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Abstract. Smooth surfaces have finitely generated canonical rings and pro-

jective canonical models. For normal surfaces, however, the graded ring of

multicanonical sections is possibly nonnoetherian, such that the correspond-
ing homogeneous spectrum is noncompact. I construct a canonical compacti-

fication by adding finitely many non-Q-Gorenstein points at infinity, provided

that each Weil divisor is numerically equivalent to a Q-Cartier divisor. Similar
results hold for arbitrary Weil divisors instead of the canonical class.

Introduction

Each proper normal algebraic surface X comes along with the graded ring
R(KX) =

⊕
n≥0 H0(nKX) and the homogeneous spectrum P (KX) = ProjR(KX).

If X has canonical singularities (that is, rational Gorenstein singularities), these are
called the canonical ring and the canonical model. It is then a classical theorem,
and Mori theory reassures us, that the ring R(KX) is finitely generated, such that
the scheme P (KX) is projective.

A natural question to ask: What happens for proper surfaces with arbitrary
normal singularities? The usual approach is to pass to smooth models, but I want
so see what happens on the singular surface itself. To my knowledge, neither
canonical rings nor canonical models were studied from this viewpoint, possibly be-
cause Zariski [10] observed that the ring R(KX) might be nonnoetherian. However,
P (KX) is always a scheme of finite type [9], so it makes perfect sense to analyze it
from a geometric point of view.

According to the Nagata Compactification Theorem, we can embed P (KX) into
a proper normal scheme by adding points and curves at infinity. I prefer to add just
points, because such compactifications are minimal and therefore unique. In this
paper, we shall construct such a compactification P (KX) ⊂ P (KX) with discrete
boundary by adding finitely many non-Q-Gorenstein points at infinity. I have,
however, to assume that each Weil divisor on X is numerically equivalent to a Q-
Cartier divisor. This holds, for example, for surfaces with geometric genus pg = 0,
or for surfaces with rational singularities. Much of this generalizes to P (D), where
D ∈ Z1(X) is an arbitrary Weil divisor.

The paper is organized as follows. In Section 1, we collect some facts on the
intersection of the base loci

⋂
Bs(nD). In Section 2, we determine the structure of

the rational map rD : X 99K P (D). In the next section, we use this rational map
and construct a compactification P (D) ⊂ P (D) as an algebraic space. Section 4
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contains some results on the multiplicities occurring in the base loci Bs(nD). In
the last section, we apply our results to the canonical model P (KX).

Acknowledgment. I wish to thank Hubert Flenner for drawing my attention
to the homogeneous spectrum P (KX). Furthermore, I thank the Mathematical
Department of the Massachusetts Institute of Technology for its hospitality, and
the Deutsche Forschungsgemeinschaft for financial support. Finally, I thank the
referee for his comments, which helped to clarify the paper.

1. Stable base locus

Throughout the paper, X is a proper normal algebraic surface. In other words,
a normal 2-dimensional scheme proper over an arbitrary base field k. Each Weil
divisors D ∈ Z1(X) yields a graded algebra R(D) =

⊕
n≥0 H0(nD), which in turn

defines the homogeneous spectrum P (D) = ProjR(D). Here we use H0(nD) as a
shorthand for H0(X,OX(nD)). Let me quote the following fact ([9], Section 6).

Proposition 1.1. The homogeneous spectrum P (D) is a normal algebraic scheme
of dimension ≤ 2. Furthermore, if dim P (D) ≤ 1, then P (D) is projective.

The interesting point is that P (D) is of finite type over k (which does not nec-
essarily hold in higher dimensions). By definition, there is an affine open covering

P (D) =
⋃

Spec(R(D)(s))

where the union runs over all homogeneous s ∈ R(D) of positive degree. Note
that, if Xs ⊂ X is the open subset where s : OX → OX(nD) is bijective, we have
Γ(Xs,OX) = R(D)(s). Thus we can write

P (D) =
⋃

Xaff
s ,

where Xaff
s = Spec Γ(Xs,OX) is the affine envelope. Gluing the canonical mor-

phisms U → Uaff gives a rational map rD : X 99K P (D).
The base locus Bs(nD) ⊂ X is the intersection of all curves C ∼ D (linear

equivalence). Following Fujita [3], Definition 1.17, we define the stable base locus

SBs(D) =
⋂
n>0

Bs(nD) ⊂ X.

Obviously, the rational map rD : X 99K P (D) is defined on X − SBs(D). Let
us collect some facts on stable base loci. Clearly, x ∈ SBs(D) if the divisor germ
Dx ∈ Z1(OX,x) is not Q-Cartier. There is a partial converse as follows. Define

SBs0(D) ⊂ SBs(D)

to be the 0-dimensional part of the stable base locus.

Proposition 1.2. For each x ∈ SBs0(D), the divisor germ Dx ∈ Z1(OX,x) is not
Q-Cartier.

Proof. Clearly SBs(D) = SBs(nD) for all integers n > 0, so we may assume that
D is a curve. Seeking a contradiction, we assume that Dx is Q-Cartier. Passing
to a suitable multiple, we may assume that it is Cartier. Set I = OX(−D). The
blowing up Y = Proj(

⊕
In) and the invertible sheaf OY (1) depend only on the

linear equivalence class of D. Let Ỹ be the normalization of the blowing-up. The
induced morphism f : Ỹ → Y is bijective near x, and y = f−1(x) is an isolated
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base point for the Cartier divisor f−1(D). The latter contradicts the Fujita–Zariski
Theorem ([3], Theorem 1.19). �

Next, we consider the 1-dimensional part of the stable base locus.

Proposition 1.3. Suppose D ∈ Z1(X) is a Weil divisor with H0(nD) 6= 0 for
some n > 0. Let E ⊂ X be a curve supported by SBs(D). Then the canonical map
H0(D) → H0(D + E) is bijective.

Proof. Inducting on the number of irreducible components of E, we may assume
that E is irreducible. Assuming that E is also reduced, we have to check that the
canonical inclusion H0(D) ⊂ H0(D + mE) is bijective for all m > 0. Suppose to
the contrary that D + mE ∼ A + m′E for some 0 ≤ m′ < m and a curve A ⊂ X
not containing E. Subtracting m′E, we may assume D + mE ∼ A. Decompose
nD = B + lE for some integer l ≥ 1 and a curve B ⊂ X not containing E. Then

(mn + l)D ∼ mB + mlE + lD ∼ mB + lA,

contradicting E ⊂ SBs(D). �

A curve E ⊂ X is called negative definite if the intersection matrix (Ei · Ej)
is negative definite, where Ei ⊂ E are the irreducible components. Here we use
Mumford’s rational intersection numbers [8].

Proposition 1.4. Let D ∈ Z1(X) be a Weil divisor, and E ⊂ X a negative definite
curve. If D ·Ei = 0 for all irreducible components Ei ⊂ E, then the canonical map
H0(D) → H0(D + E) is bijective.

Proof. We may assume that E is reduced and have to check that the inclusion
H0(D) → H0(D +

∑
µiEi) is surjective for all integers µi ≥ 0. Suppose there is a

linear equivalence D +
∑

µiEi ∼ A+
∑

λiEi for some curve A ⊂ X not containing
any Ei, and certain integers λi ≥ 0. Since E is negative definite, there is a unique
Q-divisor

∑
γiEi with∑

γiEi · Ej = A · Ej for all Ej ⊂ E.

By [4], Equation 7, we have γi ≤ 0 because A ·Ej ≥ 0. Consequently,
∑

µiEi ·Ej =∑
(γi + λi)Ej ·Ej , therefore µi ≤ λi. In other words,

∑
µiE ⊂ A +

∑
λiEi, hence

H0(D) → H0(D + E) is bijective. �

Remark 1.5. A curve E ⊂ X is called contractible if there is a proper birational
morphism f : X → Y of proper normal algebraic surfaces so that X − R is the
isomorphism locus. The preceding results imply that the graded ring R(D) does not
change under certain contractions. Namely, if either E ⊂ SBs(D), or D ·Ei = 0 for
all irreducible components Ei ⊂ E, then the canonical injection R(D) ⊂ R(f∗(D))
is bijective.

2. Rational maps defined by Weil divisors

Fix a proper normal algebraic surface X and a Weil divisor D ∈ Z1(X). The
task now is to describe, in geometric terms, the rational map rD : X 99K P (D).
The following decomposition is useful for this. For each n ≥ 0 so that H0(nD) 6= 0,
write

nD ∼ Mn + Fn,
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where Fn ⊂ X is the fixed part, and Mn = nD−Fn is the movable part of nD. Note
that H0(Mn) = H0(nD) and that Mn · C ≥ 0 for all curves C ⊂ X. Furthermore,
decompose

Fn = F ′n + F ′′n ,

where F ′n ⊂ Fn is the part of Fn consisting of all connected components C ⊂ Fn

with C ·Mn > 0. For n sufficiently divisible, the support of Fn is the 1-dimensional
part of SBs(D).

Proposition 2.1. Suppose that P (D) is a surface and assume Bs(nD) = SBs(D).
Then there is a maximal reduced curve R ⊂ X with Mn · R = 0 and F ′n ∩ R = ∅.
Furthermore, R is negative definite and contractible.

Proof. Fix a connected component C ⊂ F ′n and decompose C = C1 + . . . + Cr

into irreducible components. Rearranging indices and allowing repetitions, we may
assume that Mn · C1 > 0 and that the intersections Ci ∩ Ci+1 are 0-dimensional.
Choose a rational λ1 > 0 so that A1 = λ1C1 satisfies (Mn+A1)·C1 > 0. Inductively,
define Ai = Ai−1 +λiCi for some rational number λi > 0 so that (Mn +Ai) ·Cj > 0
for 1 ≤ j ≤ i. We end up with an effective Q-divisor A = Ar with support C.

Repeating this for the other connected components of F ′n, we see that there is an
effective Q-divisor A with support F ′n so that (Mn + A) · Cj > 0 for all irreducible
components Cj ⊂ F ′n. Then

(Mn ·R = 0 and F ′n ∩R = ∅) ⇐⇒ (Mn + A) ·R = 0

holds for each curve R ⊂ X. By the Hodge Index Theorem, there is a maximal
reduced curve R ⊂ X satisfying (Mn+A)·R = 0, and this curve is negative definite.

It remains to check that each connected component Ri ⊂ R is contractible.
Choose a curve A ∼ Mn. Since Mn is movable, each Ri is either disjoint from
A ∪ F ′n or entirely contained in A. Now the contraction criterion [9], Proposition
3.3 applies, and we deduce that Ri is contractible. �

The rational map rD : X 99K P (D) has a maximal open subset dom(rD) ⊂ X on
which it is definable. This open subset is called the domain of definition. Clearly,
X − SBs(D) ⊂ dom(rD). This inclusion, however, might be strict. To explain this,
let n > 0 be an integer satisfying Bs(nD) = SBs(D). Write

SBs(D) = SBs′(D) ∪ SBs′′(D) ∪ SBs0(D),

where SBs0(D) is the 0-dimensional part, SBs′(D) is the part corresponding to F ′n,
and SBs′′(D) is the part corresponding to F ′′n . The next result tells us that this
decomposition depends only on the Weil divisor D, and not on the integer n > 0:

Theorem 2.2. The open subset X−(SBs(D)′∪SBs0(D)) is the domain of definition
for the rational map rD : X 99K P (D). Furthermore, the induced morphism rD :
dom(rD) → P (D) is proper.

Proof. First suppose that P (D) is a curve. Then M2
n = 0 and F ′n = 0 by [9],

Proposition 6.5. So Mn is a globally generated Cartier divisor, and P (D) = P (Mn).
Consequently, the rational map rD is everywhere defined. Furthermore SBs0(D) =
∅, and the assertion follows.

Now assume that P (D) is a surface. Choose a curve C ∼ Mn and set U =
X − (C ∪ Fn). Then P (D) is covered by affine open subsets of the form Uaff. Let
A ⊂ X and R ⊂ X be the curves from the proof of Proposition 2.1, and set

V = X − (C ∪ F ′n) = X − (C ∪A).
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By [9], Proposition 3.2, the morphism V → V aff is proper, hence its exceptional
curve is R∩V . Consequently, Uaff = V aff, and P (D) is nothing but the contraction
of R ⊂ X − (F ′n ∪ SBs0(D)). This implies that X − (F ′n ∪ SBs0(D)) is the domain
of definition for the rational map rD : X 99K P (D). �

The preceding proof shows more, namely:

Corollary 2.3. Suppose that P (D) is a surface. Then the curve R ⊂ X from
Proposition 2.1 is the exceptional set for the proper morphism dom(rD) → P (D).

Finally, we mention that the ring R(D) already lives on the algebraic surface
P (D). In some sense, this reduced the study of Weil divisors on proper surfaces to
the study of Q-Cartier divisors on algebraic surfaces.

Proposition 2.4. Suppose that P (D) is a surface, and set D′ = (rD)∗(D|dom(rD)).
Then the canonical map R(D) → R(D′) is bijective.

Proof. Given an integer n > 0, we have to check that the inclusion H0(nD) ⊂
H0(nD + E) is bijective for each curve E ⊂ X supported by SBs(D). But this
follows from Proposition 1.3. �

3. Compactification

Let D be a Weil divisor on a proper normal algebraic surface X, and assume
that P (D) is 2-dimensional. This algebraic surfaces is not necessarily proper. The
task now is to construct compactifications of P (D), that is, proper normal surfaces
containing P (D) as an open dense subset.

We start with a rather simple compactification. Let R ⊂ X be the contractible
curve from Proposition 2.1 and f : X → Y be its contractions.

Proposition 3.1. There is an open embedding P (D) ⊂ Y , and the complement is
isomorphic to SBs′(D) ∪ SBs0(D).

Proof. According to Corollary 2.3, we have a commutative diagram
dom(rD) −−−−→ Xy y

P (D) −−−−→ Y,

where both vertical arrows are the contractions of R. Hence the lower horizontal ar-
row exists and gives the desired open embedding. By Theorem 2.2, its complement
equals SBs′(D) ∪ SBs0(D). �

The boundary at infinity for P (D) ⊂ Y contains the 1-dimensional part SBs′(X),
so this compactification might not be minimal. The following is useful for the
construction of smaller compactifications:

Lemma 3.2. Each 1-dimensional connected component of C ⊂ SBs(D) contains
an irreducible component Ci with D · Ci ≤ 0.

Proof. Suppose to the contrary that D · Ci > 0 for all irreducible components
Ci ⊂ C. Let f : Y → X be a resolution of the singularities contained in C, and
E ⊂ Y the exceptional divisor. Since E is negative definite, there is a divisor
A ∈ Z1(Y ) supported by E and ample on E. For n > 0 sufficiently large, the
divisor D′ = A+f∗(nD) is effective and ample on f−1(C). On the other hand, since
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nD = f∗(D′), the preimage f−1(C) contains a connected component of SBs(D′).
This contradicts the Fujita–Zariski Theorem ([3], Theorem 1.19). �

Proposition 3.3. The 1-dimensional part of SBs(D) is negative definite.

Proof. We saw in Proposition 2.1 that SBs′′(D) is negative definite, so it remains
to see that each connected component C ⊂ SBs′(D) is negative definite. To do
so, choose n > 0 so that Bs(nD) = SBs(D), decompose C = C1 + . . . + Cr into
irreducible components, and let B ⊂ F ′n be the part disjoint to C.

First, assume that some linear combination A =
∑

λiCi has A2 > 0. As in
the proof of [9], Proposition 3.2, we may assume that λi > 0 and A · Ci > 0 for
1 ≤ i ≤ r. Replacing A by a suitable multiple, we obtain F ′n ⊂ A + B. By Lemma
3.2, there is some component Ci ⊂ C not contained in the stable base locus of
Mn + A + B. On the other hand, the inclusions

H0(mD) ⊃ H0(m(Mn + F ′n)) ⊂ H0(m(Mn + A + B))

are equalities by Proposition 1.3, contradiction.
Second, assume that the intersection matrix (Ci · Cj) is negative semidefinite.

By the Hodge Theorem, its radical has rank 1. This implies that there is a linear
combination A =

∑
λiCi with A·Ci = 0 and λi > 0 for all i. Up to multiples, such a

divisor is unique. Rearranging indices, we may assume Mn ·C1 > 0. The remaining
curve C2+ . . .+Cr is negative definite, so there is a linear combination E =

∑
µiCi

with E · Ci > 0 for 2 ≤ i ≤ r. Enlarging n if necessary, we have (Mn + E) · Ci > 0
for 1 ≤ i ≤ r. Furthermore, for some k > 0, the divisor Mn +E+kA+B is effective
and contains F ′m. We conclude the proof as in the first case. �

This implies that the homogeneous spectrum P (D) = Proj(R(D)) is not too far
from being proper:

Corollary 3.4. The algebraic surface P (D) is not quasiaffine.

Proof. Suppose to the contrary that P (D) is quasiaffine, and consider the open
embedding P (D) ⊂ Y from Proposition 3.1. By Proposition 3.3, the 1-dimensional
part of the boundary is negative definite. On the other hand, [9], Proposition
3.2 ensures that the boundary supports a Weil divisor C ∈ Z1(Y ) with C2 > 0,
contradiction. �

A negative definite curve is not necessarily contractible. However, it can be
contracted in the category of algebraic spaces. Roughly speaking, an algebraic
space is an object that admits an étale covering by a scheme [7]. Over the complex
numbers, 2-dimensional algebraic spaces correspond to Moishezon surfaces.

Theorem 3.5. There is a proper normal 2-dimensional algebraic space P (D) con-
taining P (D) as an open dense subscheme with 0-dimensional complement.

Proof. Since the 1-dimensional part E ⊂ SBs(D) is negative definite, a result of
Artin ([2], Corollary 6.12) implies that there is a contraction f : X → P (D) of
E ⊂ X in the category of algebraic spaces. In light of Proposition 2.3, we obtain
the desired open embedding P (D) ⊂ P (D). �
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Remark 3.6. We have constructed a commutative diagram
dom(rD) −−−−→ X

rD

y yf

P (D) −−−−→ P (D).

The boundary at infinity P (D)−P (D) comprises the image of SBs′(D)∪SBs0(D).
Clearly, the points b ∈ P (D) corresponding to SBs0(D) are scheme-like [6], page
131. In contrast, the points corresponding to SBs′(D) might be nonscheme-like.
The algebraic space P (D) is a scheme if and only if the negative definite curve
SBs′(D) is contractible.

Let us collect some properties of the compactification.

Proposition 3.7. Suppose that the algebraic space P (D) is a scheme. Then the
open subset P (D) ⊂ P (D) is the Q-Cartier locus for the Weil divisor f∗(D).

Proof. Clearly, f∗(D) is Q-Cartier on P (D). According to Proposition 1.2, it is not
Q-Cartier on each point of SBs0(D). Suppose there is a connected component C ⊂
SBs′(D) so that f∗(D) is Q-Cartier on the image y = f(C). For n > 0 sufficiently
divisible, f∗(nD) = f∗(Mn) is movable. Again by Proposition 1.2, we find a curve
E ∼ f∗(nD) disjoint from y. Since R(D) = R(f∗(D)), the corresponding curve
E′ ∼ nD contains C as a connected component, contradicting the definition of
SBs′(D). �

In light of Nakai’s ampleness criterion, we call a Weil divisor D ∈ Z1(X) numer-
ically ample if D2 > 0 and D · C > 0 for all curves C ⊂ X.

Proposition 3.8. Suppose that the algebraic space P (D) is a scheme. Then the
Weil divisor f∗(D) is numerically ample.

Proof. Choose n > 0 so that Bs(nD) = SBs(D). Then f∗(nD) = f∗(Mn) is
movable, so f∗(D) · C ≥ 0 for all integral curves C ⊂ P (D). Suppose f∗(D) · C =
0. Then C is disjoint from the non-Q-Cartier locus of f∗(D). Consequently, the
effective Q-divisor f∗(C) is disjoint from F ′n. The projection formula gives

Mn · f∗(C) = f∗(nD) · C = 0.

By Proposition 2.1, the curve f∗(C) is contracted by f : X → P (D), which is
absurd. Therefore, f∗(D) · C > 0 for all curves C. Then f∗(D)2 > 0 holds as well,
because f∗(nD) is effective. �

Remark 3.9. The preceding two Propositions hold true without the assumption
that P (D) is a scheme. I leave it to the interested reader to formulate the corre-
sponding results.

4. Multiplicities inside the stable base locus

We keep our proper normal algebraic surface X and Weil divisor D ∈ Z1(X).
Decompose nD = Mn + Fn and Fn = F ′n + F ′′n as in Section 2. Zariski [10] pointed
out that multiplicities in Fn play role for the structure of the graded ring R(D).
First, we start with the part SBs′′(D) of the stable base locus.

Proposition 4.1. Suppose Bs(nD) = SBs(D). Then F ′′mn = mF ′′n for all m > 0.
In particular, the multiplicities in F ′′mn are unbounded.
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Proof. Since F ′′n = SBs(D) is negative definite and mnD · C = mF ′′n · C for all
curves C ⊂ SBs′′(D), we infer F ′′mn = mF ′′n . �

Next, we turn to the part SBs′(D) of the stable base locus. Suppose Bs(nD) =
SBs(D). Decompose SBs′(D) = C1 + . . . + Cr into integral components. For each
such component, define

λi = inf {multCi
(F ′n −A) | A as below} ,

where A runs through all effective Q-divisors contained in F ′n such that that the
condition (Mn + A) · Cj > 0 holds for 1 ≤ j ≤ r.

Proposition 4.2. With the preceding notation, lim infm→∞multCi
(F ′mn/m) ≤ λi.

Proof. Let A be an effective Q-divisor as above. By Lemma 3.2, the curve Ci is
not contained in SBs(Mn + A). Now the decomposition into effective summands
mnD = m(Mn + A) + m(Fn −A) gives

multCi
(Fmn/m) ≤ multCi

(Fn −A)

for m sufficiently divisible, hence the assertion. �

5. The canonical model

Fix a proper normal algebraic surface X. In this section, we shall apply the
results of the preceding Sections to the canonical ring R(KX) =

⊕
H0(nKX) and

the corresponding canonical model

P (KX) = Proj(R(KX)).

Note that our canonical model is defined on the surface X itself, and not on a
resolution of singularities. The algebraic space P (KX) constructed in Proposition
3.5 is called the compactified canonical model. The task now is to determine whether
or not P (D) is a scheme.

To do this, the following notions are useful. Two Weil divisors A,B ∈ Z1(X) on a
proper normal algebraic surfaces X are called numerically equivalent if A·C = B ·C
for all curves C ⊂ X. Given a subset S ⊂ X, we say that X is numerically Q-
factorial with respect to S if each Weil divisor on X is numerically equivalent to a
Q-divisor that is Q-Cartier near S. If this holds for S = X, we call X numerically
Q-factorial. For example, Q-factorial surfaces or surface of geometric genus pg = 0
are numerically Q-factorial.

Theorem 5.1. If X is numerically Q-factorial with respect to SBs′(KX), then the
proper algebraic space P (KX) is a scheme.

Proof. We have to check that the negative definite curve C = SBs′(KX) is con-
tractible. According to Proposition 1.3, the inclusion H0(KK) ⊂ H0(KX + C)
is bijective. But now the contraction criterion [9], Theorem 5.1 applies, and we
deduce that C ⊂ X is contractible. �

To obtain examples, we shall relate numerically Q-factorial surfaces to surfaces
with rational singularities.

Proposition 5.2. A proper normal algebraic surface is Q-factorial on the locus of
rational singularities.



CANONICAL MODELS OF NORMAL SURFACES 9

Proof. Over an algebraically closed ground field, this easily follows from [1], Theo-
rem 1.7. The following argument using group schemes works over arbitrary ground
fields k. Let f : Y → X be a resolution of the rational singularities, E ⊂ Y the
reduced exceptional curve, and Y ⊂ Y the corresponding formal completion. Then
H1(E,OnE) = 0 for all n > 0. Hence the group schemes Pic0

nE/k vanish, and
Pic0(Y) = 0. Given a Weil divisor D ∈ Z1(X), there is an integer n > 0 so that
the Q-divisor C = f∗(nD) has integral coefficients. Beeing numerically trivial, the
formal line bundle OY(C) is trivial. Hence f∗OY (C) is invertible and f∗(C) = nD
is Cartier on the locus of rational singularities. �

Together with Theorem 5.1, this gives a condition for schematicity.

Corollary 5.3. Suppose X has rational singularities along SBs′(KX). Then the
algebraic space P (KX) is a proper scheme.

We also have a condition for projectivity:

Corollary 5.4. Suppose X has rational singularities along SBs′(KX)∪SBs0(KX).
Then the algebraic space P (KX) is a projective scheme.

Proof. By Proposition 3.8, the canonical class K of P (KX) is numerically am-
ple. The locus where K is not Q-Cartier is nothing but the image of SBs′(KX) ∪
SBs0(KX). Hence K is numerically equivalent to a Q-Cartier divisor, so the com-
pactified canonical model is projective. �

The canonical model of a regular surfaces is not necessarily regular. Rather, it
has rational Gorenstein singularities. However, canonical models of surfaces with
rational Gorenstein singularities have rational Gorenstein singularities, so this class
of surfaces is closed under passing to minimal models. Here is a similar result.

Proposition 5.5. If the surface X is numerically Q-factorial, then the scheme
P (KX) is numerically Q-factorial as well.

Proof. I claim that the negative definite curve C = SBs′(KX) ∪ SBs′′(KX) is con-
tractible. Indeed: By Proposition 1.3, the curve C is contained in the fixed curve of
KX +mC for all m > 0. Furthermore, we assume that X is numerically Q-factorial.
Hence [9], Theorem 5.1 ensures that C ⊂ X is contractible.

Next, we check that the corresponding contraction h : X → Y yields a numeri-
cally Q-factorial surface. To see this, consider for each m > 0 the exact sequence

H1(X,OX) −→ H1(mF,OmF ) −→ H2(X,OX(−mF )) −→ H2(X,OX).

The map on the right is Serre dual to H0(KX) → H0(KX +mF ), which is surjective
by Proposition 1.3. Hence the map on the left is surjective. By Grothendieck’s
Existence Theorem, the map H1(X,OX) → H1(X,OX) is surjective as well, where
X = X/F is the formal completion. Now [9], Proposition 4.2 ensures that Y is
numerically Q-factorial.

Recall that the contraction f : X → P (KX) admits a factorization g : Y →
P (KX). Furthermore, KY has trivial intersection number on each irreducible
component of the exceptional curve E ⊂ Y . Now Proposition 1.4 ensures that
H0(KY ) = H0(KY + mE), and we deduce as in the preceding paragraph that the
compactified canonical model P (KX) is numerically Q-factorial. �
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Remark 5.6. The numerical criterion for ampleness implies that numerically Q-
factorial surfaces are projective. Therefore, their compactified canonical model
is projective as well. More precisely, a multiple of the canonical class of P (KX)
deforms to an ample invertible sheaf.

Let me record the following special case of Propositions 3.7 and 3.8.

Proposition 5.7. Suppose that P (KX) is a scheme. Then the open subset P (KX)
is its Q-Gorenstein locus, and the canonical class of P (KX) is numerically ample.

A Weil divisor A ∈ Z1(X) is called nef if A ·R ≥ 0 holds for all curves R ⊂ C.
We have the following characterization for the compactified canonical model to be
a scheme.

Theorem 5.8. The algebraic space P (KX) is a scheme if and only if for each
connected component R ⊂ SBs′(KX), there is a nef Weil divisor A ∈ Z1(X) that
is Cartier near R, so that for each integral curve C ⊂ X, the condition A · C = 0
holds if and only C ⊂ R.

Proof. You easily check that the condition is necessary. For sufficiency, we shall
apply the characterization of contractible curves in [9], Theorem 3.4 to each con-
nected component R ⊂ SBs′(D). Let R be as in the Theorem. Fix an integer m > 0
and consider the exact sequence

H1(X,OX) −→ H1(mR,OmR) −→ H2(X,OX(−mR)) −→ H2(X,OX).

The map on the right is Serre dual to H0(KX) → H0(KX +mR). The latter is sur-
jective according to Proposition 1.3. Consequently, H1(X,OX) → H1(mR,OmR)
is surjective, so Pic0(X) → Pic0(mR) is surjective up to torsion. So, for some n > 0,
the invertible sheaf OmR(nA) is the restriction of some numerically trivial invert-
ible OX -module. Thus the conditions of the before mentioned characterization of
contractible curves applies, and we conclude that C is contractible. �

Remark 5.9. One might say that a proper normal algebraic surface X with ra-
tional singularities has two canonical models: First the canonical model P (KY ) =
P (KY ) in the sense of Mori theory defined using a resolution of singularities Y → X,
and second the compactification P (KX) ⊂ P (KX) defined on the normal surface
X itself. I wish to know what happens in higher dimensions.

Question 5.10. Does there exist a proper normal surface whose compactified
canonical model is not a scheme?
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