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Abstract. Building on work of Segre and Kollár on cubic hypersurfaces, we
construct over imperfect fields of characteristic p ≥ 3 particular hypersurfaces of
degree p, which show that geometrically rational schemes that are regular and
whose rational points are Zariski dense are not necessarily unirational. A likewise
behavior holds for certain cubic surfaces in characteristic p = 2.
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Introduction

Let F be a ground field of arbitrary characteristic p ≥ 0, and X be a geometrically
integral scheme of dimension n ≥ 0. One says that X is rational or unirational if
there is a rational map Pn 99K X that is birational or dominant, respectively. If this
condition holds after base-change with respect to some finite field extension F ⊂ E,
one says that X is geometrically rational or geometrically unirational.

Let X ⊂ Pn+1 be an integral cubic hypersurface of dimension n ≥ 2 that is not a
cone. Generalizing earlier results of Segre [18], Manin [14] and Colliot-Thélène, San-
suc and Swinnerton-Dyer [3], Kollár showed over perfect fields F that the following
three conditions are equivalent [11]:

(i) The scheme X is unirational.
(ii) The set of rational points X(F ) is non-empty.

(iii) There is a rational point a ∈ X whose local ring OX,a is regular.

For smooth cubic hypersurfaces X ⊂ Pn+1 , this actually holds over arbitrary ground
fields F . Furthermore, the result carries over to imperfect fields of characteristic
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UNIRATIONALITY 2

p ≥ 5, and it is asserted that the same holds for the remaining primes under certain
technical conditions.

Indeed, Kollár gave the explicit equation y3 − yz2 +
∑
tix

3
i = 0 over the function

field F = k(t1, . . . , tn) in characteristic three, which yields a cubic hypersurface that
is regular, geometrically rational and contains exactly three rational points, and is
thus not unirational. He asks whether a similar equation exists for characteristic two,
and raises for geometrically unirational schemes X the question in what situations
the implications

X is unirational =⇒ X(F ) is Zariski dense =⇒ X(F ) is non-empty

might admit reverse implications, say with X smooth and F infinite.
The goal of this paper is to analyze certain hypersurfaces X ⊂ Pn+1 of degree p

over imperfect fields F that show that none of these reverse implications hold, at
least with X regular. Generalizing Kollár’s equation to arbitrary p ≥ 3, we study

yp − yzp−1 +
n∑
i=1

tix
p
i = 0,

where x1, . . . , xn, y, z are indeterminates and t1, . . . , tn ∈ F are scalars, with n ≥ 1.
Here our main result is:

Theorem. (see Thm. 2.7) Suppose the scalars t1, . . . , tn ∈ F are algebraically inde-
pendent over some subfield k of characteristic p ≥ 3, and that F is separable over
the rational function field k(t1, . . . , tn). Let F ⊂ E be the extension obtained by

adjoining the roots t
1/p
1 , . . . , t

1/p
n . Then our hypersurface X ⊂ Pn+1 has the following

properties:

(i) The scheme X is regular.
(ii) There is no dominant rational map Pn 99K X over F .

(iii) The base-change X ⊗F E is birational to Pn ⊗F E.
(iv) The set of rational points X(F ) is non-empty.
(v) If the field F is separably closed, the rational points are Zariski dense.

(vi) If F is contained in the field k((t1, . . . , tn)), then X(F ) is finite.

Properties (i) and (ii) already hold if the differentials dt1, . . . , dtn in the F -vector
space of absolute Kähler differentials Ω1

F are linearly independent, in other words,
if the scalars t1, . . . , tn ∈ F are p-independent, a notion going back to Teichmüller
[19]. Apparently, this is the correct framework to treat questions of regularity and
unirationality over imperfect fields.

In characteristic p = 2, we consider the cubic surface X ⊂ P3 defined by the
equation

y31 + t1x
2
1y1 + y32 + t2x

2
2y2 = 0

and obtain in Theorem 4.4 analogous results. Here the set of rational points X(F ) is
always infinite, because the cubic surface contains a line, but we could not determine
whether or not X(F ) is Zariski dense. As remarked after Proposition 4.5, this cubic
surface also shows that, for regular cubic hypersurfaces over of characteristic two,
the implication

∃a ∈ X(F ) with OX,a regular
and πa : X 99K Pn separable

=⇒ X is unirational
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formulated in the remark on imperfect ground fields in [11], page 468, does not hold
without an additional assumption. The problem seems to be that all tangent plane
intersections Ca = X ∩Ta(X), which are non-regular cubic curves, are actually non-
integral. Note that for rational points a ∈ X, the local ring OX,a is regular if and
only if the scheme X is smooth at the point.

The non-unirationality of our cubic surface depends on the following criterion,
which is of independent interest:

Theorem. (see Thm. 3.1) Let X be unirational over some infinite ground field F
of characteristic p > 0. Suppose there a fibration f : X → P1 such that the fibers
over almost all rational points a ∈ P1 contain no rational curve. Then the reduced
base-change along the relative Frobenius map P1 → P1 remains unirational.

After the completion of the paper, Olivier Benoist kindly informed us that he
recently studied related questions with Olivier Wittenberg [2]. In particular, they
show that for certain quadrics Q1, Q2 ⊂ P5 over F = k((t)), the intersection X =
Q1 ∩ Q2 is a smooth threefold that contains rational points, is unirational but not
rational, yet becomes rational over E = k((t1/2)).

The paper is organized as follows: In Section 1 we recall basic facts on p-indepen-
dence of scalars t1, . . . , tn ∈ F , and discuss some implications concerning regularity
of schemes and Zariski density of rational points. In Section 2 we study hypersurfaces
X ⊂ Pn+1 defined by the equation yp−yzp−1+

∑
tix

p
i = 0 at odd primes. In Section

3 we relate unirationality with Frobenius base-change. This is used in Section 4 for
the analysis of the cubic surface X ⊂ P3 defined by the equation x31 + t1x1y

2
1 + x32 +

t2x2y
2
2 = 0 in characteristic two.
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1. Generalities

Here we recall some general facts that will be used throughout, concerning Kähler
differentials, p-independence, regularity, and Zariski density of rational points. Let
F be a field of characteristic p > 0, and Ω1

F = Ω1
F/Z = Ω1

F/F p be the F -vector

space of absolute Kähler differentials. The scalars t ∈ F yield differentials dt ∈ Ω1
F ,

which form a generating set. Let us say that a family of scalars ti ∈ F , i ∈ I is p-
independent if the vectors dti ∈ Ω1

F are linearly independent. We need the following
facts:

Proposition 1.1. Consider the following conditions:

(i) The ti ∈ F form a separable transcendence basis over a subfield k.
(ii) The ti ∈ F are p-independent.

(iii) The ti ∈ F are linearly independent over the subfield F p.
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Then the implications (i)⇒(ii)⇒(iii) hold. Moreover, for each t ∈ F the condition
dt = 0 is equivalent to t ∈ F p.

Proof. The first implication follows from [13], Lemma 3 on page 382. The second is
a consequence of the characterization of p-independence ([15], Theorem 86 or [16],
Theorem 26.5), which is frequently taken as a definition: The monomials

∏
i∈I t

di
i ∈

F are linearly independent over the subfield F p, where the exponents satisfy 0 ≤
di ≤ p− 1 and almost all vanish. In particular, the ti ∈ F are linearly independent.

Clearly, each t ∈ F p has dt = 0. Conversely, suppose that t ∈ F is not a
p-th power. The extension F p ⊂ F is purely inseparable of height one, so the
minimal polynomial of t must be of the form T p − λ for some λ ∈ F p. In turn,
the powers 1, t, . . . , tp−1 ∈ F are linearly independent over the subfield F p, and the
above characterization shows dt 6= 0. �

Let us list several elementary but useful permanence properties for p-independent
scalars:

Proposition 1.2. Let F ⊂ E be a separable extension. If ti ∈ F , i ∈ I are p-
independent, so are the ti ∈ E.

Proof. According to [15], Theorem 88 or [16], Theorem 26.6, the canonical map
Ω1
F ⊗F E → Ω1

E given by dt ⊗ λ 7→ λdt is injective. It follows that F -linearly
independent subsets are mapped to E-linearly independent subsets. �

Proposition 1.3. If t1, . . . , tn ∈ F are p-independent, then the same holds for the
t1, . . . , tn−1, t

′
n ∈ F with the new element t′n = tn/tn−1.

Proof. First note that all scalars ti are non-zero. Set f = tn−1 and g = tn. Inside
the vector space Ω1

F , the product rule gives g2d(f/g) = gdf −fdg, and the assertion
follows from the exchange property for linear independent sets. �

Proposition 1.4. Suppose that t1, . . . , tn ∈ F are p-independent. Then the purely

inseparable extension E = F (t
1/p
n ) has degree p, and the t1, . . . , tn−1 ∈ E remain

p-independent.

Proof. We have tn 6∈ F p, and whence [E : F ] = p. Clearly, the monomials t
j/p
n ,

0 ≤ j ≤ p− 1 are linearly independent over the subfield F , hence also over Ep ⊂ F ,

and we infer that Ω1
E/F is one-dimensional, with basis dt

1/p
n . The field extensions

F p ⊂ F ⊂ E gives an exact sequence

(1) 0 −→ ΥE/F/F p −→ Ω1
F ⊗F E −→ Ω1

E −→ Ω1
E/F −→ 0

Here the term on the left is called the module of imperfection, and is defined by
the above exact sequence; here we follow the notation from [7], Definition 20.6.1.
Cartier’s Equality ([15], Theorem 92 or [16], Theorem 26.10)

dimE(Ω1
E/F ) = trdegF (E) + dimE(ΥE/F/F p)

for the finitely generated field extension F ⊂ E shows that our module of imperfec-
tion is one-dimensional. The non-zero vector dtn ⊗ 1 clearly belongs to the kernel,
whence can be regarded as a basis for ΥE/F/F p . It follows that the remaining vectors
dt1, . . . , dtn−1 remain linearly independent in Ω1

E. �
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Now let x0, . . . , xn be indeterminates for some n ≥ 0, and regard Pn as the homo-
geneous spectrum of the polynomial ring F [x0, . . . , xn]. Given a sequence of scalars
t0, . . . , tn ∈ F , not all of which vanish, we consider the Fermat hypersurface D ⊂ Pn
defined by the equation t0x

p
0 + . . . + tnx

p
n = 0. Note that D is irreducible but geo-

metrically non-reduced, and becomes a p-fold hyperplane after base-changing to the
perfect closure.

Proposition 1.5. Suppose t0 = 1. Then the scheme D is regular if and only if the
t1, . . . , tn ∈ F are p-independent.

Proof. The extension F ′ = F p(t1, . . . , tn) defines an intermediate field F p ⊂ F ′ ⊂ F .
The p-degree d = pdeg(F ′/F p) is defined as the vector space dimension of Ω1

F ′/F p ,

and is also characterized by the degree formula [F ′ : F p] = pd. We have d ≤ n,
because the differentials dt1, . . . , dtn ∈ Ω1

F ′/F p form a generating set. According to

[17], Theorem 3.3 the scheme D is regular if and only if d = n. Hence we have to
show the equality

(2) dimF ′(Ω1
F ′/F p) = dimF (Fdt1 + . . .+ Fdtn)

of vector space dimensions. Taking p-th roots, we see that the left hand side equals

the dimension of Ω1
E/F . Here F ⊂ E denotes the extension generated by t

1/p
1 , . . . , t

1/p
n ,

to avoid confusion with F ′. Using induction on n ≥ 0 with Proposition 1.4, one sees
that the right hand side r = dimF (Fdt1+. . .+Fdtn) obeys the formula [E : F ] = pr,
hence also coincides with the dimension of Ω1

E/F . This gives the desired equality

(2). �

Now suppose that X is an F -scheme of finite type. One says that X is geomet-
rically reduced if for some algebraically closed field extension E, the base-change
X ′ = X ⊗F E is reduced.

Lemma 1.6. If the scheme X is geometrically reduced and the field F is separably
closed, then the set of rational points X(F ) is Zariski dense.

Proof. We have to verify that each non-empty open set contains a rational point, so
it suffices to check that X(F ) is non-empty, and we may assume that X is affine.
By Bertini’s Theorem ([9], Theorem 6.3) there is a hyperplane H ⊂ X that remains
geometrically reduced. By induction on the dimension, this reduces us to the case
dim(X) = 0. Hence our scheme is the spectrum of a product E1× . . .×Er of r ≥ 1
separable field extensions. Since F is separably closed, we must have Ei = F .

The following more direct argument was suggested to us by János Kollár: Accord-
ing to [13], Theorem 15 the function field of X has a a separating transcendence
basis over F . In turn, we may assume that X is étale over An. For each rational
point a ∈ An lying in the image of X, the preimage is the spectrum of a product
E1 × . . .× Er as above. �

Suppose now that X is equidimensional of dimension n ≥ 0. Then the locus of
non-smoothness Sing(X/F ) is the set of points a ∈ X where Ω1

X/F ⊗κ(a) has vector
space dimension d > n. It has a natural scheme structure, defined via Fitting ideals
for the coherent sheaf Ω1

X/F , compare the discussion in [5], Section 2. Depending on

the context, we also call Sing(X/F ) the scheme of non-smoothness.
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Lemma 1.7. Suppose that Sing(X/F ) and some effective Cartier divisor D ⊂ X
have the same support, and that X contains no embedded components. Then X is
geometrically reduced but geometrically non-normal. Furthermore, the scheme X is
regular provided that D is regular.

Proof. The open set X r D is smooth. The base-change X ′ = X ⊗F E to the
perfect closure E = F perf also contains no embedded component, and is generically
smooth. In turn, the structure sheaf OX′ has no non-zero nilpotent elements, so
X is geometrically reduced. Let ζ be some generic point in D′ = D ⊗F E. Then
the local ring OX′,ζ is one-dimensional and not regular. Now recall that by Serre’s
Criterion ([8], Theorem 5.8.6), a noetherian scheme is normal if and only it satisfies
(R1) and (S2), hence X is not geometrically normal.

Suppose now that the scheme D is regular. Fix a point a ∈ D, and let f ∈ OX,a

be an element defining the Cartier divisor in some neighborhood. This element is
regular and contained in the maximal ideal. Since the local ring OD,a = OX,a/(f) is
regular, the same must hold for OX,a. �

2. Hypersurfaces of p-degree

Let F be a ground field of characteristic p ≥ 3. Fix some integer n ≥ 1 and
scalars t1, . . . , tn ∈ F , only subject to the condition t1 6= 0. Regard Pn+1 as the
homogeneous spectrum of the polynomial ring F [x1, . . . , xn, y, z]. We now consider
the hypersurface X ⊂ Pn+1 of dimension dim(X) = n and degree deg(X) = p
defined by the equation

(3) yp − yzp−1 +
n∑
i=1

tix
p
i = 0.

For function fields F = k(t1, . . . , tn) in characteristic three, this is the cubic hypersur-
face studied by Kollár in [11], Section 4. Here we work over arbitrary characteristics
p ≥ 3 and more general ground fields F .

Proposition 2.1. The scheme X is geometrically integral.

Proof. Replacing F by some algebraic closure, we have to show that the left-hand

side of (3) is an irreducible polynomial. Set x =
∑
t
1/p
i xi and v = x+y. Now our task

is to verify that P (v) = vp−yzp−1 is irreducible as polynomial over R = k[y, z]. This
follows immediately with the Eisenstein Criterion with the prime element y ∈ R. �

Proposition 2.2. If t1, . . . , tn ∈ F p, then the scheme X is birational to Pn.

Proof. As in the previous proof, we may assume that our hypersurface X ⊂ Pn+1

is given by the equation yp − yzp−1 + xp1 = 0. This does not involve the variables
x2, . . . , xn, hence X is a cone with respect to the (n−2)-dimensional linear subspace
V ⊂ Pn+1 given by x1 = y = z = 0 as apex, over the plane curve C ⊂ P2 defined by
the equation xp − yzp−1 = 0, where we have made the substitution x = y + x1.

Geometrically, this means that X is birational to C × Pn−1, and it remains to
check that the integral curve C is rational. On the affine chart given by z 6= 0, the
coordinate ring for the curve becomes the polynomial ring F [x/z], hence C must be
rational. �
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Proposition 2.3. The scheme of non-smoothness Sing(X/F ) ⊂ X and the effec-
tive Cartier divisor D ⊂ X defined by the equation z = 0 have the same support.
Moreover, X is regular provided that t1, . . . , tn ∈ F are p-independent.

Proof. For our hypersurface X ⊂ Pn+1, the scheme of non-smoothness Sing(X/F )
is defined by the additional equations coming from the partial derivatives of (3).
These partial derivatives are zp−1 and −yzp−2. It follows that D and Sing(X/F )
have the same support.

Now suppose that t1, . . . , tn ∈ F are p-independent. We may regard D as the
divisor in Pn defined by the Fermat equation yp + t1x

p + . . . + tnx
p
n. According to

Proposition 1.5, the hypersurface D is regular. By Lemma 1.7, the scheme X is
regular as well. �

In order to apply induction, we will relate our hypersurface in dimension n with
one in dimension n− 1. This is based on the following observation:

Lemma 2.4. Suppose n ≥ 2, that tn−1 6= 0 and that tn/tn−1 ∈ F p. Then the
hypersurface X ⊂ Pn+1 is projectively equivalent to the hypersurface X ′ ⊂ Pn+1

defined by another equation of the form (3), with coefficients t′i = ti for i ≤ n − 1
and t′n = 0.

Proof. Let λ ∈ F be the scalar with λp = tn/tn−1, rewrite the equation (3) as

yp − yzp−1 + t1x
p
1 + . . .+ tn−2x

p
n−2 + tn−1(xn−1 + λxn)p = 0,

and use the coordinate change x′n−1 = xn−1 + λxn. �

Proposition 2.5. If t1, . . . , tn ∈ F are p-independent, then the scheme X is not
unirational.

Proof. We proceed by induction on n = dim(X). Suppose first that n = 1. Seeking a
contradiction, we assume that there is a rational dominant map P1 99K X. In other
words, the function field of X becomes a subfield of the function field of P1. By
Lüroth’s Theorem ([20], §73), X is birational to P1. According to Proposition 2.3,
the curve X is regular, so by [6], Proposition 7.4.9 we actually have an isomorphism
X ' P1. In particular X is smooth. On the other hand, the scheme of non-
smoothness Sing(X/F ) is non-empty, contradiction.

Suppose now that n ≥ 2, and that the assertion is true for n − 1. Seeking a
contradiction, we assume that there is a rational dominant map Pn 99K X. Let us
write X = XF (t1, . . . , tn) to indicate the dependence of our hypersurface X ⊂ Pn
on the ground field F and the scalars t1, . . . , tn ∈ F . Consider its base-change

PnE 99K XE(t1, . . . , tn) for the field extension E = F (t
1/p
n ). According to Lemma

2.4 there is linear isomorphism XE(t1, . . . , tn) → XE(t1, . . . , tn−1, 0). The latter
becomes a cone in Pn+1

E , because its equation no longer involves the indeterminate
xn, whence there is a dominant rational map

X ⊗F E = XE(t1, . . . , tn−1, 0) 99K XE(t1, . . . , tn−1) = X ′.

Composing these maps we get a dominant rational map PnE 99K X ′. According to
[11], Lemma 2.3 the hypersurface Y is unirational. On the other hand, the scalars
t1, . . . , tn−1 ∈ E are p-independent according to Proposition 1.4. By induction
hypothesis, the hypersurface X ′ ⊂ PnE is not unirational, contradiction. �
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The hypersurface X ⊂ Pn+1 contains the obvious rational points

(4) (0 : . . . : 0 : λ : 1), λ ∈ Fp.
Under suitable assumptions on the ground field F , there are no further rational
points:

Proposition 2.6. Suppose that F is contained in the field k((t1, . . . , tn)) of formal
Laurent series with respect to indeterminates t1, . . . , tn and some subfield k. Then
X(F ) consists of the p rational points listed in (4).

Proof. This is essentially Kollár’s argument from [11], Section 4, which we repeat
for the convenience of the reader. It suffices to treat the case that F equals the
field of formal Laurent series over an infinite field k. This means F = Frac(R) for
the ring R = k[[t1, . . . , tn]]. Let a ∈ X(F ) be a rational point, and write it as
a = (h1 : . . . : hn : f : g) with some relatively prime power series hi, f, g ∈ R. This is
indeed possible because the ring R is factorial by [16], Theorem 20.8. Our task is to
show that the hi vanish. Seeking a contradiction, we assume that this is not the case.
Given some exponents ui ≥ 1, we obtain a homomorphism ϕ : R → k[[t]] defined
by ti 7→ tui , inducing an equation fp − fgp−1 + thp = 0, now with f, g, h ∈ k[[t]].
According to [1], §3, No. 7, Lemma 2 we may choose the exponents so that h 6= 0.
Then also f 6= 0.

Dividing by some common factor, we may assume that gcd(f, g, h) = 1. Each
irreducible factor d of gcd(f, g) has the property dp|thp. Since t is a prime element,
we must have d|h, contradiction. Thus gcd(f, g) = 1. Rewrite our equation as
thp =

∏p−1
j=0(f − jg). The factors Pj = f − jg on the right are pairwise coprime,

because this holds for f, g. Hence we can write f − jg = Qp
j for all j with one

exception i, which has f − ig = tQp
i . Then

tQp
i + (

∑
j 6=i

Qj)
p =

p−1∑
j=0

(f − jg) = pf − pp− 1

2
g = 0.

We conclude that in the prime factorization of tQp
i , all exponents are divisible by p.

This contradicts the fact that t is a prime element in the ring k[[t]]. �

We now summarize our results in the following form:

Theorem 2.7. Suppose the scalars t1, . . . , tn ∈ F are algebraically independent over
some subfield k of characteristic p ≥ 3, and that F is separable over the rational
function field k(t1, . . . , tn). Let F ⊂ E be the extension obtained by adjoining the

roots t
1/p
1 , . . . , t

1/p
n . Then the hypersurface X ⊂ Pn+1 that is defined by the equation

yp − yzp−1 +
∑n

i=1 tix
p
i = 0 has the following properties:

(i) The scheme X is regular.
(ii) There is no dominant rational map Pn 99K X over F .

(iii) The base-change X ⊗F E is birational to Pn ⊗F E.
(iv) The set of rational points X(F ) is non-empty.
(v) If the field F is separably closed, the rational points are Zariski dense.

(vi) If F is contained in the field k((t1, . . . , tn)), then X(F ) is finite.

Proof. According to Proposition 1.1, the scalars t1, . . . , tn ∈ F are p-independent, so
the scheme X must by regular by Proposition 2.3. Furthermore, it is not unirational
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according to Proposition 2.5. The base-change X ⊗F E becomes rational, in light
of Proposition 2.2. If F is separably closed, the rational points must be dense
by Lemma 1.6. If F is contained in the field of formal Laurent series, we saw in
Proposition 2.6 that there are only p rational points. �

With the setting of the above theorem, our regular scheme X is geometrically
unirational but not unirational. Furthermore, no separable extension achieves uni-
rationality. As one of the main insights of this paper, we conclude that none of the
implications

X is unirational =⇒ X(F ) is Zariski dense =⇒ X(F ) is non-empty

does admit a converse valid for geometrically unirational regular schemes X over
infinite fields F ; compare the discussion by Kollár ([11], Question 1.3).

3. Unirationality and Frobenius base-change

Let F be an infinite ground field of characteristic p > 0. Suppose X is an inte-
gral proper scheme endowed with a surjective morphism f : X → P1. Write the
projective line as the homogeneous spectrum of F [T0, T1], and regard the indeter-
minates Ti as global sections of the ample sheaf OP1(1). Fix an integer ν ≥ 1.

The resulting global sections T p
ν

i of OP1(pν) define a purely inseparable morphism
h : P1 → P1 of degree pν . This map can also be described by the inclusion of coor-
dinate rings F [sp

ν
] ⊂ F [s], where we set s = T1/T0. This reveals that h : P1 → P1

coincides with the iterated relative Frobenius map for the projective line. Let us
write X ′ = (X ×P1 P1)red for the ensuing base-change, endowed with the reduced
scheme structure.

In what follows, a rational curve denotes an integral proper scheme C birational
to P1 over our ground field F , and almost every means all but finitely many.

Theorem 3.1. Suppose the scheme X is unirational, and that for almost every
rational point a ∈ P1, the fiber f−1(a) contains no rational curve. Then the reduced
base-change X ′ = (X ×P1 P1)red is unirational as well.

Proof. Set n = dim(X), and choose a dominant rational map P1 × Pn−1 99K X. By
the Valuative Criterion for properness, the domain of definition contains P1

U = P1×U
for some open dense set U ⊂ Pn−1, so we have a dominant morphism g : P1

U → X.
We now write B = P1 for the base of the given surjection f : X → P1 = B.

Let b1, . . . , br ∈ B be the finitely many rational points whose fibers contain rational
curves. The preimages of f−1(bi) on P1

U are closed sets not containing the generic
point. Since the projection P1

U → U is proper, we may shrink U and suppose that
the image of g : P1

U → X is disjoint from the fibers f−1(bi). This means that for
every rational point u ∈ U , the image g(P1

u) ⊂ X is not contained in any of the
fibers of f : X → B, and thus dominates B. It follows that for the generic point
η ∈ U , the induced projection P1

E = P1
η → B = P1 is surjective, where E = κ(η)

denotes the function field of the open set U ⊂ Pn−1.
Consider the composite morphism P1

U → B and the ensuing base-change (P1
U)×BB

with respect to the purely inseparable morphism h : B = P1 → P1 = B of degree
deg(h) = pν . It comes with a projection pr : (P1

U) ×B B → U and a dominant
morphism (P1

U) ×B B → X ×B B. To check that X ′ is unirational, it thus suffices
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to verify that the reduction of the generic fiber pr−1(η) is a rational curve over the
function field E = κ(η) of the open set U ⊂ Pn−1.

This is a consequence of the following property of the iterated relative Frobenius
map h : P1 → P1: We claim that for each field extension F ⊂ E and each surjective
F -morphism ϕ : P1

E → P1
F , there is a commutative diagram

P1
E

hE←−−− P1
E

ϕ

y yψ
P1
F ←−−−

h
P1
F

for some ψ. Indeed, the morphism ϕ is defined via some invertible sheaf L = OP1
E

(n)
and two global sections without common zeros, which can be viewed as homogeneous
polynomials Q0, Q1 ∈ E[T0, T1] of degree n that are relatively prime. Set q = pν .
Then the morphism ψ defined by the polynomials Qq

0, Q
q
1 ∈ E[T q0 , T

q
1 ] makes the

diagram commutative.
The above diagram yields a surjection P1

E → P1
E ×P1

F
P1
F . This is an E-morphism,

because the iterated relative Frobenius map hE is an E-morphism. Lüroth’s The-
orem ([20], §73) ensures that the reduction of the fiber product is a rational curve
over E. �

The following consequence will later play an important role:

Corollary 3.2. Suppose that for almost every rational point a ∈ P1, the fiber f−1(a)
contains no rational curves, and that X ′ is birational to Z ×Pn−1, where Z is not a
rational curve. Then X is not unirational.

Proof. Seeking a contradiction, we assume that X is unirational. By the theorem,
X ′ is unirational and hence Z are rational, contradiction. �

4. A cubic surface in characteristic two

Let F be a ground field of characteristic p = 2. Regard P3 as the homogeneous
spectrum of the polynomial ring F [x1, x2, y1, y2], and let t1, t2 ∈ F be scalars, subject
only to the condition t1 6= 0 and t2 6= 0. The goal of this section is to study the
cubic surface X ⊂ P3 defined by the equation

(5) y31 + t1x
2
1y1 + y32 + t2x

2
2y2 = 0.

The defining polynomial is irreducible, which can be seen by setting x2 = 0 and
observing that y1(y

2
1 + t1x

2
1) is not a cube in F [x1, y1]. Thus X is a geometrically

integral.
The scheme X is equidimensional of dimension two, has h0(OX) = 1, all local

rings OX,x are Gorenstein, and the dualizing sheaf ωX = OX(−1) is anti-ample. In
other words, X is a del Pezzo surface. Moreover, we have h1(OX) = h2(OX) = 0,
and the degree of the del Pezzo surface is K2

X = 3.
We shall see in Theorem 4.4 that if the scalars are p-independent, the scheme X

is regular and geometrically rational, yet not unirational. The Picard group with
its intersection form will be determined in Proposition 4.6. We do not now whether
or not X(F ) is Zariski dense.
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Proposition 4.1. The scheme of non-smoothness D = Sing(X/F ) is an irreducible
curve defined inside P3 by the two equations y21 + t1x

2
1 = 0 and y22 + t2x

2
2 = 0.

Moreover, the inclusion D ⊂ X is Cartier.

Proof. The partial derivatives of the defining polynomial P = y31+t1x
2
1y1+y32+t2x

2
2y2

with respect to yi are Pi = y2i + tix
2
i , whereas ∂P/∂xi = 0. Moreover, the Jacobian

ideal a = (P, P1, P2) is already generated by the two partial derivatives, which yields
the assertion on the embedding D ⊂ P3. If ti ∈ F are squares, a change of coordinate
reveals that D is the intersection of two double planes, which shows that D is an
irreducible curve.

From (5), one sees that on the open set given by y2 6= 0, the inclusion D ⊂ X is
already defined by the single equation y21 + t1x

2
1 = 0. An analogous statement holds

on the open set given by y1 6= 0. It follows that D ⊂ X is Cartier outside the closed
set L ⊂ X defined by y1 = 0 and y2 = 0. From the equations for D ⊂ P3 one sees
it is disjoint from L, hence D ⊂ X must be Cartier. �

As usual, an effective Cartier divisor C ⊂ X with C ' P1 and C2 = −1 is called a
(−1)-curve. The line L ⊂ P3 given by the equations y1 = 0 and y2 = 0 is contained
in X and actually lies in the smooth locus. The adjunction formula for the inclusions
X ⊂ P3 and L ⊂ X gives ωX = OX(−1) and −2 = (L+KX) · L = L2 − 1. Hence:

Proposition 4.2. The selfintersection number of the line L on the cubic surface X
is given by L2 = −1. In other words, L ⊂ X is a (−1)-curve.

Now consider the plane H1 ⊂ P3 given by the equation y1 = 0. Then the plane
section H1∩X is defined by y1 = 0 and y2(y

2
2 +t2x

2
2) = 0, thus decomposes as L+C1,

where C1 is the irreducible conic defined by y1 = 0 and y22 + t2x
2
2 = 0. Likewise, the

plane H2 ⊂ P3 defined by y2 = 0 has H2 ∩X = L+ C2, where the irreducible conic
C2 is defined by y2 = 0 and y21 + t1x

2
1 = 0.

The equations reveal that C1 ∩ C2 = ∅. Moreover, the curves Ci ⊂ X are
Cartier, because the intersections Ci∩L lies in the smooth locus. Since H1, H2 ⊂ P2

are linearly equivalent, the same holds for C1, C2 ⊂ X. In turn, the invertible
sheaf L = OX(C1) is globally generated, and the two-dimensional linear system
inside H0(X,L ) generated by global sections defining Ci ⊂ X yield a morphism
f : X → P1 with L = f ∗OP1(1).

Now it is convenient to use the term double line for a curve isomorphic to the
first infinitesimal neighborhood of a line P1 in P2. Note that the twisted forms of
the double line are precisely the conics that are geometrically non-reduced.

Proposition 4.3. The morphism f : X → P1 extends the rational map X 99K P1

given by (x1 : y1 : x2 : y2) 7→ (y1 : y2). All fibers are twisted forms of the double line.
The induced finite morphisms

f : L −→ P1 and f : D = Sing(X/F ) −→ P1

are purely inseparable of degree two and four, respectively.

Proof. Let s1, s2 be sections of L defining C1, C2 ⊂ X, and E ⊂ H0(X,L ) the
resulting linear system. By construction, we have L = OX(1) ⊗ OX(−L). Under
the canonical inclusion L ⊂ OX(1) and up to scalars, the sections si become the
restrictions of yi ∈ H0(P3,OP3(1)), and L is the fixed part of the y1, y2. The rational
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map ϕ : P3 99K P1 given by (x1 : y1 : x2 : y2) 7→ (y1 : y2) has the open set U = P3rL
as domain of definition, and it also can be described by the two-dimensional linear
system generated by y1, y2 ∈ H0(P3,OP3(1)). Thus the map ϕ|X coincides with the
morphism f : X → P1 on the open set X ∩ U .

Now let a ∈ P1 be a point. To check that the fiber is a twisted form of the
double line, it suffices to treat the case that a = (λ1 : λ2) is a rational point. Then
the fiber Z = f−1(a) is the zero-scheme for λ1s1 + λ2s2, and is contained in the
zero-scheme Z ′ ⊂ X for λ1y1 + λ2y2, which is a plane section. In turn, Z ′ = Z ∪ L
is a reducible cubic curve, thus decomposes into the union of a conic Z and a line
L. This shows that the fiber Z = f−1(a) is isomorphic to a conic. To proceed, it
suffices by symmetry to treat the case that λ2 = 1, and we write λ = λ1. Then
f−1(a) ⊂ X is defined inside P3 by the homogeneous equations

(6) λy1 + y2 = 0 and (1 + λ3)y21 + t1x
2
1 + λt2x

2
2 = 0,

which indeed is a twisted form of the double line. Taking intersections with L and
D = Sing(X/F ), one sees that the induced projections are purely inseparable of
degree d = 2 and d = 4, respectively. �

Recall that p = 2. We now come to the main result on our cubic surface:

Theorem 4.4. Suppose the scalars t1, t2 ∈ F are p-independent. Let F ⊂ E be
the purely inseparable field extension obtained by adjoining the root

√
t1. Then the

cubic surface X ⊂ P3 defined by the equation y31 + t1x
2
1y1 + y32 + t2x

2
2y2 = 0 has the

following properties:

(i) The scheme X is regular.
(ii) There is no dominant rational map P2 99K X over F .

(iii) The base-change X ⊗F E is birational to P2 ⊗F E.
(iv) The set of rational points X(F ) is infinite.
(v) If F is separably closed, the rational points are Zariski dense.

Proof. The assertion (iv) is a consequence of Proposition 1.6, and (iv) follows from
the existence of the line L ⊂ X. Over the field extension E, we set x′1 = y1 +

√
t1x1.

In the new indeterminates x′1, y1, x2, y2 our cubic surface is given by the equation
y1x

2
1 +y32 + t2x

2
2y2 = 0. Localizing with respect to x1 we see that y1 can be expressed

by the other three indeterminates. This ensures that the base-change X ⊗F E is a
rational surface, hence (iii).

We next verify that the scheme X is regular. Recall that the scheme of non-
smoothness D = Sing(X/F ) was described in Proposition 4.1. Consider first the
non-rational closed point a = (1 : 0 :

√
t1 : 0) ∈ D. On the open set given by x1 6= 0,

the cubic surface is defined by the inhomogeneous equation

y1
x1

((
y1
x1

)2

+ t1

)
+

(
y2
x1

)3

+ t2

(
x2
x1

)2
y2
x1

= 0,

and the polynomial on the left lies in the maximal ideal of mR of the local ring
R = OA3,a, but not in m2

R. In turn, OX,a is regular. By symmetry, the same holds at
the closed point b = (0 : 1 : 0 :

√
t2). According to Lemma 1.7, it suffices to verify

that the scheme D r {a, b} is regular. This lies in the open set given by y1, y2 6= 0,
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hence equals the spectrum of the ring

F [u, v, w±1]/(1 + t1u
2
1, 1 + t2u

2
2)

where we set u1 = x1/y1 and u2 = x2/y2 and w = y1/y2. Clearly, this ring is
isomorphic to the ring of Laurent polynomials in w over the tensor product A =
F (
√
t1)⊗F F (

√
t2). The latter is a field, because t1, t2 ∈ F are p-independent, hence

D r {a, b} is indeed regular. This establishes (i).
It remains to verify (ii), which is the most interesting part. For this we apply

Corollary 3.2 to our fibration f : X → P1. Let us examine the fiber f−1(a) over the
rational points a = (λ : 1) with λ3 6= 1, which means a 6∈ P1(F4). According to (6)
this is a conic C ⊂ P2

F given by the equation

(7) (1 + λ3)u20 + t1u
2
1 + λt2u

2
2 = 0

in some indeterminates u0, u1, u2. Base-changing to the field extension F ′ = F (
√
λ),

and making a linear change of variables, the equation can be rewritten as

(8) v20 + t1v
2
1 + t2v

2
2 = 0.

The short exact sequence (1) and Cartier’s Equality ([15], Theorem 92 or [16],
Theorem 26.10) reveal that the kernel for Ω1

F⊗F ′ → Ω1
F ′ is at most one-dimensional.

So without loss of generality, we may assume that dt1 ∈ Ω1
F ′ remains non-zero.

According to [17], Theorem 3.3 the conic C ⊗F F ′ is reduced, hence the same holds
for C. Since the latter is geometrically non-reduced, it is not rational. Summing
up, for almost all rational points a ∈ P1, the fiber f−1(a) is not rational.

We proceed with a similar computation for the generic fiber of f : X → P1 and its
Frobenius base-change. Regard P1 as the homogeneous spectrum of F [y1, y2], and
now write λ = y2/y1 for the transcendental generator of the function field. Then the
generic fiber for f : X → P1 is the conic given by (7) over F (λ), and the generic fiber

of the Frobenius base-change is given by the same equation over F (
√
λ). This is

already defined over the subfield F , and we conclude that the Frobenius base-change
X ×P1 P1 is birational to C × P1, where C ⊂ P2

F is the conic defined by the above
equation. According to Proposition 1.5, the curve C is regular. Being geometrically
non-reduced, it is not rational. Thus Corollary 3.2 applies, and we conclude that X
is not unirational. �

Each rational point a ∈ X ⊂ P3 comes from a linear surjection ϕ : F 4 → F . Then
the kernel Ker(ϕ) is three-dimensional; choosing a basis we obtain a rational map
πa : X 99K P2. If moreover OX,a is regular, the intersection Ca = X ∩ Ta(X) is a
singular cubic curve in the tangent plane Ta(X) ⊂ P3. Note that these Ca ⊂ Ta(X)
are crucial in the work of Segre [18], Manin [14] and Kollár [11].

Proposition 4.5. The rational map πa : X 99K P2 is purely inseparable if and only
if a ∈ L. Moreover, the intersection Ca is not integral for every a ∈ Reg(X).

Proof. Clearly each rational point a ∈ L yields a purely inseparable map. Let
V ⊂ P3 be the linear span of all rational points a ∈ X with purely inseparable
projection πa : X 99K P2. Seeking a contradiction, we assume L $ V . According
to [11], Lemma 5.1 our cubic surface X ⊂ P3 can be described after some change
of coordinates by an equation λy3 +

∑3
i=1 λiyx

2
i = 0 in certain new variables xi, y



UNIRATIONALITY 14

for some scalars λi, λ ∈ F . It follows that the scheme X is reducible, contradiction.
This proves the first assertion.

Now suppose that OX,a is regular, and write a = (α1 : β1 : α2 : β2). Taking partial
derivatives in (5), we see that the tangent plane Ta(X) ⊂ P3 is given by the equation
(α2

1 + t1β
2
1)y1 + (α2

2 + t2β
2
2)y2 = 0. Without loss of generality, we may assume that

the second coefficient does not vanish. In turn, the cubic curve Ca ⊂ P2 becomes the
zero-locus of a polynomial P (x1, y1, x2) divisible by y1. Thus Ca is not integral. �

The a = (0 : 0 : 1 : λ) ∈ X with λ ∈ F×4 show that there are indeed rational
points with OX,a regular and πa : X 99K P2 separable. This reveals that, for regular
cubic hypersurfaces in characteristic two, the implication

∃a ∈ X(F ) with OX,a regular
and πa : X 99K Pn separable

=⇒ X is unirational

formulated in the remark on imperfect ground fields in [11], page 468, does not hold
without an additional assumption. The problem seems to be that all Ca fail to be
integral.

Let us close the paper with the following observations:

Proposition 4.6. The Picard group Pic(X) is freely generated by the classes of the
invertible sheaves OX(C1) and OX(L). The resulting Gram matrix is ( 0 2

2 −1 ), and
the anticanonical class is given by −KX = L+ C1.

Proof. Let S ⊂ Pic(X) be the subgroup generated by the effective Cartier divisors
C1, L ⊂ X. From the intersection numbers L2 = −1, C2

1 = 0 and (C1 ·L) = 2 we see
that C1, L ∈ S form a basis, with the Gram matrix from the assertion. Furthermore,
we have −KX = L+ C1. Our task is to show that S ⊂ Pic(X) is an equality.

Recall that we have a fibration f : X → P1. The generic fiber is a twisted form of
the double line, and its Picard group is generated by OXη(L). Likewise, all closed
fibers are irreducible, and we conclude that S ⊂ Pic(X) has finite index.

Using disc(S) = −4, we see that the discriminant group S∗/S has order four.
Write e1, e2 ∈ S for the basis corresponding to the Cartier divisors C1, L ⊂ X,
and e∗1, e

∗
2 ∈ S∗ be the dual basis. One easily checks that e∗2 = 1

2
e1 generates the

discriminant group. Seeking a contradiction, we assume that this generator comes
from an invertible sheaf N . Then (N · N ) − (N · ωX) = 1

2
(L · C1) = 1 is

odd. However, this number must be even by Riemann–Roch, contradiction. Thus
S = Pic(X). �

The scheme of non-smoothness D = Sing(X/F ) is disjoint from L and has
deg(D/P1) = 4. With the description of Pic(X) one infers that D is linearly equiva-
lent to C1+2L. Using this information, we can clarify the occurrence of singularities:

Proposition 4.7. Let 0 ≤ n ≤ 2 be the dimension of the subvector space generated
by the dt1, dt2 ∈ Ω1

F . Then the scheme X satisfies the regularity condition (Rn), and
we have the following implications:

(i) If n = 2 then the cubic surface X is regular.
(ii) If n = 1 then X is normal, and OX,b is singular for some closed b ∈ D.

(iii) If n = 0 then the scheme X is non-normal, with singular locus Sing(X) = D.
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Proof. Assertion (i) already appeared in Theorem 4.4. Now suppose that n = 0,
such that both t1, t2 ∈ F are squares. After a change of coordinates, we may assume
that t1 = t2 = 1. Then for each rational point of the form a = (λ : λ : µ : µ) the
defining polynomial P = x1(x1−y1)2+x2(x2−y2)2 lies in the square of the maximal
ideal in OP3,a and it follows that all the local rings OX,a, a ∈ D are singular. Thus
X is singular in codimension one, hence non-normal. This gives (iii).

Finally, assume that n = 1. Without restriction, we may assume that dt1 6= 0.
Then t1 ∈ F is not a square, so the closed point a = (

√
t1 : 0 : 1 : 0) ∈ X is

non-rational. Consider the resulting local ring R = OP3,a. The defining polynomial
(5) for the cubic surface obviously lies in mR but not in m2

R, hence OX,a is regular.
If follows that the localization OX,ζ is regular as well, where ζ is the generic point
of the scheme of non-smoothness D = Sing(X/F ). Hence X satisfies (R1), thus our
cubic surface is normal.

It remains to verify that OX,b is singular for some closed point b ∈ X. Seeking a
contradiction, we assume that this does not hold. Then suppose for a moment that
D = Sing(X/F ) is non-reduced. Since D ⊂ X is Cartier, the reduction E = Dred

is another effective Cartier divisor, and we have D = nE for some integer n ≥ 2.
However, D is linearly equivalent to C1 + 2E. This is primitive in the Picard
group, contradiction. Thus we merely have to check that D is non-reduced. Its
homogeneous coordinate ring is the tensor product A = A1 ⊗F A2 with factors

Ai = F [xi, yi]/(x
2
i − tiy2i ),

according to Proposition 4.1. Consider the field extension E1 = F (
√
t1). Then the

map A1 ⊂ E1[x1] given by y1 7→ t1x1 is a finite ring extension inside the field of
fractions. Since dt2 is a multiple of dt1, the scalar t2 ∈ E1 becomes a square, and we
conclude that the rings A ⊂ E1[x1, x2, y2]/(x2 −

√
t2y2)

2 are non-reduced. In turn,
the scheme D = Proj(A) is non-reduced. �

Suppose that t1, t2 ∈ F are p-independent, such that X is a regular del Pezzo
surface that is not geometrically normal. The cone of curves Eff(X) is the real cone
generated by the irreducible curves in the real vector space N1(X)R = Num(X)⊗R.
In our situation the vector space has rank ρ = 2, and contains two extremal rays,
which are generated by the fiber C1 and the negative-definite curve L, compare [10],
Lemma 4.12.

In turn there is precisely one minimal model X → Y , which is the contraction
of L. This is another regular del Pezzo surface that is not geometrically normal.
Now the degree is K2

X = 2, and the anticanonical class generates Pic(X) = Z. Such
examples are interesting, because they may occur as generic fibers in Mori fiber
spaces. Note that over fields of p-degree pdeg(F ) ≤ 1 there are no regular del Pezzo
surfaces that are not geometrically normal, according to [5], Theorem 14.1. For
more information on del Pezzo surfaces of degree two, we refer to the monographs
of Manin [14], Dolgachev [4] and Kollár, Smith and Corti [12].
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