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Abstract. Generalizing homogeneous spectra for rings graded by natural
numbers, we introduce multihomogeneous spectra for rings graded by abelian

groups. Such homogeneous spectra have the same completeness properties as
their classical counterparts, but are possibly nonseparated. We relate them
to ample families of invertible sheaves and simplicial toric varieties. As an
application, we generalize Grothendieck’s Algebraization Theorem and show

that formal schemes with certain ample families are algebraizable.

Introduction

A powerful method to study algebraic varieties is to embed them, if possible,
into some projective space Pn. Such an embedding X ⊂ Pn allows you to view
points x ∈ X as homogeneous prime ideals in some N-graded ring. The purpose
of this paper is to extend this to divisorial varieties, which are not necessarily
quasiprojective.

The notion of divisorial varieties is due to Borelli [2]. The class of divisorial vari-
eties contains all quasiprojective schemes, smooth varieties, and locally Q-factorial
varieties. Roughly speaking, divisoriality means that there is a finite collection of
invertible sheaves L1, . . . ,Lr so that the whole collection behaves like an ample
invertible sheaf. Such collections are called ample families.

Our main idea is to define homogeneous spectra Proj(S) for multigraded rings,
that is, for rings graded by an abelian group of finite type. We obtain Proj(S) by
patching affine pieces D+(f) = Spec(S(f)), where f ∈ S are certain homogeneous
elements. Roughly speaking, we demand that f has many homogeneous divisors.
Multihomogeneous spectra share many properties of classical homogeneous spectra.
For example, they are universally closed, and the intersection of two affine open
subsets is affine. They are, however, not necessarily separated.

Roberts [23] gave a similar construction for Nr-graded rings S satisfying certain
conditions on homogeneous generators. He used it to study Hilbert functions in
several variables and local multiplicities. Roberts’ homogeneous spectrum is an
open subset of ours.

It turns out that a scheme is divisorial if and only if it admits an embedding
into suitable multihomogeneous spectra. More precisely, we shall characterize am-
ple families of invertible sheaves in terms of Proj(S) for the multigraded ring of

global sections S =
⊕

d∈Nr Γ(X,Ld1

1 ⊗ . . .⊗L
dr
r ). Generalizing Grauert’s Criterion

for ample sheaves, we characterize ample families also in terms of affine hulls and
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contractions. Furthermore, we give a cohomological characterization which is anal-
ogous to Serre’s Criterion for ample sheaves. We also relate homogeneous spectra
to Cox’s homogeneous coordinate rings for toric varieties [6].

As an application, we shall generalize Grothendieck’s Algebraization Theorem.
The result is that a proper formal scheme X → Spf(R) is algebraizable if there is
a finite collection of invertible formal sheaves restricting to an ample family on the
closed fiber and satisfying an additional condition.

Acknowledgement. We thank Professor Uwe Storch for helpful suggestions. The
second author is grateful to the M.I.T. Mathematical Department for its hospital-
ity, and thanks the DFG for financial support. We thank Professor Paul Smith
(University of Washington, Seattle) for pointing out an error in the printed version
and for showing us Example 3.10

1. Grauert’s criterion for ample families

In this section, we shall generalize Grauert’s criterion for ample sheaves to ample
families. Given a collection of invertible sheaves L1, . . . ,Lr, we use multiindices and
set Ld = Ld1

1 ⊗. . .⊗L
dr
r for each d = (d1, . . . , dr) ∈ Zr. Let us start with the defining

property of ample families:

Proposition 1.1. Let X be a quasicompact and quasiseparated scheme. For a

family L1, . . . ,Lr of invertible sheaves, the following are equivalent:

(i) The open sets Xf with f ∈ Γ(X,Ld) and d ∈ Nr form a base of the topology.

(ii) For each x ∈ X, there is some d ∈ Nr and f ∈ Γ(X,Ld) so that Xf is an

affine neighborhood of x.
(iii) For each point x ∈ X, there is a Q-basis d1, . . . , dr ∈ Nr and global sections

fi ∈ Γ(X,Ldi) so that Xfi
are affine neighborhoods of x.

Proof. To see (ii)⇒ (iii), choose a degree d ∈ Nr and a section f ∈ Γ(X,Ld) so that
U = Xf is an affine neighborhood of the point x. Choose a Q-basis e1, . . . , er ∈ Nr.
Since U is affine, we find sections f ′i ∈ Γ(U,Lei) satisfying f ′i(x) 6= 0. According to
[10] Theorem 6.8.1, the sections fi = f ′i ⊗ f

n extend from U to X for n≫ 0. The
sections f and fi have degrees d and di = nd + ei, respectively. Skipping one of
them we have a basis and the desired sections. The other implications are clear. �

Following Borelli [2], we call a finite collection L1, . . . ,Lr of invertible OX -
modules an ample family if the scheme X is quasicompact and quasiseparated,
and the equivalent conditions in Proposition 1.1 hold. A scheme is called divisorial

if it admits an ample family of invertible sheaves.
Recall that a scheme is separated if the diagonal embedding X ⊂ X × X is

closed, and quasiseparated if the diagonal is quasicompact. Note that, in contrast
to the definition of ample sheaves ([11] Def. 4.5.3), we do not require separateness
for ample families. However, the possible nonseparatedness is rather mild:

Proposition 1.2. The diagonal embedding of a divisorial scheme is affine.

Proof. Let X be a divisorial scheme, L be an invertible sheaf, f ∈ Γ(X,L) a global
section, and U = Spec(A) an affine open subset. Then U ∩Xf = Spec(Af ) is affine.
Since X is covered by affine open subsets of the form Xf , this ensures that the
diagonal embedding X ⊂ X ×X is affine. �

Obviously, schemes admitting ample invertible sheaves are divisorial. The fol-
lowing gives another large class of divisorial schemes:
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Proposition 1.3. Normal noetherian locally Q-factorial schemes with affine diag-

onal are divisorial schemes.

Proof. As in [14] II 2.2.6, the complement of an affine dense open subset is a Weil
divisor. By assumption it is Q-Cartier, so X is divisorial. Using quasicompactness,
we find finitely many effective Cartier divisors D1, . . . ,Dr ⊂ X with

⋂

Di = ∅. By
Proposition 1.1, the invertible sheaves OX(Di) form an ample family. �

Here are two useful properties of divisorial schemes:

Proposition 1.4. For divisorial noetherian schemes, the following hold:

(i) Each coherent OX-module admits a resolution with locally free OX-modules

of finite rank.

(ii) There is a noetherian ring A together with a smooth surjective affine mor-

phism Spec(A)→ X.

Proof. The first assertion is due to Borelli [3] Theorem 3.3. The second statement
is called the Jouanolou–Thomason trick. For a proof, see [24] Proposition 4.4. �

Grauert’s Criterion states that a line bundle is ample if and only if its zero
section contracts to a point (see [9] p. 341 and [11] Theorem 8.9.1). The task
now is to generalize this to families of line bundles. To do so, we shall use vector
bundles. Recall that the category of locally free OX -modules E is antiequivalent to
the category of vector bundles π : B → Z via B = SpecS(E) and E = π∗(OB)1.
Under this correspondence, the sections f ∈ Γ(X,S(E)) correspond to functions
f ∈ Γ(B,OB). For f ∈ Γ(X,Sn(E)) define Xf = {x ∈ X : f(x) 6= 0}. Then
Bf ⊂ π

−1(Xf ) and Xf = π(Bf ).
A locally free sheaf E is called ample if the invertible sheaf OP (1) is ample on

P = P(E) (see [15]). This easily implies that the open subsets Xf ⊂ X with
f ∈ Γ(X,Sn(E)) generate the topology. In contrast to line bundles, the latter
condition is not sufficient for ampleness. Let us characterize this condition:

Theorem 1.5. Suppose X is quasicompact and quasiseparated. Let π : B → X be

a vector bundle, E = π∗(OB)1 the corresponding locally free sheaf, and Z ⊂ B the

zero section. Then the following are equivalent.

(i) The open subsets Xf ⊂ X with f ∈ Γ(X,Sn(E)) generate the topology.

(ii) For every point x ∈ X there is a function f ∈ Γ(B,OB) so that Bf is affine

and π−1(x) ∩Bf 6= ∅.
(iii) There is a scheme B′, and a morphism q : B → B′, and an open subset U ′ ⊂

B′ so that the following holds: The image q(Z) ⊂ B′ admits a quasiaffine

open neighborhood, B → B′ induces an isomorphism q−1(U ′) ∼= U ′ and the

projection q−1(U ′)→ X is surjective.

(iv) There exists an open subset Z ⊂W ⊂ B such that for every x ∈ X there is

a function f ∈ Γ(W,OB) so that Wf is affine and Wf∩π
−1(x) is nonempty.

Proof. We shall prove the implications (i)⇒ . . .⇒ (iv)⇒ (i). First assume (i). Fix
a point x ∈ X. Choose an affine neighborhood x ∈ V and a section f ∈ Γ(X,Sn(E))
so that x ∈ Xf ⊂ V . Then Bf = π−1(V )f is affine and π−1(x) ∩Bf 6= ∅.

Assume (ii) holds. Set B′ = Baff = Spec Γ(B,OB). According to [10] Corollary
6.8.3, the map Γ(B,OB)f → Γ(Bf ,OB) is bijective, so the affine hull q : B → Baff

induces an isomorphism Bf = q−1(D(f)) → D(f) for Bf affine. Then take U ′ =
⋃

f D(f) and U =
⋃

f Bf , where the union runs over f , Bf affine.
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Assume that (iii) holds. Let W ′ ⊆ B′ be a quasiaffine neighborhood of q(Z).
Then W = q−1(W ′) is an open neighborhood of the zero section. Fix a point x ∈ X
and let η ∈ π−1(x) be the generic point, such that η ∈ q−1(U ′) ∩W . Then we find
f ∈ Γ(W ′,OB′) so that q(η) ∈W ′

f ⊂ U
′∩W ′ is affine and η ∈Wf = q−1(W ′

f ) ∼= W ′
f

is an affine neighborhood.
Now suppose (iv) holds. Let x ∈ V ⊂ X. Then there exists f ∈ Γ(W,OB) so

that Wf ⊂ π−1(V ) ∩W is affine and π−1(x) ∩Wf 6= ∅. Let I ⊂ OW be the ideal
of the zero section Z ⊂W . Then OW /In+1 =

⊕n
d=0 S

d(E), and f ∈ Γ(W,OB) has
a Taylor series expansion f =

∑∞
d=0 fd with fd ∈ Γ(X,Sd(E)). Choose a degree

d ≥ 0 with fd(x) 6= 0. Then x ∈ Xfd
⊂ V is the desired open neighborhood of

x. �

Remark 1.6. If X is connected and proper over a base field, the image of the
zero section Z ⊂ B in any quasiaffine scheme is a closed point. In this case, the
assumption in condition (iii) implies that q contracts Z ∼= X to a point.

The preceding result yields a characterization of ample families L1, . . . ,Lr in
terms of the corresponding locally free sheaf E =

⊕

Li.

Corollary 1.7. Suppose X is quasicompact and quasiseparated. A family of in-

vertible sheaves L1, . . . ,Lr is ample if and only if the vector bundle π : B → X with

π∗(OB)1 = L1 ⊕ . . .⊕ Lr satisfies the equivalent conditions in Proposition 1.5.

Proof. If the family is ample, then condition (i) of Proposition 1.5 holds. For
the converse, fix a point x ∈ X, and choose a section f ∈ Γ(X,Sn(E)) so that
x ∈ Xf ⊂ V where V is affine. Write f =

∑

fd according to the decomposition
Sn(E) =

⊕

d L
d, where the sum runs over all degrees d ∈ Nr with n =

∑

di. Pick
a summand fd with fd(x) 6= 0. Then Xfd

⊂ Xf ⊂ V is the desired affine open
neighborhood. �

Remark 1.8. In the situation of 1.7, the vector bundle B = B1 ×X . . . ×X Br

decomposes into Bi = Spec S(Li). The affine hull B → Baff is an isomorphism
outside the coordinate hyperplanes. The following examples illustrate what may
happen on the union of the coordinate hyperplanes.

Example 1.9. Set X = P1 × P1. First, let L1 and L2 be invertible sheaves of
bidegree (1, 0) and (0, 1), respectively. This is an ample family because L1 ⊗ L2

is ample. Set Bi = Spec S(Li) and consider the corresponding rank two vector
bundle B = B1 ×X B2. On each summand Bi, the affine hull B → Baff restrict to
the morphism

Bi = Ã2 × P1 pr
1−→ Ã2 g

−→ A2

where g : Ã2 → A2 is the blowing-up of the origin.
Now let L1 and L2 be invertible sheaves of bidegree (2,−1) and (−1, 1), respec-

tively. This is an ample family, because L2
1 ⊗L

3
2 is an ample sheaf. Here the affine

hull B → Baff contracts the union of the coordinate hyperplane B1∪B2 to a point.

In the next examples we consider the following situation. Let k denote a field and
let A be an N-graded k-algebra of finite type with A = k[A1]. Let n1, . . . , nr ∈ Z

and consider the family OX(n1), . . . ,OX(nr) on X = ProjA. Now we describe the
corresponding vector bundle and its ring of global sections. (The second description
uses Proj of a Z-graded ring, which we introduce in the next section.)
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Proposition 1.10. Let A,X and n1, . . . , nr as above. Let S = A[T1, . . . , Tr] be

Z-graded by degrees deg(Tj) = −nj. Then the vector bundle B = SpecS(OX(n1)⊕
. . .⊕OX(nr)) is

B ∼=
⋃

f∈A1

D+(f) ⊂ ProjS≥0 and B ∼=
⋃

f∈A1

D+(f) ⊂ ProjS .

If A is normal and dim X ≥ 1, then Γ(B,OB) = S0.

Proof. Let R = S or = S≥0. R0 has also a Zr-graduation with (R0)d = {aT d : a ∈
Ad1n1+...+drnr

}, d = (d1, . . . , dr). There is a natural rational mapping ProjR 99K

ProjA which is defined on
⋃

D+(f), where the union runs over f ∈ A1. This is an
affine morphism, thus we can check the identities by looking at the rings of global
sections and at the restriction maps. We have

Γ(π−1(D+(f)),OB)d = Γ(D+(f), S(OX(n1)⊕ . . .⊕OX(nr)))d

= Γ(D+(f),OX(d1n1 + . . .+ drnr))
= (Af )d1n1+...+drnr

= ((Rf )0)d

= Γ(D+(f),OProj R)d

and the restriction maps respect these identities. The last statement follows if we
replace D+(f) by U =

⋃

f∈A1
D+(f). Then

Γ(U,OX(d1n1 + . . .+drnr)) = Γ(D(A1), (OSpec(A))d1n1+...+drnr
) = Ad1n1+...+drnr

,

since A is normal and V (A1) has codimension ≥ 2. �

Example 1.11. Let X = Pm be the homogeneous spectrum of k[X0, . . . ,Xm],
m ≥ 1. Let L1 = OX(1) and L2 = OX(−1). Then B1 = SpecS(O(1)) is the
blowing up of the vertex point in Am+1 and B2 = SpecS(O(−1)) is the projection
from a point in Pm+1. The ring of global sections of the rank two vector bundle
B = B1 ×X B2 is the polynomial algebra

Γ(B,OB) = k[X0S, . . . ,XmS, ST ] ⊂ k[X0, . . . ,Xm][S, T ]

where S, T are indeterminates with degrees deg(S) = −1 and deg(T ) = 1. The
affine hull B → Baff contracts B2 to a point and is an isomorphism on the com-
plement B − B2. We have Γ(B|D+(Xi),OB) = k[X0/Xi, . . . ,Xm/Xi,XiS, T/Xi],
and the affine hull is given by

XjS 7→
Xj

Xi

XiS and ST 7→
T

Xi

XiS.

Example 1.12. Again let A = k[X0, . . . ,Xm] (m ≥ 1) and consider the family
L1 = OX(1), . . . ,Lr = OX(1). Then Γ(B,OB) is the determinantial algebra

k[XiTj | 0 ≤ i ≤ m, 1 ≤ j ≤ r] ⊂ k[X0, . . . ,Xm, T1, . . . , Tr],

generated by the entries of the (m+1)×r-matrix (XiTj), with relations given by the
2× 2-minors (XiTj)(XkTl)− (XiTl)(XkTj). The affine hull ϕ : B → Baff contracts
exactly the zero section to a point. The affine hull ϕ may also be described as the
blowing-up of the column ideal (X0T1, . . . ,XmT1). For this blowing up is given by
Proj k[XiTj ][X0T1U, . . . ,XmT1U ], and

k[XiTj ][X0T1U, ...,XmT1U ] ∼= k[XiTj ][X0, ...,Xm] = k[X0, ...,Xm, T1, ..., Tr]≥0 .
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2. The homogeneous spectrum of a multigraded ring

Generalizing the classical notion of homogeneous coordinates, Grothendieck de-
fined homogeneous spectra for N-graded rings ([11] §2). In this section, we shall
generalize his approach to multigraded rings. Let D be a finitely generated abelian
group and let S =

⊕

d∈D Sd be a D-graded ring. Note that by [13] I 4.7.3, such
gradings correspond to actions of the diagonizable group scheme Spec(S0[D]) on
the affine scheme Spec(S).

According to geometric invariant theory (see [22] Thm. 1.1), the projection
Spec(S)→ Spec(S0) is a categorical quotient in the category of schemes. There is
a quotient Spec(S)→ Quot(S) in the category of ringed spaces as well. In general,
the latter is quite different from the first. However, we have the following favorable
situation. Call the ring S periodic if the degrees of the homogeneous units f ∈ S×

form a subgroup D′ ⊂ D of finite index. In this case, we may choose a free subgroup
D′ ⊂ D of finite index, such that S′ =

⊕

d∈D′ Sd is a Laurent polynomial algebra

S0[T
±1
1 , . . . , T±1

r ].

Lemma 2.1. For periodic rings S, the projection Spec(S) → Spec(S0) is a geo-

metric quotient in the sense of geometric invariant theory.

Proof. Choose a free subgroup D′ ⊂ D of finite index as above. The corresponding
inclusion of the Veronese subring S′ ⊂ S is an integral ring extension, because
D/D′ is torsion, such that Spec(S) → Spec(S′) is a closed morphism. By [22]
Amplification 1.3, this morphism is a geometric quotient.

Since S′ is a Laurent polynomial ring, Spec(S′) is a principal homogeneous space
for the induced action of Spec(S0[Z

r]) and the projection Spec(S′)→ Spec(S0) is a
geometric quotient. Being the composition of two geometric quotients, Spec(S)→
Spec(S0) is a geometric quotient as well. �

In light of this, we seek to pass from a given graded ring S to periodic rings
via localization. An element f ∈ S is called relevant if it is homogeneous and the
localization Sf is periodic. Equivalently, the degrees of all homogeneous divisors
g|fn, n ≥ 0 generate a subgroup D′ ⊂ D of finite index. There exists then also
an n and a homogeneous factorization fn = g1 · · · gℓ such that the degrees deg(gi)
generate a subgroup of finite index. Since geometric quotients are quotients in the
category of ringed spaces, localization of relevant elements yields open subschemes

D+(f) = Spec(S(f)) ⊂ Quot(S)

inside the ringed space Quot(S). Here S(f) ⊂ Sf is the degree zero part of the
localization. This leads to the following definition:

Definition 2.2. Let D be a finitely generated abelian group and let S =
⊕

d∈D Sd

be a D-graded ring. We define the scheme

Proj(S) =
⋃

f∈S relevant

D+(f) ⊂ Quot(S),

and call it the homogeneous spectrum of the graded ring S.

For N-gradings, this coincides with the usual definition. As in the classical
situation, we define S+ ⊂ S to be the ideal generated by all relevant f ∈ S. The
corresponding invariant closed subscheme V (S+) is called the irrelevant subscheme.
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The complementary invariant open subset Spec(S) − V (S+) is called the relevant

locus. Obviously, we obtain an affine projection

Spec(S)− V (S+) −→ Proj(S),

which is a geometric quotient for the induced action.

Remark 2.3. The points x ∈ Proj(S) correspond to graded (not necessarily prime)
ideals p ⊂ S not containing S+ such that the subset of homogeneous elements
H ⊂ S − p is closed under multiplication. The stalk of the structure sheaf at
x ∈ Proj(S) is canonically isomorphic to (H−1S)0.

To proceed, we need a finiteness condition for multigraded rings. In the special
case D = Z, the following is due to Bruns and Herzog ([5] Thm. 1.5.5).

Lemma 2.4. Let S be a ring graded by a finitely generated abelian group D. Then

the following are equivalent:

(i) The homogeneous ideals of S satisfy the ascending chain condition.

(ii) The ring S is noetherian.

(iii) S0 is noetherian and S is an S0-algebra of finite type.

If S is noetherian and M ⊂ D is a finitely generated submonoid, then SM is also

noetherian.

Proof. The implications (iii)⇒ (ii) and (ii)⇒(i) are trivial, so assume that (i) holds.
We start with some preparations. For a submonoid M ⊂ D, let SM =

⊕

d∈M Sd

be the corresponding Veronese subring. Let D′ ⊂ D denote a subgroup. Then the
ring SD′ ⊂ S is a direct summand. Therefore SD′ satisfies also the ascending chain
condition for homogeneous ideals. In particular, S0 is noetherian. It follows at once
that Se are noetherian S0-modules. Let D ∼= D′⊕ T , where T is finite and D′ free.
Then S is finite over SD′ and SD′ fulfills (i). Thus we may assume that D is free.
Let us call a free submonoid M ⊂ D a quadrant if M =

⊕

Ndi, where the di ∈ D
is a subset of a Z-basis for D.

Claim. For each quadrant M ⊂ D and each degree e ∈ D, the SM -module SM+e =
⊕

d∈M Sd+e is finitely generated.

We prove this by induction on r = rankM . Since Se are noetherian S0-modules,
this holds for r = 0. Fix a quadrant M of rank r and suppose the Claim is true for
each quadrant of rank r − 1. Choose d1, . . . , dr ∈ D with M =

⊕r
i=1 Ndi, and let

Mi =
⊕

j 6=i Ndj be the i-th boundary quadrant.

Condition (i) implies that the graded S-ideal S · SM+e is finitely generated.
Choose homogeneous generators f1, . . . , fs ∈ SM+e. Then Sd ⊂

∑

SMfi for each
d ∈ M + e with d ≥ max {deg(f1), . . . ,deg(fs)}. Fix such a degree d ∈ M + e.
Clearly, there are finitely many dij ∈M + e with

M + e = (M + d) +
∑

i

∑

j

(Mi + dij).

By induction, each SMi+dij
is a finitely generated SMi

-module, and we conclude
that SM+e is a finitely generated SM -module. This proves the claim.

Fix a quadrant M =
∑

Ndi and set M∗ = M − 0 =
∑

(M + di). Then SM+di
is

a finitely generated SM -module and thus SM∗ =
∑

SM+di
is finitely generated.

Let SM∗ = (f1, . . . , fn), where fi are homogeneous of degree > 0. We show by
induction on M ∼= Nr that SM = S0[f1, . . . , fn]. Let g ∈ Sd, d ∈ M and suppose
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that Se ⊂ S0[f1, . . . , fn] for all e < d. We have g = h1f1 + . . . + hnfn, where
deg(hj) = deg(g)− deg(fj) < d and the result follows.

Since D is a finite union of quadrants with rank(M) = rank(D), we conclude
that S is a finitely generated S0-algebra.

To proof the additional statement, let gi, i ∈ I be a generating system for S
with degrees di. We may assume that M is saturated, thus we may describe M
with finitely many linear forms ψk : D → Z, say M =

⋂

k ψ
−1
k (N). Consider the

mapping ϕ : NI → D, (ni)i∈I 7→
∑

i nidi. Then ϕ−1(M) =
⋂

k(ψk ◦ ϕ)−1(N) and
therefore ϕ−1(M) is finitely generated, say by rj , j ∈ J . Set ej = ϕ(rj) in M . We
claim that SM is generated by elements of degree ej , j ∈ J . An element f ∈ Sd,
d ∈M can be written as the sum of products

∏

i∈I g
ni

i , where d =
∑

i∈I nidi. But
then (ni)i∈I =

∑

j mjrj and

∏

i∈I

gni

i =
∏

i∈I

g j mjrji

i =
∏

j∈J

(
∏

i∈I

g
rji

i )mj .

Thus
∏

i g
ni

i is a product of elements in Sej
. �

We have the following finiteness condition for homogeneous spectra:

Proposition 2.5. The morphism Proj(S)→ Spec(S0) is universally closed and of

finite type, provided that S is noetherian.

Proof. By Lemma 2.4, the ring S0 is noetherian and the S0-algebra S is of fi-
nite type. The relevant locus Spec(S) − V (S+) is quasicompact and surjects onto
Proj(S), so the homogeneous spectrum is quasicompact.

Next, we check that the projection Proj(S)→ Spec(S0) is locally of finite type.
To do so, fix a relevant element f ∈ S, and let D′ ⊂ D be a free subgroup of
finite index such that for each d ∈ D′, there is a homogeneous unit g ∈ S×

f with

deg(g) = d. Let S′ =
⊕

d∈D′ Sd be the corresponding Veronese subring. By
Lemma 2.4, the ring extension S′ ⊂ S is finite, so Artin–Tate [1] tells us that the
ring extension S0 ⊂ S′ is of finite type. Clearly, the localization S′

f is isomorphic

to a Laurent polynomial ring S(f)[T
±1
1 , . . . , T±1

r ]. Setting Ti = 1, we deduce that
S0 ⊂ S(f) is of finite type.

Finally, we verify universal closedness. Let S0 → R0 be a base change and set
R = S ⊗S0

R0. By Lemma 2.7 below we have rad(R+) = rad(S+ ⊗S0
R0) and

so Proj(S) ×Spec(S0) Spec(R0) = Proj(S ⊗S0
R0). Hence it is enough to check

that h : Proj(S) → Spec(S0) is closed under the new hypothesis that S is an S0-
algebra of finite type, that S+ ⊂ S is an ideal of finite type, and that each Sd

is a finitely generated S0-module. Each closed subset of Proj(S) is of the form
Proj(S/b) = V+(b) for some graded ideal b ⊂ S, and we have h(V+(b)) ⊂ V (b0).
Consequently, it suffices to show that h : Proj(S)→ Spec(S0) has closed image.

Fix a point x ∈ Spec(S0) with h−1(x) = ∅, and let p ⊂ S0 be the corresponding
prime ideal. We have to construct g ∈ S0 − p with h−1(Spec(S0)g) = ∅. The
condition h−1(x) = ∅ signifies that each relevant f ∈ S is nilpotent in S/pS.
Hence Sk

+ ⊂ pS+ for some integer k > 0. Choose finitely many homogeneous
g1, . . . , gn ∈ S with S = S0[g1, . . . , gn], and set di = deg(gi). Call a degree d ∈ D
generic if for each linear combination d =

∑

nidi with nonnegative coefficients, the
set {di | ni ≥ k} generates a subgroup of finite index. Then the set of nongeneric
degrees is a union of a finite set and finitely many affine hyperplanes.
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Let d =
∑

nidi be generic and consider g =
∏

gni

i ∈ Sd. Then one may write
g = gk

1 · . . . ·g
k
r ·g

′ such that g1 · . . . ·gr is relevant. Using Sk
+ ⊂ pS+, we see g ∈ pSd.

This gives pSd = Sd for all generic degrees d ∈ D, and the Nakayama Lemma gives
(Sd)p = 0.

Next, choose finitely many relevant f1, . . . , fm ∈ S with rad(S+)=
√

(f1, . . . , fm).
We may assume fi = fi1 . . . fir such that each sequence deg(fi1), . . . ,deg(fir) ∈ D
generates a subgroup of finite index. For each fi, choose a linear combination with
positive coefficients ei =

∑

j nj deg(fij) ∈ D that is generic. Then some g ∈ S0 − p

annihilates all Sei
. Consequently, each fi ∈ S[1/g] is nilpotent, hence the preimage

h−1(Spec(S0)g) is empty. �

Remark 2.6. Roberts ([23], sect. 8.2) introduced multihomogeneous spectra for
certain Nr-graded rings. To explain Roberts’ conditions, let S[j] ⊂ S, 0 ≤ j ≤ r
be the graded subring generated by all homogeneous elements whose degrees are of
the form (i1, . . . , ij , 0, . . . , 0). Then Roberts assumes that each S[j+1] is generated
over S[j] by finitely many elements of degree (i1, . . . , ij , 1, 0, . . . , 0). Now Roberts’
homogeneous spectrum is the subset

⋃

D+(f) ⊂ Proj(S), where the union runs
over all f ∈ S admitting a factorization f = g1 . . . gr so that deg(gj) has the form
(i1, . . . , ij−1, 1, 0, . . . , 0), compare [23], Proposition 8.2.5.

The following lemma shows that the irrelevant locus behaves well under base
change.

Lemma 2.7. Let S =
⊕

d∈D Sd be a D-graded ring over a finitely generated abelian

group D and let S0 → R0 be an arbitrary base change. Then we have rad(R+) =
rad((S+)R), where R = S ⊗S0

R0 and where (S+)R denotes the extended ideal

under the natural homomorphism S → R.

Proof. The inclusion ⊇ is clear, as a relevant element s ∈ S is also relevant after
base change. So suppose that a homogeneous element r ∈ R of degree d is relevant.
Then we have a factorization rk = r1 · · · rℓ into homogeneous factors ri of degree
di such that the degrees di generate a subgroup of finite index. For i = 1, . . . , ℓ we
can write ri =

∑

ji∈Ji
siji
⊗ aiji

with suitable index sets Ji, homogeneous elements
siji
∈ S of degree di and elements aiji

∈ R0. Therefore

rk = (
∑

j1∈J1

s1j1 ⊗a1j1) · · · (
∑

jℓ∈Jℓ

sℓjℓ
⊗aℓjℓ

) =
∑

(j1,...,jℓ)∈J1×...×Jℓ

(

ℓ
∏

i=1

siji
)⊗ (

ℓ
∏

i=1

aiji
) .

For every choice (j1, . . . , jℓ), the element
∏ℓ

i=1 siji
is a product of elements of

degrees d1, . . . , dℓ and so it is a relevant element in S. Therefore rk ∈ (S+)R
and r belongs to its radical. �

Example 2.8. The ideal generated by the relevant elements behaves not well
under base change, only its radical, and a homogeneous non-relevant element might
become relevant. Consider S = K[u][x, y, z]/(yz−ux), where K is a field, with the
Z2-grading given by deg(x) = e1 + e2, deg(y) = e1, deg(z) = e2 and S0 = K[u].
Consider the base change to the quotient field K[u] → K(u) =: R0. The element
x is not relevant in S, since Sx

∼= K[x, y, z]x. It becomes however relevant in
R = S ⊗S0

R0, since in this ring inverting x makes also y and z to units. The
irrelevant ideals are given by S+ = (yz, xy, xz) and R+ = (x), and x = yz/u.
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3. Separation criteria

In Proposition 2.5, we may say that Proj(S) is a complete S0-scheme. We cannot,
however, infer that it is proper. For example, set S = k[X,Y ] with degrees inD = Z

given by deg(X) = 1 and deg(Y ) = −1. Then S0 = k[XY ] yields the affine line A1
k,

and Proj(S) is the affine line with double origin, which is nonseparated. However,
the following holds:

Proposition 3.1. The diagonal embedding of a homogeneous spectrum is affine.

Proof. The intersection D+(f) ∩D+(g) = D+(fg) is affine. �

Here is a criterion for separatedness, which trivially holds for N-gradings:

Proposition 3.2. If for each pair x, y ∈ Proj(S) there is a relevant f ∈ S with

x, y ∈ D+(f), then Proj(S) is separated.

Proof. Under the assumption the affine open subsets U × U , where U ⊂ Proj(S)
is affine, cover Proj(S) × Proj(S). Clearly, the diagonal embedding of Proj(S) is
closed over each of these open subsets, hence it is closed. �

The next task is to recognize large separated open subsets in Proj(S). Given a
homogeneous element f ∈ S, let Hf ⊂ S be the set of homogeneous divisors g|fn,
n ≥ 0, and Cf ⊂ D ⊗ R the closed convex cone generated by the degrees deg(g),
g ∈ Hf . Note that a homogeneous element is relevant if and only if its cone has
nonempty interior.

Proposition 3.3. Let fi ∈ S be a collection of relevant elements so that each closed

convex cone Cfi
∩ Cfj

⊂ D ⊗ R has nonempty interior. Then
⋃

D+(fi) ⊂ Proj(S)
is a separated open subset.

Proof. According to [10] Proposition 5.3.6, it suffices to show that the multiplication
map S(f)⊗S(g) → S(fg) is surjective for each pair of relevant elements f, g ∈ S such
that Cf∩Cg has nonempty interior. Note that, for each factorization gn = g1 . . . gm,
we may replace g by gn1

1 . . . gnm
m , ni > 0 without changing the localization S(g).

Thus we may assume deg(g) ∈ Cf . Passing to a suitable power of g, we may
assume deg(g) =

∑

ni deg(fi), ni ≥ 0 with fi ∈ Hf . Each element in S(fg) has the

form a/(fg)k with a ∈ S homogeneous, so

a

(fg)k
=

a

fk
∏

fkni

i

·

∏

fkni

i

gk

is contained in the image of S(f) ⊗ S(g). �

Next, we shall relate homogeneous spectra of multigraded polynomial algebras
to toric varieties. Fix a ground ring R and a free abelian group M of finite rank.
A simplicial torus embedding of the torus T = Spec(R[M ]) is an equivariant open
embedding T ⊂ X that is locally given by R[M ∩ σ∨] ⊂ R[M ] for some strongly
convex, simplicial cone σ ⊂ NR in the dual lattice N = Hom(M,Z). Here simplicial

cone means that the cone is generated by a linear independent set. In contrast to
the usual definition, we do not require that our torus embeddings are separated.

Simplicial torus embeddings occur in the following context, which is related to a
construction of Cox [6]. Let S = R[T1, . . . , Tk] be a D-graded polynomial algebra,
such that the grading is given by a linear map d : Zk → D sending the i-th base
vector to deg(Ti) ∈ D. Let M ⊂ Zk be the kernel.
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Proposition 3.4. Notation as above. Then Proj(S) is a (possibly nonseparated)
simplicial torus embedding of the torus Spec(R[M ]).

Proof. Let I = {1, . . . , k} be the index set for the indeterminates. Fix a relevant
monomial Tn = Tn1

1 . . . Tnk

k and let J = {i ∈ I | ni > 0} be its support. A direct
argument gives S(T n) = R[MJ ] for the monoid

MJ = (ZJ ⊕ NI−J ) ∩M ⊂ Zk.

Clearly, the submonoid MJ ⊂M is the intersection of Card(I−J) ≤ rank(M) half
spaces. Therefore, its dual cone σ ⊂ NR is simplicial.

It remains to check M = MJ + (−MJ). Let D′ ⊂ D be the subgroup generated
by deg(Ti) with i ∈ J , and m = ord(D/D′) be its index. Then there are integers
λj ∈ Z, j ∈ J solving the equation

∑

i∈J λi deg(Ti) = −m
∑

i∈I−J deg(Ti). So the

element g ∈ Zk defined by

gi =

{

λi for i ∈ J

m for i ∈ I − J

lies inMJ . For each f ∈M , we have f+ng ∈MJ for n≫ 0, hence f = (f+ng)−ng
is contained in MJ + (−MJ ). �

Corollary 3.5. If S is finitely generated as S0-algebra, then Proj(S) is divisorial.

Proof. We may choose a D-graded polynomial R-algebra S′ with S′
0 = S0, together

with a graded surjection S′ → S. Such a graded surjection induces a closed embed-
ding Proj(S) ⊂ Proj(S′), because for every relevant element f ∈ S we may find a
relevant element f ′ ∈ S′ mapping to a power of it. To see this let fn = g1 · · · gℓ be a
homogeneous factorization in S such that the degrees of the gi generate a subgroup
of finite index. Let g′1, ..., g

′
ℓ ∈ S

′ be homogeneous elements mapping to g1, ..., gℓ.
Then their product is relevant in S′ and maps to fn.

By Proposition 3.4, the scheme Proj(S′) is a simplicial torus embedding, which
has affine diagonal by Proposition 3.1, hence by Proposition 1.3 it is a divisorial
scheme. Consequently, the closed subscheme Proj(S) is divisorial as well. �

Corollary 3.6. Suppose that S is finitely generated over S0. If each finite subset

of Proj(S) admits an affine neighborhood, then Proj(S) is projective.

Proof. We already know that Proj(S) is of finite type, universally closed, separated,
and divisorial (Prop. 2.5, Prop. 3.2, and Cor. 3.5). Since each finite subset admits
an affine neighborhood, the generalized Chevalley Conjecture ([18], Thm. 3) applies,
and we conclude that Proj(S)→ Spec(S0) is projective. �

Remark 3.7. Let us make the torus embedding in Proposition 3.4 more explicit.
For each subset J ⊂ I = {1, . . . , k}, let σJ ⊂ NR be the convex cone generated
by the projections pri : Zk → Z restricted to M , i ∈ J . You easily check that
J 7→ σI−J gives a bijection between the subsets J ⊂ I with

∏

j∈J Tj relevant, and
the strongly convex simplicial cones σI−J ⊂ NR. Let us call such subsets relevant.
Then the torus embedding is given by

Proj(S) =
⋃

J⊂I relevant

Spec(R[σ∨
J−I ∩M ]).

The (possibly nonseparated) union is taken with respect to the inclusions J ⊂ J ′.
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Example 3.8. Let S = R[T1, . . . , Tk] be a polynomial algebra graded by D = Z

so that all indeterminates have positive degree. Then Proj(S) is the weighted
projective space studied by Delorme [7], Mori [21], and Dolgachev [8].

Example 3.9. Here we construct a separated non-quasiprojective scheme defined
by a single equation inside a multihomogeneous spectrum. Let

S = k[X1, . . . ,X4, Y1, . . . , Y4, Z]

be a Z2-graded polynomial ring over a field k, with degrees deg(Xi) = (1, 0),
deg(Yj) = (0, 1), and deg(Z) = (1, 1). Set P = Proj(S) and consider the open
subset U = D+(X1Z) ∪D+(Y1Z). This is not separated: We have

(1) Γ(D+(X1Z),OP ) = k[
Xi

X1
,
X1Ym

Z
] and Γ(D+(Y1Z),OP ) = k[

Yj

Y1
,
XmY1

Z
],

with 1 ≤ i, j,m ≤ 4. On the intersection D+(X1Y1Z) = D+(X1Z) ∩ D+(Y1Z),
these algebras generate the subalgebra

k[
Xi

X1
,
Yj

Y1
,
X1Y1

Z
] ⊂ k[

Xi

X1
,
Yj

Y1
,
X1Y1

Z
,

Z

X1Y1
] = Γ(D+(X1Y1Z),OP ),

which does not contain Z/X1Y1. To obtain separated subschemes, we have to kill
Z/X1Y1. Consider the homogeneous polynomials of degree (2, 2)

g = X1Y1Z +X2
2Y

2
1 +X2

1Y
2
2 and f = X1Y1Z +X2

2Y
2
1 +X2

1Y
2
2 +X3X4Y3Y4.

Let S′ = S/(f), P ′ = Proj(S′) and U ′ = U ∩ P ′. Modulo f , the element
Z/X1Y1 is generated by the algebras in (1), thus U ′ is a separated scheme. It
is, however, not quasiprojective. First observe that S′ is a factorial domain:
S′

X3X4Y3

∼= k[X0, . . . ,X4, Y1, Y2, Y3, Z]X3X4Y3
is factorial and X3,X4, Y3 are prime

in S′, because g ∈ k[X1,X2, Y1, Y2, Z] is prime.
Choose points x ∈ V+(X1, . . . ,X4) ∩ U

′ and y ∈ V+(Y1, . . . , Y4) ∩ U
′ (such

points exist), and assume that they admit a common affine neighborhood W ⊂ U ′.
Then the preimage V ⊂ Spec(S′) is affine as well. By factoriality, V = D(h) for
some homogeneous h ∈ S with h ∈ (X1Z, Y1Z). Write h = pX1Z + qY1Z. Let
deg(h) = (d1, d2) and suppose d1 ≥ d2. Since Y1Z has degree (1, 2), it follows that
q ∈ (X1, . . . ,X4). But then h(x) = 0, contradiction.

Example 3.10. For a graded surjection T → S, a relevant element s ∈ S does
not necessarily come from a relevant element in T (only some power of it, as shown
in Corollary 3.5). The following example was communicated to us by Paul Smith.
Let T = K[x, y, z] be Z2-graded with degrees deg(x) = e1, deg(y) = −e1 and
deg(z) = e2. Consider S := T/((xy − 1)z2) with the induced grading. Then z is
relevant in S, since z2 = xyz2. However, z is not the image of a relevant element in
T . Such an element g must have degree e2 and be of the form g = z+(xy−1)z2h for
some h ∈ T . Since deg(xy − 1)z2 = 2e2, and since there are no elements of degree
−e2, it follows that h = 0. So g = z, but the homogeneous units in K[x, y, z, z−1]
have all their degrees in Ze2.

4. Ample families and mappings to homogeneous spectra

In this section, we shall relate homogeneous spectra to ample families. Let X be
a scheme, D a finitely generated abelian group, and B =

⊕

d∈D Bd a quasicoherent
D-graded OX -algebra. We say that B is periodic if each stalk Bx is a periodic
OX,x-algebra. For each homogeneous f ∈ Γ(X,B), let Xf ⊂ X be the largest open
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subset such that all multiplication maps fn : OX → Bnd with n ≥ 0, d = deg(f)
are bijective.

Proposition 4.1. Let S be a D-graded ring, X = Proj(S) its homogeneous spec-

trum, Y = Spec(S)− V (S+) the relevant locus, and π : Y → X the natural projec-

tion. Then π∗(OY ) is a periodic OX-algebra. Furthermore, Xf = D+(f) for each

relevant f ∈ S.

Proof. By definition, Sg is a periodic S(g)-algebra for each relevant g ∈ S, so π∗(OY )
is a periodic OX -algebra with π∗(OY )0 = OX . The inclusion D+(f) ⊂ Xf is
obvious. To verify Xf ⊂ D+(f), it suffices to check that f ∈ Sg is invertible for
each relevant g ∈ S with D+(g) ⊂ Xf . Replacing f by a positive multiple and
Sg by a suitable Veronese subring, the ring Sg becomes isomorphic to the Laurent

polynomial algebra S(g)[T
±1
1 , . . . , T±1

r ], and f corresponds to a monomial λT d with

λ ∈ S×
(g). Hence f is invertible. �

Next, we extend Grothendieck’s description ([11] Prop. 3.7.3) of mappings into
homogeneous spectra to the multigraded case:

Proposition 4.2. Let X be a scheme, B a quasicoherent D-graded OX-algebra, S
a D-graded ring, and ϕ : S → Γ(X,B) a graded homomorphism. Set U =

⋃

Xϕ(f),

where the union runs over all relevant f ∈ S. Then there is a natural morphism

rB,ϕ : U → Proj(S) and a commutative diagram

U ←−−−− Spec(BU ) −−−−→ Spec(B)

rB,ϕ





y





y

ϕ





y

ϕ

Proj(S) ←−−−− Spec(S)− V (S+) −−−−→ Spec(S).

Proof. Each relevant f ∈ S gives a homomorphism S(f) → Γ(X,B)(f), where we
write f instead of ϕ(f). Furthermore, there is a homomorphism

Γ(X,B)(f) −→ Γ(Xf ,OX), g/fn 7→ (fn|Xf )−1(g),

where (fn|Xf )−1 is the inverse mapping for the bijective multiplication mapping
fn|Xf : OX |Xf → Bnd|Xf . The composition defines a morphism Xf → D+(f).
You easily check that these morphisms coincide on the overlaps, and we obtain the
desired morphism rB,ϕ : U → Proj(S). �

We write rB,ϕ : X 99K Proj(S) for the morphism rB,ϕ : U → Proj(S) and call it
a rational map. Saying that a rational map is everywhere defined means U = X.
In this case, we have a honest morphism rB,ϕ : X → Proj(S).

Corollary 4.3. Let S be a D-graded ring. For each morphism r : X → Proj(S),
there is a quasicoherent periodic D-graded OX-algebra B and a homomorphism

ϕ : S → Γ(X,B) such that the rational map rB,ϕ : X 99K Proj(S) is everywhere

defined and coincides with r : X → Proj(S).

Proof. Let Y = Spec(S) − V (S+) be the irrelevant locus, π : Y → Proj(S) the
canonical projection, and set B = r∗(π∗(OX)). �

We come to the characterization of ample families in terms of homogeneous
spectra:

Theorem 4.4. Let L1, . . . ,Lr be a family of invertible sheaves on a quasicompact

and quasiseparated scheme X. Then the following conditions are equivalent:



14 HOLGER BRENNER AND STEFAN SCHROEER

(i) The family L1, . . . ,Lr is ample.

(ii) The canonical rational map X 99K Proj Γ(X,
⊕

d∈Nr Ld) is everywhere de-

fined and an open embedding.

If X is of finite type over a noetherian ring R, this is also equivalent with

(iii) There is a finite family of sections fi ∈ Γ(X,Ldi), i ∈ I and a D-graded

polynomial algebra A = R[Ti]i∈I such that the rational map X 99K Proj(A)
induced by Ti 7→ fi is everywhere defined and an embedding.

Proof. Set S = Γ(X,
⊕

d∈Nr Ld). We start with the implication (i) ⇒ (ii). Ac-
cording to Lemma 1.1, for each point x ∈ X, there is a Q-basis di ∈ Nr and
sections fi ∈ Γ(X,Ldi) so that Xfi

are affine neighborhoods of x. Consequently,
f = f1 . . . fr ∈ S is relevant, so the rational map X 99K Proj(S) is everywhere
defined. Fix a relevant f ∈ S so that Xf is affine. According to [10], the canonical
map Γ(X,

⊕

Ld)f → Γ(Xf ,
⊕

Ld) is bijective. Consequently, Xf → D+(f) is an
isomorphism, so X → Proj(S) is an open embedding. The reverse implication is
trivial.

For the rest of the proof, suppose that X is of finite type over a noetherian
ring R. Assume that L1, . . . ,Lr is ample. Choose finitely many relevant fi ∈ S
so that Xfi

⊂ X form an affine open cover. Due to the assumption we may write
Γ(Xfi

,OX) = R[hi1, . . . , himi
]. For suitable n we have fij := fn

i hij ∈ S. Let
fi ∈ S, i ∈ I be these elements all together.

Let R[Ti] be graded by d(Ti) = deg(fi) such that the natural mapping R[Ti]→
S is homogeneous. Then Xfi

→ D+(fi) are closed embeddings, since the ring
morphisms are surjective, and so X → Proj(A) is an embedding. Finally, the
implication (iii) ⇒ (ii) is trivial. �

Corollary 4.5. Let L1, . . . ,Lr an ample family on X. For each relevant element

f ∈ Γ(X,
⊕

d∈Nr Ld), the open subset Xf is quasiaffine.

Proof. According to Theorem 4.4, we have an open embedding Xf ⊂ D+(f). �

Corollary 4.6. Let L1, . . . ,Lr an ample family of invertible sheaves on X. Set

S = Γ(X,
⊕

d∈Nr Ld). Then the following conditions are equivalent:

(i) The open embedding r : X → Proj(S) is an isomorphism.

(ii) For each relevant f ∈ S, the quasiaffine open subset Xf ⊂ X is affine.

If the affine hull X → Xaff is proper, this is also equivalent to

(iii) The homogeneous spectrum Proj(S) is separated.

Proof. The equivalence (i) ⇔ (ii) follows from D+(f) = Xaff
f . Now assume that

X → Xaff is proper. The implication (i) ⇒ (iii) is trivial. To see the converse, we
apply [11] Corollary 5.4.3 and infer that the open dense embedding Xf → D+(f)
is proper, hence an isomorphism. �

Finally, we generalize Hausen’s [17] characterization of divisorial varieties:

Corollary 4.7. Let X be a scheme of finite type over a noetherian ring R. Then

the following are equivalent:

(i) The scheme X is divisorial.

(ii) There is an embedding of X into the homogeneous spectrum of a multigraded

R-algebra of finite type.

(iii) X is embeddable into a simplicial torus embedding with affine diagonal.
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Proof. If X is divisorial, Theorem 4.4 ensures the existence of an embedding X ⊂
Proj(S) with S finitely generated. The implication (ii) ⇒ (iii) follows from Propo-
sition 3.4, and (iii) ⇒ (i) is trivial. �

5. Cohomological characterization of ample families

Throughout this section, R is a noetherian ring and X is a proper R-scheme.
According to Serre’s Criterion ([12] Prop. 2.6.1), an invertible OX -module L is
ample if and only if for each coherent OX -module F there is an integer n0 so that
Hp(X,F ⊗ Ln) = 0 for all p > 0, n > n0. The task now is to generalize this to
ample families.

LetA =
⊕

n≥0An be a graded quasicoherentOX -algebra of finite type generated

by A1. Then P = Proj(A) is a projective X-scheme and OP (1) is an X-ample
invertible sheaf. In general, however, OP (1) is not ample in the absolute sense.
More precisely:

Proposition 5.1. With the preceding notation, the invertible sheaf OP (1) is am-

ple if and only if for each coherent OX-module F , there is an integer n0 so that

Hp(X,F ⊗An) = 0 for p > 0 and n > n0.

Proof. Let h : P → X be the canonical projection. First, suppose thatM = OP (1)
is ample. Choose n0 > 0 so that the canonical map An → h∗(M

n) is bijective and
that Rqh∗(h

∗(F)⊗Mn) = 0 and Hp(P, h∗(F)⊗Mn) = 0 holds for p, q > 0, n > n0.
Using the Leray–Serre spectral sequence we infer Hp(X,h∗(h

∗(F)⊗Mn)) = 0 for
all p > 0, n > n0.

We claim that the adjunction map F ⊗ h∗(M
n)→ h∗(h

∗(F)⊗Mn) is bijective
for n≫ 0. Fix a point x ∈ X and choose a finite presentation

O⊕k
X,x −→ O

⊕l
X,x −→ Fx −→ 0.

Then we have an exact sequence

O⊕k
X,x ⊗ h∗(M

n) −→ O⊕l
X,x ⊗ h∗(M

n) −→ Fx ⊗ h∗(M
n) −→ 0,

and another exact sequence

h∗(O
⊕k
P ⊗Mn) −→ h∗(O

⊕l
P ⊗M

n) −→ h∗(h
∗(F)⊗Mn) −→ R1h∗(G ⊗M

n)

on Spec(OX,x), where G is the kernel of O⊕l
P → h∗(F). But R1h∗(G ⊗M

n)x = 0
for n ≫ 0. By the 5-Lemma, the Claim is true locally around x. Using quasicom-
pactness, we infer that the Claim holds globally. Enlarging n0 if necessary, we have
Hp(X,F ⊗An) = 0 for p > 0 and n > n0 as desired. The converse is similar. �

Let L be an invertible OX -module. The idea now is to consider coherent sub-
modules K ⊂ L. Note that such submodules correspond to quasicoherent graded
subalgebras

⊕

n≥0K
n ⊂ S(L) locally generated by terms of degree one. In turn,

we obtain a projective X-scheme P = Proj(
⊕

n≥0K
n) endowed with an X-ample

invertible sheaf OP (1). Locally, P → X looks like the blowing-up of an ideal.

Proposition 5.2. Let L be an invertible OX-module, and x ∈ X a closed point.

Then the following are equivalent:

(i) For some n > 0, there is a section f ∈ H0(X,Ln) so that Xf is an affine

neighborhood of x.
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(ii) For some d > 0, there is a coherent submodule K ⊂ Ld with Kx ⊂ L
d
x bijec-

tive, so that the graded OX-algebra A =
⊕

n≥0K
n satisfies the equivalent

conditions of Proposition 5.1.

Proof. First, we check (i) ⇒ (ii). Set U = Xf . According to [19] Proposition 5.4,
there is a blowing-up h : P → X with center disjoint from U , together with an
effective ample Cartier divisor D ⊂ P satisfying Supp(D) = P − U . Set M =
OP (D), such that P = Proj(

⊕

n≥0 h∗(M
n)). Replacing D by a suitable multiple,

we may assume that
⊕

n≥0 h∗(M
n) is generated by terms of degree one.

The identity gU : h∗(M)|U → OX |U extends to a mapping g : h∗(M) → Ld

for d ≫ 0. This map is injective because a nonzero section t ∈ Γ(P,OP (D)) =
Γ(X,h∗(M)) does not vanish on U . Let K ⊂ Ld be the image of g : h∗(M)→ Ld.
Then Kn = h∗(M

n), because
⊕

n≥0 h∗(M
n) is generated by terms of degree one.

On P = Proj(
⊕

Kn) we have OP (1) =M, which is ample as desired.
Now we check (ii) ⇒ (i). Set P = Proj(A) and let h : P → X be the canonical

morphism. Choose an affine open neighborhood U ⊂ X of x so that the induced
projection h−1(U)→ U is an isomorphism. SinceOP (1) is ample, there is an integer
m > 0 and a section g ∈ H0(X,Km) so that the induced section g′ ∈ H0(P,OP (m))
vanishes on P −h−1(U) and is nonzero on the point h−1(x). Let f be the image of
g under the inclusion H0(X,Km) →֒ H0(X,Ldm). Let y ∈ Xf . Then Km

y = Ldm
y

and Xf lies inside the locus where h : P → X is an isomorphism. Therefore
Pg
∼= Xf ⊂ U and Xf is affine. �

The preceding result leads to a characterization of ample families in terms of
cohomology:

Theorem 5.3. Let R be a noetherian ring and X a proper R-scheme. A family

L1, . . . ,Lr of invertible OX-modules is ample if and only if for each closed point

x ∈ X, there is d ∈ Nr and a coherent subsheaf K ⊂ Ld with Kx = Ld
x so that for

each coherent OX-module F there is an integer n0 with Hp(X,F ⊗Kn) = 0 for all

p > 0, n > n0.

Proof. This follows directly from Proposition 5.2. �

6. Algebraization of formal schemes via ample families

Throughout this section, (R,m, k) denotes a complete local noetherian ring, and
X → Spf(R) is a proper formal scheme. Such formal schemes frequently occur as
formal solutions for problems related to moduli spaces and deformation theories. A
natural question is whether such a formal scheme is algebraizable. This means that
there is a proper scheme X → Spec(R) whose m-adique completion is isomorphic
to X. Grothendieck’s Algebraization Theorem ([12] Thm. 5.4.5) asserts that X is
algebraizable if there is an invertible OX-module whose restriction to the closed
fiber X0 = X⊗ k is ample. Here is a generalization:

Theorem 6.1. Let X be a proper formal scheme as above, and L1, . . . ,Lr a family

of invertible OX-modules. Suppose that for each closed point x ∈ X, there is a degree

d ∈ Nr and a coherent submodule K ⊂ Ld with Kx ⊂ L
d
x bijective, so that OP0

(1) is

ample on P0 = Proj(
⊕

m≥0K
m/IKm). Then the formal scheme X is algebraizable.

Proof. Set Xn = X⊗R/mn+1, such that X = lim
−→

Xn, and let I ⊂ OX be the ideal
of the closed fiber X0 ⊂ X. As in the proof of Proposition 5.2, there is an integer
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m > 0 and a global section s0 ∈ H0(X0,K
m/IKm) so that the induced section

t0 ∈ Γ(X0,L
dm/ILdm) defines an affine open neighborhood x ∈ (X0)t0 . We seek

to extend such sections to formal sections.
For each m ≥ 0, set Am =

⊕

n≥0 I
nKm/In+1Km, and let A =

⊕

m≥0Am be
the corresponding N-graded quasicoherent OX0

-algebra. Consider its homogeneous
spectrum P = Proj(A). We claim that the invertible sheaf OP (1) is ample. To see
this, let X ′ be the affine X0-scheme defined by OX′ =

⊕

n≥0 I
n/In+1. Note that

X ′ is proper over the noetherian ring R′ =
⊕

mn/mn+1. Set

P ′ = Proj(
⊕

m≥0

(
⊕

n≥0

In/In+1 ⊗Km/IKm)),

where the homogeneous spectrum is taken with respect to the grading m ∈ Z. We
have P ′ = X ′ ×X0

P0 and conclude that OP ′(1) is ample.
The surjective mapping In ⊗X K

m → InKm induces a surjective mapping

In/In+1⊗X0
Km/IKm = In⊗XK

m⊗XOX0
−→ InKm⊗XOX0

= InKm/In+1Km .

This yields a closed embedding P ⊂ P ′, showing that OP (1) is ample. To proceed,
consider the exact sequence

H0(Xn,K
m/In+1Km) −→ H0(Xn−1,K

m/InKm) −→ H1(X0, I
nKm/In+1Km).

By Proposition 5.1, there is an integer m0 > 0 so that the group on the right is zero
for all m ≥ m0 and all n ≥ 0. Passing to a suitable multiple if necessary, we can lift
our section s0 ∈ H

0(X0,K
m/IKm) to a formal section s ∈ H0(X,Km). Therefore,

the section t0 ∈ Γ(X0,L
dm/ILdm) lifts to a formal section t ∈ Γ(X,Ldm).

Using such formal sections, you construct as in the proof of Theorem 4.4 a
finitely generated Nr-graded polynomial R-algebra S and a compatible sequence of
embeddings Xn ⊂ Proj(S). Choose an open neighborhood U ⊂ Proj(S) so that
Xn ⊂ U are closed embeddings. Let In ⊂ S be the graded ideal of the closed
embedding Xn ⊂ Proj(S), and set I =

⋂

n≥0 In. Then X = Proj(S/I) ∩ U is the
desired algebraization of the formal scheme X. �

Remark 6.2. If we have K = Ld, then P0 = X0, such that the formal sheaf L is
ample on the closed fiber X0. In this case, Grothendieck’s Algebraization Theorem
ensures that X is algebraizable.

Question 6.3. The assumptions in Theorem 6.1 imply that the restriction of the
family L1, . . . ,Lr to the closed fiber is ample. A natural question to ask: Given a
proper formal scheme with a family of invertible sheaves whose restriction to the
closed fiber is ample – is the formal scheme algebraizable?
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quelques classes de morphismes. Publ. Math., Inst. Hautes Étud. Sci. 8 (1961).
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