 ◦g = h1, and Ψ : F2 → g∗(F1)
is a homomorphism of quasicoherent sheaves such that the adjoint Φ : g∗(F2)→ F1

is an isomorphism making the diagram

g∗(F2)
∨ ⊗ g∗(F2) F∨

1 ⊗F1

Λazu ⊗R OU1

Φ∨−1⊗Φ

g∗(ψ2) ψ1

commutative. Here we employ the identifications F∨
i ⊗ Fi = End(Fi) discussed

in the proof for Lemma 6.3 below. Using tensor products and fppf descent for
quasicoherent sheaves, one easily checks that the forgetful functor

V ′ −→ (Aff/V ), (U, h,F , ψ) 7−→ (U, h)

endows V ′ with the structure of a fibered category satisfying the stack axioms. The
Skolem–Noether Theorem ensures that the fiber categories are groupoids. Note that
despite our notation, V ′ is a stack rather than a scheme.
The category V ′ carries a Grothendieck topology, where (Uλ, hλ,Fλ, ψλ)λ∈L →

(U, h,F , ψ) is a covering family if (Uλ → U)λ∈L is an fppf covering of affine schemes.
In this way we regard V ′ as a site, with the ensuing notion of sheaves F ′ on V ′. We
remark in passing that there is the Zariski topology, the étale topology, and the fpqc
topology as well. The site V ′ comes with a structure sheaf OV ′ and a tautological
sheaf F taut

V ′ , defined for objects Ũ = (U, h,F , ψ) by

(7) Γ(Ũ ,OV ′) = Γ(U,OU) and Γ(Ũ ,F taut
V ′ ) = Γ(U,F ),

with obvious restriction maps. We also have a tautological splitting, which is the
isomorphism

ψtaut
V ′ : End(F taut

V ′ ) −→ Λazu ⊗R OV ′

constructed as follows: For each endomorphism α of Γ(Ũ ,F taut
V ′ ) = Γ(U,F ) that is

linear with respect to Γ(Ũ ,OV ′) = Γ(U,OU), we set ψtaut
V ′ (α) = ψ(α) as elements in

Γ(U,Λazu ⊗R OU) = Λazu ⊗R Γ(U,OU) = Γ(Ũ ,Λazu ⊗R OV ′).

Obviously, this is compatible with restrictions.
Given a morphism f : V1 → V2 of schemes, we get an induced functor

f ′ : V ′
1 −→ V ′

2 , (U1, h1,F1, ψ1) 7−→ (U1, f ◦ h1,F1, ψ1),

and the formation f 7→ f ′ is covariant functorial, in the strict sense. From this one
obtains a pair of adjoint functors

(8) f ′
∗ : Sh(V

′
1) −→ Sh(V ′

2) and f ′−1 : Sh(V ′
2) −→ Sh(V ′

1),

which define a continuous map of topoi Sh(V ′
1) → Sh(V ′

2), in other words, f ′−1

commutes with finite inverse limits ([5], Exposé IV, Definition 3.1). To be explicit,
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the inverse image is given by

(9) Γ((U, h,F , ψ), f ′−1F2) = Γ((U, f ◦ h,F , ψ), F2),

with (U, h,F , ψ) ∈ V ′
1 , whereas the direct image takes the form

(10) Γ((U, h,F , ψ), f ′
∗F1) = Γ ((U ×V2 V1, pr2, pr∗1(F ), pr∗1(ψ)), F1) ,

now with (U, h,F , ψ) ∈ V ′
2 . It is straightforward to determine the effect on structure

sheaves and tautological sheaves:

Proposition 5.1. In the above setting we have identifications

f ′−1(OV ′
2
) = OV ′

1
and f ′−1(F taut

V ′
2

) = F taut
V ′
1

and f ′
∗(F

taut
V ′
1

) = F taut
V ′
2
⊗ f ′

∗(OV ′
1
).

Proof. Using (9) with Ũ = (U, h,F , ψ) from V ′
1 we immediately get

Γ(Ũ , f−1(OV ′
2
)) = Γ((U, f ◦ h,F , ψ),OV ′

2
) = Γ(U,OU) = Γ(Ũ ,OV ′

1
),

and likewise for the tautological sheaves. Suppose now that Ũ = (U, h,F , ψ) is from
V ′
2 . Consider the fiber product U1 = U×V2 V1 with respect to f : V1 → V2, and write
h1 : U1 → V1 for the second projection. Using (10) we obtain

Γ(Ũ , f ′
∗(F

taut
V ′
1

)) = Γ((U1, h1, pr
∗
1(F ), pr∗1(ψ)),F

taut
V ′
1

) = Γ(U1, pr
∗
1(F )).

The latter equals Γ(U,F⊗pr1∗(OU1)), as one sees by applying the projection formula
for pr1 : U1 → U and the locally free sheaf F . By definition, this coincides with the
group of local sections of F taut

V ′
2
⊗ f ′

∗(OV ′
1
) over Ũ . □

For each Ũ = (U, h,F , ψ), we get an inclusion Gm ⊂ AutŨ/(U,h) by sending an

invertible scalar λ to the automorphism (f,Ψ) with f = idU and Ψ = λ · idF .
One easily checks that this gives V ′ → (Aff/V ) the structure of a Gm-gerbe. In
particular, the two projections V ′ → (Aff/V ) and B(Gm,V ) → (Aff/V ) are étale
locally equivalent. It follows that V ′ is an Artin stack ([34], Example 4.6.1).
Moreover, given an object Ũ = (U, h,F , ψ) from V ′ as well as an open set U0 ⊂ U

we get a new object Ũ0 = (U0, h|U0,F |U0, ψ|U0) by restricting the additional data.
In turn, for each sheaf F ′ on the stack V ′ we get sheaves FŨ on the schemes U .
An OV ′-module E ′ is called quasicoherent if the EŨ are quasicoherent sheaves on U

in the usual sense, for all objects Ũ ∈ V ′. Particular examples are the locally free
sheaves of finite rank.

For each quasicoherent sheaf E ′ on V ′, and each object Ũ = (U, h,F , ψ), we get an
action of the group Γ(U,Gm) on the quasicoherent sheaf E ′

Ũ
on U . By compatibility

with restrictions, this yields a linearization with respect to the group scheme Gm,U ,

and thus a weight decomposition E ′
Ũ

=
⊕

w∈Z E ′
Ũ ,w

, as explained in [15], Éxpose

I, Proposition 4.7.3. This defines the weight decomposition E ′ =
⊕

w∈Z E ′
w for the

sheaf on the stack V ′. If for a given w ∈ Z the inclusion E ′
w ⊂ E ′ is an equality, one

says that E ′ is pure of weight w.

Proposition 5.2. The structure sheaf OV ′ and the tautological sheaf F taut
V ′ are pure,

of respective weights w = 0 and w = 1.
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Proof. For each object Ũ = (U, h,F , ψ) and each λ ∈ Γ(U,Gm), the action on
Γ(Ũ ,F taut

V ′ ) is multiplication by λw with w = 1, which one sees by making the

restriction maps in (7) explicit. Similarly, one sees that the action on Γ(Ũ ,OV ′) is
trivial, that is, has weight w = 0. □

Write QCoh(V ′) for the abelian category of quasicoherent sheaves E ′ and linear
maps. Let f : V1 → V2 be a morphism. Note that the linear pullback

f ′∗(E ′
2) = f ′−1(E ′

2)⊗f ′−1(OV ′
2
) OV ′

1

can be identified with the set-theoretic pullback f ′−1(E ′
2), in light of Proposition 5.1.

Proposition 5.3. For each morphism f : V1 → V2, the adjoint functors (8) respect
quasicoherence, and also weight decompositions.

Proof. We start with the preimage functor. With Ũ = (U, h,F , ψ) from V ′
1 we see

from (9) that

Γ(Ũ , f−1E2) = Γ((U, f ◦ h,F , ψ),E2).

It follows that (f−1E2)Ũ = (E2)(U,f◦h,F ,ψ) as sheaves on U , so quasicoherence is
preserved. Moreover, if E2 is pure of weight w, the action of λ ∈ Γ(U,Gm) on the
group of local sections is via λw. By the above equality, this also holds for f−1(E2),
which is therefore pure of weight w. Being left adjoint, the preimage functor respects
all direct limits, and thus direct sum decompositions. Summing up, the weight
decompositions are preserved.

We come to the direct image functor. Now let Ũ = (U, h,F , ψ) be an object
from V ′

2 , and let U1 = U ×V2 V1 be the base-change with respect to f : V1 → V2.
According to (10) we have

Γ(Ũ , f∗E1) = Γ((U1, pr2, pr
∗
1(F ), pr∗1(ψ)),E1).

It follows that (f∗E1)Ũ = pr1,∗((E1)(U1,pr2,pr
∗
1(F ),pr∗1(ψ))

) as sheaves on U . Since the
schemes U, V1, V2 are affine, the projection pr1 : U1 = U ×V2 V1 → U is affine, so
the direct image functor pr1,∗ preserves quasicoherence. Thus the sheaf (f∗E1)Ũ on
U is quasicoherent. Moreover, for quasicoherent sheaves the functor pr1,∗ preserves
direct sum decompositions. If E1 is pure of weight w, we argue as in the preced-
ing paragraph to see that f∗(E1) is pure of the same weight. In turn, the weight
decompositions are preserved. □

6. The stack of twisted Schur representations

Let R be a ground ring, Λ be an associative algebra, and n ≥ 1 be some integer.
We call a pair (E, ρ), where E is a locally free R-module of rank n, and ρ : Λ →
End(E) is a homomorphism of associative algebras, a linear representation of degree
n. For some suitable Zariski open covering Ai = R[1/fi] and choices of bases for
E⊗RAi, this yields a collection ofmatrix representations ρi : Λ⊗RAi → Matn(R)⊗R
Ai, not necessarily compatible. The goal of this section is to clarify these seemingly
innocuous facts by using stacks, and generalize it from matrix algebras to Azumaya
algebras. Furthermore, we relate it to our results on modifying moduli problems
and spaces of representations in Sections 1 and 3. Indeed, Azumaya algebras are
needed to perform and explain such modifications.
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Throughout, we fix an Azumaya algebra Λazu of degree n ≥ 1, with Λazu =
Matn(R) as important special case. To apply the results of Section 3, we also
assume that the given associative algebra Λ is finitely presented. Consider the
resulting functor of representations

F : (Aff/R) −→ (Set), A 7−→ HomA-Alg(Λ⊗R A,Λazu ⊗R A).

From Theorem 3.5 we see that the subfunctor of Schur representations is repre-
sentable by a quasiaffine scheme of finite presentation, which we denote by X =
XΛazu

Λ/R .
Recall that we have a short exact sequence

1 −→ Gm −→ UΛazu/R
conj−→ AutΛazu/R −→ 1,

where the terms on the right are the respective group schemes of units and auto-
morphisms for Λazu. According to Proposition 3.4, the canonical action of AutΛazu/R

on the sheaf F stabilizes the subsheaf of Schur representations, and the induced
action on the quasiaffine scheme X is free. To conform with the notation in Sec-
tion 2, we now set G = UΛazu/R and H = AutΛazu/R. The quotient Q = X/Hop is
representable by an algebraic space, and its formation commutes with base-change
along arbitrary Q̃ → Q, see for example [35], Lemma 1.1. Note that such quo-
tients may easily be non-separated, the simplest example stemming from the action
λ · (x1, x2) = (λx1, λ

−1x2) of the multiplicative group on the pointed affine plane,
whose quotient is the affine line with double origin.

Also note that such quotients are usually non-schematic. Examples are abundant,
but at the same time far from obvious: Working over a ground field k = kalg, we
start with some non-schematic surface Q that is proper, integral and normal ([3],
Example 4.4). This has the resolution property ([40], Theorem 6.8; the arguments
in [46], which hold true for algebraic spaces, already suffice). According to Totaro’s
result ([52], Theorem 1.1), there is a locally free sheaf E such that the corresponding
principal bundle P → Q with respect to G = GLn, n = rank(E ) has quasiaffine total
space. The arguments in loc. cit. (below the proof of Corollary 5.2) reveal that we
may replace the sheaf by E ⊕ E ∨, and thus may assume that the principal bundle
admits a reduction of structure P0 ⊂ P to G0 = SLn, which contains µn as a finite
normal subgroup scheme. Setting X = P0/µn, we get a principal bundle X → Q
with respect to H = PGLn. By construction, P0 is quasiaffine, X is normal and
schematic, and the quotient map P0 → X is finite and flat. Viewing OX as the
norm of OP0 , we see that OX is ample ([23], Proposition 6.6.1). Summing up, X
is quasiaffine with a free action of H = PGLn such that the quotient Q is non-
schematic.

There are also examples taken from the realm of moduli spaces: Weißmann and
Zheng showed that for every smooth proper curve of genus g ≥ 4 the coarse moduli
space of simple sheaves that are locally free of rank n ≥ 2 is a non-schematic
algebraic space ([54], Corollary 2.8).

Back to our X = XΛazu

Λ/R . The algebraic space Q = X/Hop can be regarded as

a “moduli space” M = MΛazu

Λ/R of Schur representations. However, we regard such

locutions as “dangerous”, and seek to define the “true” moduli stack M = M Λazu

Λ/R of
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Schur representations, in terms of “concrete” representation-theoretic data. We then
construct a comparison functor Φ : M → [X/Gop/Q] to the quotient stack, which
is an equivalence relating representation-theoretic and algebro-geometric data. The
quotient space Q = X/Hop turns out to be the coarse moduli space.

Throughout, we find it psychologically helpful to regard schemes, which by defini-
tion are certain ringed spaces V = (|V |,OV ), not only as functors (Aff/R)→ (Set)
via the Yoneda embedding, but actually as categories fibered in groupoids (Aff/V )→
(Aff/R) via the comma construction. Recall that V ′ → (Aff/V ) denotes the splitting
gerbe for the Azumaya algebra Λazu ⊗R OV . We come to a central notion:

Definition 6.1. A twisted representation of the associative algebra Λ in the Azu-
maya algebra Λazu over a scheme V is a pair (E ′, ρ′) where E ′ is a locally free sheaf
on the Gm,V -gerbe V

′ that has rank n = deg(Λazu) and is pure of weight w = 1, and
ρ′ : Λ⊗R OV ′ → End(E ′) is a homomorphism of OV ′-algebras.

If for all objects Ũ = (U, h,F , ψ) from V ′ the ρ′
Ũ
: Λ⊗ROU → End(E ′

Ũ
) are Schur

representations, we say that (E ′, ρ′) is a twisted Schur representation.
Let us emphasize that we regard “twisted” representations as “true” representa-

tions, albeit defined on a stack rather than a scheme. In other words, we favor the
approach of de Jong and Lieblich ([13], [37], [38]) over Căldăraru’s point of view
([10], [11]). Consider now the category

M = M Λazu

Λ/R = {(V,E ′, ρ′) | ρ′ : Λ⊗R OV ′ → End(E ′)}
whose objects are triples (V,E ′, ρ′) where V is an affine scheme and (E ′, ρ′) is a
twisted Schur representation over the scheme V , in other words, a weight-one Schur
representation over the stack V ′. Morphisms (V1,E ′

1, ρ
′
1) → (V2,E ′

2, ρ
′
2) are pairs

(f,Ψ′) where f : V1 → V2 is a morphism of schemes, and Ψ′ : f ′−1(E ′
2) → E ′

1 is an
isomorphism of modules over OV ′

1
= f−1(OV ′

2
) making the diagram

Λ⊗R OV ′
1

End(f ′−1(E ′
2)) End(E ′

1)

f ′−1(ρ′2) ρ′1

Ψ′∨−1⊗Ψ′

commutative.

Proposition 6.2. The forgetful functor M → (Aff/R) given by (V,E ′, ρ′) 7→ V
endows M with the structure of a category fibered in groupoids. Moreover, the stack
axioms hold with respect to the fppf topology.

Proof. By definition, in morphisms (f,Ψ′) : (V1,E ′
1, ρ

′
1) → (V2,E ′

2, ρ
′
2) the linear

map Ψ′ is an isomorphism. From this one immediately infers that all morphisms
in M are cartesian. In particular, all fiber categories are groupoids ([26], Exposé
VI, Remark after Definition 6.1; but note that the very existence of cartesian maps
was overlooked there). We next check that arrows lift with respect to the forgetful
functor, with prescribed target. This is immediate: Suppose that f : V1 → V2 is
a morphism of affine schemes, and (V2,E ′

2, ρ
′
2) is an object over V2. Setting E ′

1 =
f−1(E ′

2) and ρ
′
1 = f−1(ρ′2) and Ψ′ = idE ′

1
, we get the desired morphism (f,Ψ′) over

f .
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It remains to verify that M is a stack. We first check that the automorphism
presheaves satisfy the sheaf axioms. Let A be an R-algebra, A ⊂ A0 be an fppf
extension, and write A1 = A0⊗A A0. Set Vi = Spec(Ai) and fix an object (V, ρ′,E ′)
over V = Spec(A). We have to check that Aut((V, ρ′,E ′)/V ) is an equalizer of the
diagram

Aut((V0, h
−1
0 (ρ′), h−1

0 (E ′))/V0) Aut((V1, h
−1
1 (ρ′), h−1

1 (E ′))/V1)

where hi : Vi → V denote the canonical morphisms. First suppose (idV ,Ψ
′) is an au-

tomorphism over V that becomes the identity over V0. Hence Ψ
′ is an automorphism

of E ′ compatible with ρ′. Consider the quasicoherent sheaves E ′
Ũ
on the affine scheme

U , which are indexed by the objects Ũ = (U, h,F , ψ) of the splitting gerbe V ′. Our
Ψ′ is determined by the compatible collection of automorphisms Ψ′

Ũ
: E ′

Ũ
→ E ′

Ũ
.

The latter become identities on U ×V0 V1, so by [26], Exposé VIII, Theorem 1.1 the
Ψ′
Ũ
must be identities. Likewise, one checks that every automorphism over V0 whose

two inverse images on V1 coincide comes from an automorphism over V .
Finally we need to check that every descent datum is effective. Using the above

notation, we now fix an object ζ0 = (V0,E ′
0, ρ

′
0) over V0 = Spec(A0). Consider the

two inclusions A0 ⇒ A1 given by x 7→ 1 ⊗ x and x 7→ x ⊗ 1. As customary, we
write ζ0 ⊗A0 A1 and A1 ⊗A0 ζ0 for the resulting pullbacks, say formed as in the first
paragraph above. Suppose now that we have an isomorphism

(f1,Ψ
′
1) : ζ0 ⊗A0 A1 → A1 ⊗A0 ζ0

that satisfies the cocycle condition over V2 = Spec(A2), with A2 = A0 ⊗A A0 ⊗A
A0. Consider the collection of locally free sheaves E ′

Ũ0
arising from E ′

0, indexed

by the objects Ũ0 = (U0, h0,F0, ψ0) of the splitting gerbe V ′
0 . These live on the

affine schemes U0, and are endowed with comparison morphisms with respect to the
morphisms in V ′

0 . Applying [26], Exposé VIII, Theorem 1.1 for each affine scheme U
appearing in the objects Ũ = (U, h,F , ψ) of V ′, we get a collection E ′

Ũ
together with

comparison maps. The desired sheaf on V ′ is now defined via Γ(Ũ ,E ′) = Γ(U,E ′
Ũ
),

where the restriction maps stem from the comparison maps. □

We call M = M Λazu

Λ/R the stack of twisted Schur representations of the associative
algebra Λ in the Azumaya algebra Λazu. The task now is to construct a comparison
functor Φ : M → [X/Gop/Q] that relates representation-theoretic with algebro-
geometric data. Recall that the quotient stack comprises tuples (U, g, P, f) where U
is an affine scheme, g : U → Q is a morphism of algebraic spaces, P is a GU -torsor,
and f : P → XU is a GU -equivariant morphism that induces g on quotients.

Let (V,E ′, ρ′) be an object from M . On the gerbe of splittings V ′ we then have
two locally free sheaves E ′ and F taut

V ′ , both having rank n = deg(Λazu) and weight
w = 1. Composition endows the sheaf Hom(E ′,F taut

V ′ ) with a module structure
over End(F taut

V ′ ), and the latter comes with an isomorphism ψtaut
V ′ : End(F taut

V ′ ) →
Λazu ⊗R OV ′ . These sheaves are locally free of rank n2 and weight w = 0, and thus
correspond to locally free sheaves of likewise rank on the affine scheme V . Let us
write

PV,E ′ −→ V
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for the resulting torsor with respect to the group scheme GV = UΛazu/R|V ; it corre-
sponds to the locally free module of rank one over the sheaf of Azumaya algebras
Λazu ⊗R OV ′ given by HomOV ′ (E

′,F taut
V ′ ). Note that the base and the total space of

the torsor are affine. One easily checks that the formation of PV,E ′ is functorial in
(V,E ′, ρ′).
Our next task is to construct a morphism of schemes f = fV,E ′,ρ′ from P =

PV,E ′ to the quasiaffine scheme X = XΛazu

Λ/R representing the functor F 0 of Schur
representations of Λ in Λazu. Note that the former is affine, whereas the latter is
quasiaffine. We shall specify the morphism as a functor (Aff/P )→ (Aff/X). Let U
be an affine scheme, together with a morphism U → P . By the universal property of
fiber products, this can be seen as a morphism f : U → V , together with a section of
the induced GU -torsor PU = P ×V U . By the very definition of the torsor, the latter
is nothing but an isomorphism ψ′ : E ′|U ′ → F taut

U ′ of locally free sheaves on the
gerbe of splittings U ′. Now the given linear representation ρ′ : Λ⊗R OV ′ → End(E ′)
enters the picture: The composite map

Λ⊗R OU ′
f ′−1(ρ′)−→ End(f ′−1E ′)

ψ′∨−1⊗ψ′
−→ End(F taut

U ′ )
ψtaut
U′−→ Λazu ⊗R OU ′

is a Schur representation of Λ in Λazu over the splitting gerbe U ′. It corresponds to
a Schur representation over the scheme U , because the involved sheaves have weight
w = 0. Since X = XΛazu

Λ/R represents the functor F 0, this can be seen as a morphism
U → X. One easily checks that the formation is functorial, and thus defines the
desired morphism

fV,E ′,ρ′ : PV,E ′ −→ X.

Recall that the group scheme G = UΛazu/R acts onX via conjugation, and on the GV -
torsor PV,E ′ in an obvious way. The following technical fact is a crucial observation:

Lemma 6.3. The above morphism fV,E ′,ρ′ : PV,E ′ → X is equivariant with respect
to the G-actions.

Proof. We have to check that the map PV,E ′(A) → X(A) is equivariant for the
abstract groups G(A), for each R-algebra A. The morphism PV,E ′ → V endows A
with an algebra structure over A0 = Γ(V,OV ). Since our constructions commute
with base-change, it suffices to treat the case A = A0 = R.

Fix some σ ∈ G(R) = (Λazu)×. Recall that its effect on the set PV,E ′(R) =
Hom(E ′,F taut

V ′ ) is via composition with the automorphism η′ = (ψtaut
V ′ )−1(σ) from

End(F taut
V ′ ). By definition, our map fV,E ′,ρ′ sends the element of PV,E ′(R) corre-

sponding to a linear map ψ′ : E ′ → F taut
V ′ to the element X(R) stemming from the

composite map

Λ⊗R OV ′
ρ′−→ End(E ′)

ψ′∨−1⊗ψ′
−→ End(F taut

V ′ )
ψtaut
V ′−→ Λazu ⊗R OV ′ .

So fV,E ′,ρ′(σ · ψ′) is given by a likewise composition, formed with

(η′ ◦ ψ′)∨−1 ⊗ (η′ ◦ ψ′) = (η′∨−1 ⊗ η′) ◦ (ψ′∨−1 ⊗ ψ′)

instead of ψ′∨−1 ⊗ ψ′. The task is to verify that composition of endomorphisms of
F taut
V ′ with η′∨−1⊗η′ is the same as conjugation with η′. This has to be checked over
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the objects (U, h,F , φ) of the splitting gerbe V ′, thus becomes a statement about
sheaves on the affine schemes U , hence, a problem in commutative algebra:

Suppose E is a locally free R-module of rank n. Recall that the canonical map

(11) E∨ ⊗ E −→ End(E), f ⊗ a 7−→ (x 7→ f(x) · a).
is bijective, and that under this identification composition of endomorphisms corre-
sponds to the pairing of tensors (f ⊗ a)⊗ (g⊗ b) 7→ f(b) · g⊗ a, see [8], Chapter II,
§4, No. 2. Each h ∈ GL(E) yields bijective linear maps

E∨ ⊗ E −→ E∨ ⊗ E and End(E) −→ End(E)

given by h∨−1 ⊗ h and g 7→ h ◦ g ◦ h−1, respectively. We have to verify that these
bijections coincide under (11). The problem is local, so we may assume that there
is a basis e1, . . . , en ∈ E, with ensuing identification End(E) = Matn(R), standard
basis Eij ∈ Matn(R), and dual basis e∨1 , . . . , e

∨
n ∈ E∨. Write (αij) and (βij) for the

matrices for h and h−1, respectively. Note that the tensor e∨s ⊗ er corresponds to
the matrix Ers, and that h∨−1 = h−1∨ has matrix (βji). One computes

(h∨−1 ⊗ h)(e∨s ⊗ er) = (
∑
j

βsje
∨
j )⊗ (

∑
i

αirei) =
∑
i,j

(βsjαir · e∨j ⊗ ei).

Using Kronecker deltas, we write Ers = (δirδsj) and see that the (i, j)-entry of the
triple matrix product (αik)(δirδsj)(βkj) is given by

∑
k,l αik ·δkrδsl ·βlj = αirβsj. Thus

h◦Ers ◦h−1 =
∑

i,j αirβsj ·Eij, which indeed corresponds to (h∨−1⊗h)(e∨s ⊗er). □

Since the GV -action on PV,E ′ is free, our equivariant fV,E ′,ρ′ induces a morphism

gV,E ′,ρ′ : V = P/Gop
V −→ X/Gop = X/Hop = Q.

Summing up, we have attached to every object (V,E ′, ρ′) ∈ M from the stack of
twisted Schur representations an object

(V, gV,E ′,ρ′ , PV,E ′ , fV,E ′,ρ′) ∈ [X/Gop/Q]

from the quotient stack. One easily checks that the formation is functorial. This
defines the desired comparison functor

Φ : M = M Λazu

Λ/R −→ [X/Gop/Q].

Obviously, this is compatible with the forgetful functor to (Aff/R). One main result
of this paper is that this relation between representation-theoretic and algebro-
geometric data is essentially an identification:

Theorem 6.4. The comparison functor Φ : M → [X/Gop/Q] is an equivalence of
categories.

Proof. We have to check that Φ is fully faithful and essentially surjective. This relies
to a large degree on internal properties of the category M . As a preparation, note
that we also have a functor

(12) M −→ (Aff/Q), (V,E ′, ρ′) 7−→ (V, gV,E ′,ρ′).

So both M and [X/Gop/Q] are categories over (Aff/Q), and Φ is a functor relative
to this. We now proceed in three steps.
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Step 1: The above functor (12) endows M with the structure of a category fibered
in groupoids. Moreover, the stack axioms hold with respect to the fppf topology on
(Aff/Q). The arguments are exactly as in the proof for Proposition 6.2.

Step 2: The comparison functor Φ is fully faithful. In light of [26], Exposé VI,
Proposition 6.10 and step 1, it suffices to verify this for the fiber categories over
(Aff/Q). Fix an affine scheme V and a morphism of algebraic spaces g : V → Q.
Consider an object (V,E ′, ρ′) in the stack of Schur representations M over (V, g),
in other words g = gV,E ′,ρ′ . Setting P = PV,E ′ and f = fV,E ′,ρ′ we get an object
(V, g, P, f) in the quotient stack [X/Gop/Q] over (V, g). According to Corollary 2.4,
the structure map R → Λazu induces a bijection Γ(V,O×

V ) → Aut(V,g)(V, g, P, f).
Scalar multiplication of the structure sheaf on E ′ gives an injective group homo-
morphism Γ(V,O×

V ) → AutV (V,E ′, ρ′). Since the representation ρ′ is Schur, the
injection Γ(V,O×

V )→ AutV (V,E ′, ρ′) is actually bijective. Consider the diagram

AutV (V,E ′, ρ′)

Γ(V,O×
V )

Aut(V,g)(V, g, P, f),

Φ

where the diagonal arrows are as specified above. Using that the GV -torsor P stems
from the locally free sheaf Hom(E ′,F taut

V ′ ), we infer that the diagram is commutative.
It follows that the vertical arrow is bijective, and moreover that every automorphism
of (V,E ′, ρ′) over V is actually over (V, g). So Φ yields bijections on automorphism
groups in fiber categories. Since the fibers are groupoids, Φ is fully faithful on the
fibers.

Step 3: The functor Φ is essentially surjective. In both M and [X/Gop/Q],
viewed as fibered categories over (Aff/Q), every descent datum is effective. It thus
suffices to check that every descent datum of the latter arises from a descent datum
on the former. But this is immediate from step 2. □

Recall that for any category G fibered in groupoids over (Aff/R), a morphism
G → Z to an algebraic space Z that is universal for morphisms into algebraic
spaces is called coarse moduli space.

Corollary 6.5. The category fibered in groupoids M → (Aff/R) is an Artin stack,
and the morphism Φcrs : M → Q = X/Hop is the coarse moduli space. Moreover,
M carries the structure of a Gm-gerbe over (Aff/Q).

Proof. It suffices to check these statements for the quotient stack [X/Gop/Q], which
by the theorem is equivalent to M , as categories over (Aff/Q). We saw in Section 2
that the quotient stack is a category fibered in groupoids, satisfies the stack axioms,
and is a Gm-gerbe over (Aff/Q). According to [34], Example 4.6.1 it is indeed
an Artin stack. It remains to check the statement on the coarse moduli space.
Obviously, the transformation

[X/Gop/Q] −→ [X/Hop/Q] = Q, (U, g, P, f) 7−→ (U, g, P̄ , f̄),
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where P̄ = H∧GP = P/Gm is the induced H-torsor, and f̄ : P̄ → XU is the induced
HU -equivariant map, yields the sheafification of the functor of isomorphism classes
for the Gm-gerbe. It follows that M → Q is the universal morphism from the stack
to an algebraic space. □

7. Modifying moduli of representations

We keep the set-up of the preceding section: Let R be a ground ring, Λ be a
finitely presented associative algebra, and Λazu be an Azumaya algebra of degree
n ≥ 1, with resulting group schemes G = UΛazu/R and H = AutΛazu/R of units and
automorphisms, respectively.

In order to deal with moduli of representations of Λ in Λazu, a first attempt
is to consider the quasiaffine scheme X = XΛazu

Λ/R of Schur representations. This
“over-represents” our moduli problem, because it does not take into account the
isomorphism relation, and is therefore unsatisfactory. One may next form the al-
gebraic space Q = X/Hop. But this “under-represents” the moduli problem, since
it neglects automorphisms, and is still unsatisfactory. The correct framework is the
quotient stack [X/Gop/Q]. This general construction of algebraic geometry, how-
ever, obscures the representation-theoretic content of the given moduli problem.
This is rectified by Theorem 6.4, which tells us that one can work with the Artin
stack M = M Λazu

Λ/R of twisted Schur representations instead.
The quasiaffine scheme X, the algebraic space Q, and the Artin stack M are

related by a commutative diagram of functors

(13)

(Aff/X)

M (Aff/Q).

can can

Φcrs

The diagonal arrow on the right stems from the quotient map for Q = X/Hop,
the diagonal arrow on the left is the classifying map for the universal Schur repre-
sentation Λ ⊗R OX → Λazu ⊗R OX pulled back to the splitting gerbe X ′, and the
horizontal functor is given by (12), which stems from the comparison morphism
Φ : M → [X/Gop/Q].

We can now easily answer the question raised at the end of Section 1 on modified
moduli problems for the situation at hand: Let g ∈ Q(R) be an R-valued point, not
necessarily of geometric origin, and consider the H-torsor g∗(X) and the resulting
twisted forms

H̃ and X̃ and Λ̃azu

of H and X and Λazu, respectively. Then Λ̃azu is another Azumaya algebra of degree
n. According to Theorem 1.2, our R-valued point g ∈ Q(R) has acquired geometric
origin with respect to X̃/H̃op = Q. The following unravels the representation-
theoretic content of this statement:

Theorem 7.1. The twisted form X̃ is the scheme of Schur representations of Λ in
the Azumaya algebra Λ̃azu, and there is a Schur representation ρ̃ : Λ→ Λ̃azu inducing
g ∈ Q(R).
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Proof. The first statement is a consequence of Proposition 3.4, and the second follows
from Theorem 1.2. □

Note that the above result does not rely whatsoever on the Artin stacks

M = M Λazu

Λ/R and M̃ = M Λ̃azu

Λ/R

of twisted Schur representations. However, it raises the question whether the exis-
tence of an R-valued object in M already implies the existence of an R-valued point
in X, and likewise for M̃ and X̃.
Recall that S ′ denotes the gerbe of splittings for the Azumaya algebra Λazu over

the base scheme S = Spec(R). We say that a twisted Schur representation ρ′ : Λ⊗R
OS′ → End(E ′) induces a given R-valued point g ∈ Q(R) if the object (S,E ′, ρ′) ∈
M (R) maps to g ∈ Q(R) in the diagram (13). Note that this generalizes our
terminology from Schur representation ρ : Λ→ Λazu to the twisted case.

Theorem 7.2. Let g ∈ Q(R), and assume that the non-abelian cohomology set
H1(S,GLn) is a singleton. Then the following three conditions are equivalent:

(i) The R-valued point g ∈ Q(R) has geometric origin.
(ii) There is a Schur representation Λ→ Λazu inducing g.
(iii) There is a twisted Schur representation Λ⊗R OS′ → End(E ′) inducing g.

Moreover, (i)⇔(ii)⇒(iii) hold without the assumption on H1(S,GLn).

Proof. For the equivalence (i)⇔(ii) recall that g is of geometric origin if and only if
it is in the image of X(R) → Q(R). The implication (ii)⇒(iii) is trivial. Suppose
now that the set H1(S,GLn) is a singleton, and that ρ′ : Λ ⊗R OS′ → End(E ′) is
a twisted representation inducing g. This gives an object (S,E ′, ρ′) ∈ M , and via
the comparison functor Φ : M → [X/Gop/Q] a G-torsor P → S together with a
G-equivariant morphism f : P → X making the diagram

P
f−−−→ Xy y

S −−−→
g

Q

commutative. The identifications H1(S,GLn) = H1(S,G) stemming from the torsor
translation maps (2) reveals that our torsor admits a section s : S → P . The
composite f ◦ s : S → X corresponds to a Schur representation ρ : Λ → Λazu

inducing g, which therefore has geometric origin. □

8. Tautological sheaves

We keep the set-up of the preceding sections: R is a ground ring, Λ is a finitely
presented associative algebra, Λazu is an Azumaya algebra of degree n ≥ 1, and H =
AutΛazu/R. We then have the quasiaffine scheme X = XΛazu

Λ/R of Schur representations,

and the Artin stack M = M Λazu

Λ/R of twisted Schur representations, which is a Gm-

gerbe over the algebraic space Q = X/Hop. The goal of this section is to define on
the stack the tautological sheaf TM , which will act as a “tilting object” and relate
various Azumaya algebras and Brauer classes.
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Recall that the objects V̂ = (V,E ′, ρ′) from M are triples (V,E ′, ρ′) where V is
an affine scheme, E ′ is a locally free sheaf of rank n = deg(Λazu) and weight w = 1
on the gerbe V ′ of splittings for Λazu⊗ROV , and ρ

′ : Λ⊗ROV ′ → End(E ′) is a Schur
representation. Also recall that the objects of V ′ are quadruples (U, h,F , ψ) where
U is an affine scheme, h : U → V is a morphism, F is a locally free sheaf of rank n
over U , and ψ : End(F )→ Λazu ⊗R OU is an isomorphism.

We regard M as a site, where the covering families (Vλ,E ′
λ, ρ

′
λ)λ∈L → (V,E ′, ρ′)

are those where Vλ → V , λ ∈ L is a covering family of schemes with respect to the
fppf topology. The structure sheaf OM is given by the formula

(14) Γ(V̂ ,OM ) = Γ(V ′,OV ′) = Γ(V,OV )

for V̂ = (V,E ′, ρ′), with obvious notion of restriction maps.

To define the tautological sheaf TM on the stack, first note that for each V̂ =
(V,E ′, ρ′), the splitting gerbe V ′ comes with two locally free sheaves, namely E ′ and
the tautological sheaf F taut

V ′ , both of rank n = deg(Λazu) and weight one. In turn,
the Hom sheaf Hom(F taut

V ′ ,E ′) has weight zero, and thus can be seen as a locally
free sheaf TM ,V̂ on V of rank n2. This said, we define

(15) Γ(V̂ ,TM ) = Hom(F taut
V ′ ,E ′) = Γ(V,TM ,V̂ ),

with obvious notion of restriction maps. The rings (14) act by scalar multiplication,
which turns TM into a presheaf of OM -modules.

Proposition 8.1. The presheaf TM on the Artin stack M satisfies the sheaf axiom.
As OM -module, it is locally free of rank n2 and pure of weight one.

Proof. First note that Gm acts on the objects V̂ = (V,E ′, ψ′) via scalar multiplica-
tion on the sheaf E ′. The induced action on (15) is again via scalar multiplication,
which has weight w = 1. The formation of the Hom sheaves Hom(F taut

V ′ ,E ′) is

compatible with morphisms V̂1 → V̂2 in the category M , and this implies the sheaf
axiom for TM . Since Hom(F taut

V ′ ,E ′) are locally free of rank n2, the same holds for
TM . □

We call TM the tautological sheaf on the Artin stack M . The crucial observation
now is that the local sections (15) also carry the structure of an Λazu-module: For
each object Ũ = (U, h,F , φ) from the splitting gerbe V ′, we get

Λazu ⊗ OU
φ−1

−→ End(F )
◦−→ End(TM |U ′).

The map on the right arises from F = F taut
V ′ |U , and is given by left composition with

respect to the Hom sheaf TM |U ′ = Hom(F taut
V ′ |U,E ′|U). The above is compatible

with restrictions, and turns TM into a sheaf of Λazu ⊗R OM -modules. The latter
can be seen as inclusion Λazu ⊗R OM ⊂ EndOM

(TM ) of Azumaya algebras over M ,
both of weight zero. We now set

AM = EndOM
(TM ) and A 0

M = EndΛazu⊗OM
(TM ).
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In other words, A 0
M ⊂ AM is the commutant of Λazu ⊗ OM ⊂ AM . Taking the

bi-commutant EndA 0
M
(TM ), we arrive at a commutative diagram

(16)

Λazu ⊗R OM AM A 0
M

EndA 0
M
(TM ) EndOM

(TM ) EndΛazu⊗OM
(TM ),

id id

where all maps are injective. The following complements Theorem 6.4, and will
elucidate the significance of the tautological sheaf TM :

Lemma 8.2. In the above diagram, all terms are Azumaya algebras of weight zero,
and the vertical arrow on the left is bijective.

Proof. Obviously, Λazu ⊗R OM and AM = EndOM
(TM ) are Azumaya algebras over

OM . It then follows from [7], Theorem 3.3 that this carries over to the commutant
A 0

M , and that the inclusion Λazu⊗R OM ⊂ A 0
M is an equality. Since AM has weight

zero, the same holds for the quasicoherent subsheaves. □

Since the terms have weight zero, the upper horizontal row in (16) descends along
the Gm-gerbe M → (Aff/Q) to sheaves of locally free algebras

Λazu ⊗R OQ −→ AQ ←− A 0
Q

on the algebraic space Q. Now recall that an associative R-algebra A is an Azumaya
algebra if and only if the underlying R-module is locally free of finite rank, and the
canonical map A ⊗R Aop → EndR(A) given by left-right multiplication is bijective.
Using this characterization, we infer that the above are Azumaya algebras over
Q, and give rise to classes [Λazu ⊗R OQ] and [AQ] and [A 0

Q] in the Brauer group
Br(Q). By construction, AM = AQ ⊗ OM becomes the endomorphism algebra
for the tautological sheaf TM , and thus has trivial class in Br(M ). Note that this
observation does not carry over to AQ, because the tautological sheaf TM has weight
one and therefore does not descend.

Now recall that the quotient map X → X/Hop = Q is a torsor with respect
to HQ for the twisted form H = AutΛazu/R of PGLn, and that G = UΛazu/R is a
twisted form of GLn. We have a short exact sequence 1→ Gm,Q → GQ → HQ → 1,
and the torsor class [X] ∈ H1(Q,HQ) yields via the non-abelian coboundary some
∂[X] ∈ H2(Q,Gm). As a direct consequence of the preceding result, we obtain:

Theorem 8.3. In the Brauer group Br(Q) ⊂ H2(Q,Gm) of the algebraic space
Q = X/Hop, we have

[AQ] = ∂[X] and [A 0
Q] = [Λazu ⊗R OQ].

Proof. By definition of the non-abelian coboundary, the class ∂[X] is represented
by the Gm-gerbe [X/GQ/Q]. In light of Theorem 6.4, the Gm-gerbe M = M Λazu

Λ/R

is another representative. The tautological sheaf TM is locally free, of rank n2 and
weight one, and by construction AQ⊗OM = End(TM ). Now de Jong’s observation
([13], Lemma 2.14) gives [AQ] = [M ].

For the second assertion, we first work on the stack M . Set T = TM . The sheaf
of Azumaya algebras A = End(T ) contains both B = Λazu ⊗R OM and C = A 0

M ,
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and thus becomes a sheaf of modules over B ⊗A Cop. According to Lemma 8.2,
the canonical maps B → EndC(T ) and C → EndB(T ) are bijective. Since these
sheaves have weight zero, the very same statements hold on the algebraic space Q:
Changing notation, we set

T = TQ and A = End(T ) and B = Λazu ⊗R OQ and C = A 0
Q.

Again the canonical maps B → EndC(T ) and C → EndB(T ) are bijective. The
equality [B] = [C] in the Brauer group Br(Q) follows (see for example [12], Theorem
3.54). □
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Berlin, 1970.
[16] H. Derksen, J. Weyman: The combinatorics of quiver representations. Ann. Inst. Fourier

Tome 61 (2011), no. 3, 1061–1131.
[17] D. Edidin, B. Hassett, A. Kresch, A. Vistoli: Brauer groups and quotient stacks. Amer. J.

Math. 123 (2001), 761–777.
[18] J. Giraud: Cohomologie non abélienne. Springer, Berlin, 1971.
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