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Abstract. We analyse the diagonal quotient for the product of certain Artin–

Schreier curves. The smooth models are almost always surfaces of general type,
with Chern slopes tending asymptotically to 1. The calculation of numerical
invariants relies on a close examination of the relevant wild quotient singularity
in characteristic p. It turns out that the canonical model has q − 1 rational

double points of type Aq−1, and embeds as a divisor of degree q in P3, which
is in some sense reminiscent of the classical Kummer quartic.
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Introduction

It is a classical fact in complex geometry that the singular Kummer surface
A/ {±1} attached to an abelian surface A has sixteen rational double points, and
an irreducible principal polarization embeds it as a quartic surface in P3, compare
Hudson’s classical monography [18], or for a modern account [12]. Our starting
point was an analogous computation in characteristic p = 3 for the diagonal action
of the additive group G = F3 on the selfproduct A = E×E, where E : y2 = x3+x
is the supersingular elliptic curve, viewed as an Artin–Schreier covering. It turns
out that this is a special case of a rather general construction, which works for all
primes p, in fact for all prime powers q = ps. It starts with certain Artin–Schreier
curves and leads, with a few exceptions for small prime powers, to surfaces of
general type.
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The goal of this paper is to describe the geometry of these surfaces, and we obtain
a fairly complete description. The construction goes as follows: Fix an algebraically
closed ground field k of characteristic p > 0 and consider Artin–Schreier curves of
the form

C : f(y) = xq − x,
where f is a monic polynomial of degree deg(f) = q − 1. These curves carry a
translation action of the additive group G = Fq ' (Z/pZ)⊕s, and we consider the
diagonal action on the product C × C ′ of two such Artin–Schreier curves. The
quotient (C × C ′)/G is a normal surface containing a unique singularity.

Such singularities are examples of wild quotient singularities, i.e., the character-
istic of the ground field divides the order of the group G. Few examples of wild
quotient singularities occur in the literature, and little is known in general. Artin
[4] gave a complete classification for wild Z/2Z-quotient singularities in dimension
two, and general Z/pZ-quotient singularities were studied further by Peskin [25].
Peculiar properties of wild Sn-quotient singularities in relation to punctual Hilbert
schemes appear in [28]. In light of the scarcity of examples, it is useful to have
more classes of wild quotient singularities in which computations are feasible.

Lorenzini initiated a general investigation of wild quotient singularities on sur-
faces [21], which play an important role in understanding the reduction behaviour
of curves over discrete valuation fields. He compiled a list of open questions [22]. In
a recent paper, Lorenzini studied wild Z/pZ-quotient singularities resulting from
diagonal actions on products of C × C ′, where one or both factors are ordinary
curves [23]. In some sense, we treat the opposite situation, as Artin-Schreier curves
have vanishing p-rank, and our main concern is the interplay between the local
structure coming from the the wild quotient singuarity and the global geometry of
the algebraic surface. We have choosen Artin–Schreier coverings that are concrete
enough so that explicit computations are possible. Note that our set-up includes
wild quotient singularities with respect to elementary abelian groups, and not ony
cyclic groups.

Consider the minimal resolution of singularities

X −→ (C × C ′)/G

of our normal surface. According to Lorenzini’s general observation, the excep-
tional divisor of a wild quotient singularity in dimension two consists of projective
lines, and its dual graph is a tree [21]. Using an explicit formal equation for the
singularitiy, we show that the dual graph is even star-shaped, with q + 1 terminal
chains attached to the central node, each of length q, as depicted in Figure 1. The
two basic numerical invariants of surface singularities are the genus pf = h1(OZ)
of the fundamental cycle Z ⊂ X and the geometric genus pg = h1(OnZ), n � 0.
The latter is usually very difficult to compute. We obtain

pf = (q − 1)(q − 2)/2 and pg = q(q − 1)(q − 2)/6,

the latter under the assumption that our prime power q is prime. This relies on
a computation of the global l-adic Euler characteristic of the surface, combined
with a determination of the G-invariant part in H0(C ×C ′,Ω1

C×C′), which in turn
depends on a problem in modular representation theory related to tensor products
of Jordan matrices. In contrast, the singularities occuring in [23], where at least
one factor in C × C ′ is an ordinary curve, are all rational.
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Having a good hold on the structure of the resolution of singularities, we deter-
mine the global invariants of the smooth surface X. It turns out that H1(X,OX) =
0, and that Pic(X) is a free abelian group of finite rank. Moreover, the algebraic
fundamental group π1(X) vanishes. Passing to the minimal model

X −→ S,

we show that the minimal surface S is of general type for q ≥ 5, a K3 surface for
q = 4, and a weak del Pezzo surface for q = 2, 3. Their Chern invariants are given
by the formula

c21 = q3 − 8q2 + 16q and c2 = q3 − 4q2 + 6q (q ≥ 4).

The resulting Chern slopes asymptotically tend to limq→∞ c21/c2 = 1, and one may
say that our surfaces show no pathological behaviour with respect to surface geog-
raphy. The determination of the Euler characteristic c2 = e depends on Dolgachev’s
formula

e(X) = e(Xη̄)e(B) +
∑

(e(Xa)− e(Xη̄) + δa)

for l-adic Euler characteristic for schemes fibered over curves [9], where δa is Serre’s
measure of wild ramification. Its computation is quite easy in our situation, given
the explicit nature of the Artin–Schreier curves.

The surface S has a surprisingly simple projective description, which is reminis-
cent to Kummer’s quartic surfaces A/ {±1} ⊂ P3. Passing to the normal surface S̄
with q− 1 rational double points of type Aq−1 obtained by contracting all terminal
chains in the fundamental cycle, the image Z̄ ⊂ S̄ of the fundamental cycle remains
Cartier, and defines the embedding:

Theorem. The invertible sheaf L̄ = OS̄(Z̄) is very ample, has h0(L̄) = 4 and
embeds the normal surface S̄ as a divisor of degree q in P3, sending the rational
double points into a line.

In fact, a canonical divisor is KS̄ = (q − 4)Z̄. So for q ≥ 5, the closed embed-
ding ΦZ̄ : S̄ → P3 can be viewed as an m-canonical map, for the fractional value
m = 1/(q − 4). In the simplest case q = 5, this is in line with classification results
of Horikawa on minimal surfaces of general type with K2 = 5 and vanishing irregu-
larity [17]. The projective description also allows us to deduce that our surfaces S
admit a lifting into characteristic zero, at least in the category of algebraic spaces.
It would be interesting to determine the homogeneous polynomial describing the
image S̄ ⊂ P3, but we have made no attempt to do so.

The paper is organized as follows: In Section 1 we review some relevant facts
on Artin–Schreier curve, all of them well-known. In Section 2 we study the normal
surface (C ×C ′)/G, obtained as the quotient of the product of two Artin–Schreier
curves with respect to the diagonal action. We find an explicit equation for the
singularitiy, and a dimension formula for the global sections of the dualizing sheaf.
Section 3 contains an analysis of the minimal resolution of singularities X → (C ×
C ′)/G. Notable results are formulas for the fundamental cycle and its genus, as well
as some bounds on the arithmetic genus. In Section 4 we prove that H1(X,OX) =
0, such that the Picard scheme is reduced and 0-dimensional. This relies on a
general fact about group actions with fixed points, which seems to be of independent
interest, and is verified with Grothendieck’s theory of G-equivariant cohomology.
In Section 5 we determine the place of the smooth surface X in the Enriques
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classification. Among other things, this depends on the geometry of the fibration
X → P1 induced from the projections on C×C ′. Section 6 contains our analysis of
projective models for the surfaces. Finally, in Section 7 we take up questions from
surface geography and compute Chern invariants. This mainly relies on Dolgachev’s
formula for l-adic Euler characteristics for fibered schemes.

Acknowledgement. The first author would like to thank the Mathematisches
Institut of the Heinrich–Heine–Universität Düsseldorf, where this work has begun,
for its warm hospitality. Research of the first author was partially supported by
Grand-in-Aid for Scientific Research (C) 20540044, The Ministry of Education,
Culture, Sports, Science and Technology. We thank the referee for bringing to our
attention Lorenzini’s preprints [21], [22], [23].

1. Artin–Schreier curves

Let p > 0 be a prime number and k be an algebraically closed ground field of
characteristic p. Consider Artin–Schreier curves of the form

C : f(y) = xq − x,
where the left side of the defining equation is a monic polynomial f(y) = yq−1 +
µ2y

q−2 + . . .+µq of degree q− 1 with coefficients from the ground field k. In other
words, C ⊂ P2 is defined by the homogeneous equation

(1) Y q−1Z + µ2Y
q−2Z2 + . . .+ µqZ

q = Xq −XZq−1

of degree deg(C) = q inside the projective plane P2 = Proj(k[X,Y, Z]). Homoge-
neous and inhomogeneous coordinates are related by x = X/Z and y = Y/Z. The
curve C is smooth, with numerical invariants

(2) h0(OC) = 1 and h1(OC) = (q − 1)(q − 2)/2 and deg(KC) = q(q − 3).

Now let G = Fq ⊂ k be the additive group of all scalars λ satisfying λq = λ,
viewed as an elementary abelian p-group. We may also regard it as a subgroup

G =

{(
1
λ 1

)
| λ ∈ Fq

}
⊂ GL(2, k).

Thus the elements λ ∈ G act on P2 via X 7→ X + λZ, Y 7→ Y, Z 7→ Z. This
action leaves the homogeneous equation (1) invariant, whence induces an action
on C. This action is free, except for a single fixed point a = (0 : 1 : 0) ∈ C.
Dehomogenizing in another way by setting u = X/Y , w = Z/Y , we see that an
open neighborhood of the fixed point is the spectrum of the coordinate ring

k[u,w]/(uq − uwq−1 − P (w)),
where P (w) = f(1/w)wq = w + µ2w

2 + . . .+ µqw
q, and the group elements λ ∈ G

act via u 7→ u+ λw, w 7→ w. Since

∂

∂w
(uq − uwq−1 − P (w)) = uwq−2 − (1 + 2µ2w + . . .+ (−µq−1w

q−2))

becomes a unit in the local ring OC,a, there is a unique way to write the inde-
terminate w as a formal power series w(u) =

∑
αiu

i in the variable u so that
uq − uw(u)q−1 − P (w(u)) = 0 ([8], §4, No. 7, Corollary to Proposition 10). Using
the latter condition, one easily infers that the initial coefficients are

(3) α0 = . . . = αq−1 = 0 and αq = 1.
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The upshot is that the inclusion

k[[u]] ⊂ k[[u,w]]/(uq − uwq−1 − P (w)) = O∧
C,a

is bijective, and the group elements λ ∈ G act on the formal completion k[[u]] =
O∧
C,a via

(4) u 7−→ u+ λuq + higher order terms.

From this we infer that the filtration given by the higher ramification subgroups
G = G0 ⊃ G1 ⊃ G2 ⊃ . . . takes the simple form

(5) Gi =

{
G if i ≤ q − 1;

0 if i ≥ q.

Recall that Gi ⊂ G is defined as the decomposition group of the i-th infinitesimal
neighborhood of the closed point, that is, the subgroup of those σ ∈ G with the
property σ(u)− u ∈ mi+1

a . The corresponding function iG on G is given by

iG(σ) =

{
q if σ 6= 0;

∞ if σ = 0.

We refer to Serre’s monograph [30] for the theory of higher ramification groups.
These groups will play a crucial role in Section 7 in the determination of Euler
characteristics. The Hurwitz Formula for the quotient map C → C/G of degree q,
in the form of [30], Chapter VI, Proposition 7, gives

2− (q − 1)(q − 2) = 2− 2gC = q(2− 2gC/G)− aG(0) = q(2− 2gC/G)− (q − 1)q,

where gC , gC/G denotes genus, and aG is the character of the Artin representation
attached to the fixed point, which by definition has aG(0) =

∑
σ 6=0 iG(σ). It follows

that gC/G = 0, whence C/G = P1. In light of the defining equations, this was

of course clear from the very beginning: the quotient map C → P1 is a classical
Artin–Schreier covering of the projective line. Using that the quotient map is étale
away from and totally ramified at the fixed point, one deduces:

Proposition 1.1. A canonical divisor for the curve C is given by KC = q(q− 3)a,
where a ∈ C is the fixed point for the G-action.

It is not difficult to give an explicit basis for the vector space of global 1-forms
on C:

Proposition 1.2. The rational differentials xiyjdy, 0 ≤ i+j ≤ q−3 are everywhere
defined and constitute a basis for H0(C,Ω1

C).

Proof. Consider the two coordinate rings

R = k[x, y]/(xq − x− yqP (1/y)) and R′ = k[u,w]/(uq − uwq−1 − P (w))

for our curve C. The relation dx = (...)dy reveals that Ω1
R is freely generated

by dy. Similarly, the relation 0 = (wq−2u − P ′(w))dw − wq−1du and P ′(0) = 1
shows that Ω1

R′ is freely generated by du, locally at the point u = w = 0. Given a
polynomial f(x, y), we thus express the differential f(x, y)dy in terms of u,w, using
y = Y/Z = 1/w and x = X/Z = u/w:

f(x, y)dy = −f(u/w, 1/w)w−2dw =
1

P ′(w)− wq−2u
wq−3f(u/w, 1/w)du
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Hence the rational differential f(x, y)dy is everywhere defined if wq−3f(u/w, 1/w),
which lies in the field of fractions for R′, actually lies in R′. This indeed holds for
the monomials f(x, y) = xiyj , provided 0 ≤ i + j ≤ q − 3, by (3). The resulting
(q − 1)(q − 2)/2 elements xiyjdy ∈ H0(C,Ω1

C) are clearly linearly independent
over k. They must constitute a basis, because the vector space in question is of
dimension (q − 1)(q − 2)/2. �

The induced action of the λ ∈ G onH0(C,Ω1
C) is x

iyjdy 7→ (x+λ)iyjdy. Whence
H0(C,Ω1

C) is the direct sum of the G-invariant subspaces

Vj ⊂ H0(C,Ω1
C), 0 ≤ j ≤ q − 3

that are generated by xiyjdy, 0 ≤ i ≤ q − 3− j. Obviously, dim(Vj) = q − 2− j.

Proposition 1.3. The G-invariant subspaces Vj ⊂ H0(C,Ω1
C) are indecomposable

as G-modules, and the fixed spaces V Gj ⊂ Vj are 1-dimensional.

Proof. We first check that the fixed space V Gj ⊂ Vj are 1-dimensional. Clearly,

yjdy is invariant. Seeking a contradiction, we suppose there is a monic polynomial
f(x) with q − 3 − j ≥ deg(f) > 1 so that the differential f(x)yjdy is invariant.
Factoring f(x) =

∏
(x − ωi), we see that the set of roots {ω1, . . . , ωd} is invariant

under the substitution ω 7→ ω + λ, λ ∈ G. Hence deg(f) ≥ q, contradiction.
Suppose Vj is decomposable, such that we have decomposition Vj = V ′

j ⊕ V ′′
j

into nonzero G-invariant subspaces. Since G is commutative, there is a basis of V ′
j

in which all λ ∈ G act via lower triangular matrices (see [8], Chapter VII, §5, No. 9
Proposition 19). The last member x of such a basis is then a common eigenvector
for all λ ∈ G. Since each λ ∈ G has order p, all eigenvalues are ε = 1, whence x is
G-fixed. The same applies to V ′′

j , giving a contradiction to dim(V Gj ) = 1. �
Note this implies that the fixed space H0(C,Ω1

C)
G is of dimension q − 2.

2. Products of Artin–Schreier curves

Now choose a second Artin–Schreier curve C ′ of the form discussed in the previ-
ous section, and consider the product C×C ′, endowed with the diagonal G-action.
In this section we start to study the quotient (C×C ′)/G, which is a normal surface
whose singular locus consists of one point s ∈ (C × C ′)/G, the image of the fixed
point (a, a′). The projections pr1 : C × C ′ → C and pr2 : C × C ′ → C ′ induce
fibrations

ϕ1 : (C × C ′)/G→ C/G = P1 and ϕ2 : (C × C ′)/G→ C ′/G = P1,

respectively. Choose coordinates on the copies of projective lines so that the fixed
points a ∈ C and a′ ∈ C ′ map to the origin 0 ∈ P1, and consider the fibers
ϕ−1
1 (0), ϕ−1

2 (0) ⊂ (C ×C ′)/G. Recall that the multiplicity of a fiber is the greatest
common divisor for the multiplicities of its integral components.

Proposition 2.1. The fibers ϕ−1
i (0) ⊂ (C × C ′)/G have multiplicity q, and a

canonical divisor is given by K(C×C′)/G = (q − 3)(ϕ−1
1 (0) + ϕ−1

2 (0)). Its selfinter-

section number is K2
(C×C′)/G = 2q(q − 3)2.

Proof. The fiber ϕ−1
i (0) is clearly irreducible. According to (4), the G-action on

the preimage of 0 ∈ P1 = C/G in C is trivial. Whence outside the singularity, the
fiber ϕ−1

i (0) is the quotient of C⊗kOC,a/mq, where the action on the right factor is
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trivial, which is an Artin ring of length q. It follows that the fiber has multiplicity
q.

As to the canonical divisor, we have KC×C′ = q(q − 3)(pr−1
1 (a) + pr−1

2 (a′)) by
Proposition 1.1. This is the preimage of (q − 3)(ϕ−1

1 (0) + ϕ−1
2 (0)). Using that the

projection C × C ′ → (C × C ′)/G is étale in codimension one, together with [26],
Theorem 2.7, we infer that (q − 3)(ϕ−1

1 (0) + ϕ−1
2 (0)) is indeed a canonical divisor.

Its selfintersection number is

K2
(C×C′)/G =

1

q
K2
C×C′ = 2q(q − 3)2,

by the Projection Formula. �

The canonical divisor K(C×C′)/G = (q − 3)(ϕ−1
1 (0) + ϕ−1

2 (0)) is clearly Cartier,
such that the normal surface (C × C ′)/G is Gorenstein. Let us now examine its
singularity. Throughout the paper, it will be crucial to understand the local invari-
ants of this singularity, in order to determine global invariants for smooth models
of (C × C ′)/G. Let u, u′, w, w′ be four variables and set

A = k[[u, u′]] = k[[u,w, u′, w′]]/(uq − uwq−1 − P (w), u′q − u′w′q−1 −Q(w′)),

which is the complete local ring at the fixed point (a, a′) ∈ C × C ′. Here

P (w) = w + µ2w
2 + . . .+ µqw

q and Q(w′) = w′ + µ′
2w

′2 + . . .+ µ′
qw

′q

are polynomials stemming from the left hand side of the Artin-Schreier equations,
as discussed in Section 1. The group elements λ ∈ G act via

u 7−→ u+ λw, u′ 7−→ u′ + λw′, w 7−→ w, w′ 7−→ w′.

Clearly, the elements w,w′, wu′ − w′u ∈ A are invariant and satisfy the relation

(wu′ − w′u)q = (ww′)q−1(wu′ − w′u) + wqQ(w′)− w′qP (w).

Therefore, we obtain a homomorphism of k-algebras

(6) k[[a, b, c]]/(cq − (ab)q−1c− aqQ(b) + bqP (a)) −→ AG,

where a, b, c are indeterminates and a 7→ w, b 7→ w′, c 7→ wu′ − w′u.

Proposition 2.2. The preceding homomorphism (6) is bijective.

Proof. Clearly, the local ring R = k[[a, b, c]]/(cq − (ab)q−1c− aqQ(b)+ bqP (a)) is 2-
dimensional and Cohen–Macaulay. Computing the jacobian ideal, one sees that the
singular locus consists of the closed point, whence R is normal. According to Galois
Theory, the finite extension AG ⊂ A has generically rank q = ord(G). By the Main
Theorem of Zariski ([14], Corollary 4.4.9), it therefore suffices to check that R ⊂ A
has generically rank q. Obviously, the extensions k[[a, b]] ⊂ R and k[[a, b]] ⊂ A have
rank q and q2, respectively, and the statement follows by transitivity of ranks. �

This local description of the singularity enables us to determine the scheme
structure for the canonical divisor K(C×C′)/G = (q − 3)(ϕ−1

1 (0) + ϕ−1
2 (0)), viewed

as a reduced Weil divisor:

Corollary 2.3. The reduced Weil divisors ϕ−1
i (0)red are isomorphic to the projec-

tive line, and the schematic intersection ϕ−1
1 (0)red ∩ ϕ−1

2 (0)red has length one.
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Proof. We saw in the proof of Proposition 2.1 that ϕ−1
i (0)red is isomorphic to C/G,

at least outside the singular point on the ambient surface. However, at this sin-
gularity, ϕ−1

i (0) is formally isomorphic to the spectrum of k[[a, b, c]]/(cq, a), which
follows from Proposition 2.2. Hence its reduction is regular. Similarly, the union
ϕ−1
1 (0)red ∪ ϕ−1

2 (0)red is formally isomorphic to the spectrum of k[[a, b, c]]/(c, ab),
and the result follows. �

We would like to compute the dimension of the vector space of global sections
for the dualizing sheaf ω(C×C′)/G, but are only able to do so directly in the special
case q = p:

Proposition 2.4. For q = p, we have h0(ω(C×C′)/G) = (2p3 − 9p2 + 13p− 6)/6 =
(2p− 3)(p− 2)(p− 1)/6.

Proof. We have a commutative diagram

H0(U,ωC×C′)G ←−−−− H0(ωC×C′)Gx x
H0(V, ω(C×C′)/G) ←−−−− H0(ω(C×C′)/G)

where U ⊂ C ×C ′ is the locus where G acts freely, V ⊂ (C ×C ′)/G is the smooth
locus, and U → V is the induced finite étale Galois covering with Galois group G.
The latter ensures that the vertical map on the left is bijective. Since our dualizing
sheaves are invertible, the horizontal maps are bijective (compare, for example,
[16], Proposition 1.11). It follows that that the canonical map H0(ω(C×C′)/G) →
H0(ωC×C′)G is bijective.

Recall that H0(C,ωC) =
⊕p−3

j=0 Vj , where Vj are indecomposable G-submodule
of dimension d = p − 2 − j. Since G = Fp, the action of the generator 1 ∈ Fp is
given, in a suitable basis, by the Jordan matrix

Jd(1) =


1
1 1

. . .
. . .

1 1

 ∈ Mat(d, k),

which determines the G-module up to isomorphism. Computing the dimension
of the G-fixed part for H0(ωC×C′) = H0(C,ωC) ⊗ H0(C ′, ωC′) thus reduces to
extracting the number of blocks in the Jordan normal form of tensor products of
certain Jordan matrices. Write

Jd(1)⊗ Jd′(1) =
⊕
r

Jr(1)
⊕λr

for certain multiplicities λr ≥ 0. Note that it is a notorious unsolved problem
in linear algebra to find the Jordan decomposition of tensor products of nilpotent
Jordan matrices in positive characteristics. However, it is well-known that

∑
r λr =

min(d, d′) (see, for example, [29], Proposition 3.2). Hence the G-fixed part of such
a tensor product representation is of dimension min(d, d′), and we get

h0(ω(C×C′)/G) =

p−2∑
d,d′=1

min(d, d′).
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Summing over l = min(d, d′) rather than (d, d′), we rewrite the latter sum as

p−2∑
l=1

(2(p− 2− l) + 1)l =

p−2∑
l=1

(−2l2 + (2p− 3)l).

The statement follows by applying the formulas 1 + 2 + . . . + n = n(n + 1)/2 and
12 + 22 + . . .+ n2 = n(n+ 1)(2n+ 1)/6. �
Remark 2.5. In order to make similar computations in the general case q =
ps, one would need to understand the modular representations of the elementary
abelian group Fq = (Z/pZ)s. Such representations can be expressed in terms of s
commuting nilpotent matrices, or equivalently via modules of finite length over the
polynomial ring in s indeterminates over Fp. For this situation, little seems to be
known about multiplicities in tensor products.

3. Invariants of the singularity

In this section we study in more detail the 2-dimensional ring

R = k[a, b, c]/(cq − (ab)q−1c− aqQ(b) + bqP (a)),

whose formal completion gives the singularity of the surface (C ×C ′)/G. As in the
proof of Proposition 2.2, one sees that R is normal, and the maximal ideal m =
(a, b, c) corresponds the unique singularity s ∈ Spec(R). According to [21], Theorem
2.5, the exceptional divisor on the minimal resolution of singularities consists of
projective lines, and has as dual graph a tree. To understand its structure, we first
consider a partial resolution of singularities: Let

f : Y −→ Spec(R)

be the blowing-up of the maximal ideal m ⊂ R, and denote by E = f−1(s) the
exceptional divisor. This is the Cartier divisor E ⊂ Y with ideal OY (1) ⊂ OY .

Proposition 3.1. The surface Y is normal, and Sing(Y ) = {s0, . . . , sq} consists
of q+1 closed points, whose local rings are rational double points of type Aq−1. We
have Ered = P1 and qEred = E. Furthermore, the inclusions iEred ⊂ (i + 1)Ered

are infinitesimal extensions by the sheaf OP1(−i), 0 ≤ i ≤ q − 1.

Proof. The blowing-up Y is covered by three affine charts, the a-chart, the b-chart,
and the c-chart. The coordinate ring of the a-chart is generated by a, b/a, c/a,
subject to the relation

(c/a)q − aq−1(b/a)q−1c/a−Q(a · b/a) + (b/a)qP (a) = 0.

Computing partial derivatives, one sees that the singular locus is given by (c/a) =
a = 0 and (b/a)q = (b/a), and the latter means b/a = i, i ∈ Fq. Writing the left
hand side of the preceding equation in the form

(c/a)q − aΨ(c/a, b/a, a),

one easily computes that c/a, a,Ψ form a regular system of parameters in the formal
completion k[[c/a, b/a − i, a]]. The upshot is that singularity is a rational double
point of type Aq−1. The situation on the b-chart is symmetric, whereas the c-chart
turns out to be disjoint from the exceptional divisor.

On the a-chart, the exceptional divisor is given by a = 0, whence its coordinate
ring is k[b/a, c/a]/(c/a)q. Its reduction is defined by c/a = 0. We infer that Ered is
isomorphic to P1 = Proj k[a/b, b/a]. The ideal of iEred ⊂ (i + 1)Ered is generated
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by (c/a)i and (c/b)i on the a- and b-chart, respectively. The statement about the
infinitesimal extensions follows. �

Now let g : X → Y be the minimal resolution of singularities of Y , the latter
being a partial resolution of Spec(R). For each singular point si ∈ Y , 0 ≤ i ≤ q,
write g−1(si) = Ai,1 ∪ . . . ∪ Ai,q−1 as a chain of projective lines Ai,j , such that
Ai,j ·Ai,j+1 = 1. Let A0 ⊂ X be the strict transform of Ered ⊂ Y , which is another
projective line.

According to Lorenzini [21], Theorem 2.5, the dual graph for the exceptional
divisor on the resolution of a wild quotient singularity is necessarily a tree. To
our knowledge, no examples are known where the tree is not star-shaped. In [22],
Question 1.1, Lorenzini askes whether trees with more that one node are possible.
In our situation, Equation (3) immediately shows that A0 intersects each chain of
rational curves g−1(si) in a terminal component of the chain, say Ai,1. Thus the
reduced exceptional divisor

A0 +

q∑
i=0

q−1∑
j=1

Ai,j

is a strictly normal crossing made out of projective lines, and its dual graph looks
like this:

A

A A A

A A A
q,1 q,2

0,1 0,2 0,q−1

0

q,q−1

Figure 1: Dual graph for exceptional divisor on X.

Proposition 3.2. We have E2 = −q, and E ·Ered = −1, and A2
0 = −q. In partic-

ular, the composite map X → Spec(R) is the minimal resolution of singularities.

Proof. As in the proof of Proposition 3.1, we have

Ered = Spec k[a/b] ∪ Spec k[b/a],

and the invertible sheaf OY (1)|Ered
is given by a = a/b·b on the two charts. Viewing

a/b ∈ k[a/b, b/a]× as a cocycle for OY (1)|Ered
, one immediately verifies that this

invertible sheaf has degree 1. Thus

E · Ered = degOEred
(E) = degOEred

(−1) = −1.

Since E = qEred, the selfintersection number E2 = −q also follows.
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Now consider the first infinitesimal neighborhood Ered ⊂ 2Ered ⊂ E. In light of
Proposition 3.1, this is an infinitesimal extension of Ered = P1 by the invertible sheaf
L = OP1(−1). Let Y ′ → Y be the blowing-up of the singular points s0, . . . , sq ∈ Y .
Then the exceptional divisors are disjoint unions of pairs of rational curves, each
pair intersecting transversely at one point whose local ring on Y ′ is a rational double
point of type Aq−3. Moreover, the strict transform of Ered lies in the smooth locus
of Y ′. According to the theory of ribbons developed by Bayer and Eisenbud, the
strict transform of 2Ered on Y ′, that is, the blowing-up of the scheme 2Ered with
respect to the centers s0, . . . , sq ∈ 2Ered, is an infinitesimal extension of P1 by
the invertible sheaf L(

∑
ai) = OP1(q), compare [6], Theorem 1.9. It follows that

A2
0 = deg(OA0(A0)) = −q. In particular, the exceptional divisor for the resolution

of singularities X → Spec(R) contains no (−1)-curve, hence is minimal. �
We next compute the fundamental cycle Z ⊂ X for the resolution of singularities

h : X → Spec(R), a notion introduced by M. Artin [2]. By definition, this is
the smallest effective cycle Z whose support equals the exceptional divisor and
has intersection number ≤ 0 on each irreducible component of the exceptional
divisor. One way to compute the fundamental cycle is with a computation sequence
Zred = Z0 ⊂ Z1 ⊂ . . . ⊂ Zr = Z, where in each step Zs+1 − Zs is an integral
component of the exceptional divisor with Zs · (Zs+1 − Zs) > 0. Using the exact
sequence

(7) 0 −→ OZs+1−Zs(−Zs) −→ OZs+1 −→ OZs −→ 0,

one inductively infers that h0(OZs+1) = h0(OZs), in particular h0(OZ) = 1 . Con-
sequently the schematic image h(Z) ⊂ Spec(R) is nothing but the reduced singular
point s ∈ Spec(R). Indeed, one should view the fundamental cycle as an approxi-
mation to the schematic fiber h−1(s) ⊂ X, the latter usually containing embedded
components.

Proposition 3.3. The fundamental cycle is given by the formula

Z = qA0 +

q∑
i=0

q−1∑
j=1

(q − j)Aij ,

and its selfintersection number is Z2 = −q.

Proof. Let Z ′ be the cycle on the right hand side. One easily computes the inter-
section numbers

Z ′ ·A0 = −q2 + (q + 1)(q − 1) = −1,
Z ′ ·Aij = (q − j + 1)− 2(q − j) + (q − j − 1) = 0,

(8)

whence the fundamental cycle Z is contained in Z ′, by the minimality property of
fundamental cycles. Seeking a contradiction, we suppose Z $ Z ′. The effective
cycle Z ′ − Z has intersection numbers

(Z ′ − Z) ·A0 = −1− (Z ·A0),

(Z ′ − Z) ·Aij = −Z ·Aij ≥ 0.

Since nonzero effective exceptional cycles are not nef on all exceptional curves (see
[2], proof of Proposition 2), there is no possibility but Z · A0 = 0. Now write

Z = λ0A0 +
∑q
i=0

∑q−1
j=1 λjAij with coefficients 1 ≤ λ0 ≤ q and 1 ≤ λj ≤ q − j.



12 HIROYUKI ITO AND STEFAN SCHRÖER

Note that the coefficients λj do not depend on i, due to the obvious symmetry of
the dual graph in Figure 1. We have

0 = Z ·A0 = −qλ0 + (q + 1)λ1,

whence q | λ1, contradicting 1 ≤ λ1 ≤ q − 1. �
Recall that the canonical cycle Kh = KX/R is the divisor supported by the

exceptional divisor that satisfies the equations KX/R · C + C2 = deg(KC), where
C runs through the integral exceptional divisors.

Corollary 3.4. The canonical cycle is given by Kh = −(q− 2)Z, with selfintersec-
tion number K2

h = −q(q − 2)2.

Proof. Using that A0 and Ai,j are copies of the projective lines with selfintersection
numbers A2

0 = −q, A2
i,j = −2, one deduces the result from the intersection numbers

(8). The selfintersection then follows from Proposition 3.3. �
We are now in position to compute the arithmetic genus of the fundamental cycle

pf = h1(OZ) = 1− χ(OZ),

which is also called the fundamental genus of the singularity, confer [33].

Corollary 3.5. The fundamental genus of the singularity R is given by the formula
pf = (q − 1)(q − 2)/2.

Proof. Riemann–Roch yields −2χ(OZ) = deg(KZ) = Z2 +Kh ·Z = (3− q)Z2. We
have Z2 = −q, and finally obtain

pf = 1− χ(OZ) = 1− (3− q)q/2 = (q − 1)(q − 2)/2,

as claimed. �
From this we deduce:

Corollary 3.6. The singularity R is a rational double point if and only if q = 2,
and minimally elliptic if and only if q = 3.

Proof. According to [2], Theorem 3, the singularity is rational if and only if h1(OZ) =
0. In light of Corollary 3.5, this happens precisely when q = 2. By Laufer [20],
Theorem 3.4, the condition Kh = −Z is one of several equivalent defining property
of minimally elliptic singularities. By Corollary 3.4, this happens if and only if
q = 3. �

Remark 3.7. For q = 2, this singularity is actually a rational double point of type
D1

4, according to Artin’s list [5]. Indeed, the equation cq − (ab)q−1c− aqb+ bqa = 0
is a special case of Artin’s normal form for wild Z/2Z-quotient singularities in
dimension two [4], compare also [28]. For q = 3, the minimally elliptic singularity
appears in Laufer’s classification ([20], Table 3 on page 1294) under the designation
A1,?,0 +A1,?,0 +A1,?,0 +A1,?,0.

Remark 3.8. Shioda [31] and Katsura [19] obtained rather similar results for the
action of the sign involution on abelian surfaces in characteristic p = 2.

We next want to compute the geometric genus

pg = lengthR1h∗(OX) = h1(OnZ), n� 0
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of the singularity. Except for rational double points and minimally elliptic singu-
larities, this invariant is difficult to compute. We have at least some bounds. It will
turn out later that in the special case q = p, these bounds are actually equalities
(Corollary 7.4).

Proposition 3.9. The geometric genus of the singularity R satisfies the inequalities
pg ≤ q(q − 1)(q − 2)/6. For q ≥ 5, we moreover have h1(O2Z) > h1(OZ), in
particular pg > pf .

Proof. It is convenient to work on the partial resolution Y rather than on the full
resolution X. The Leray–Serre spectral sequence gives an exact sequence

0 −→ R1f∗(OY ) −→ R1h∗(OX) −→ f∗(R
1g∗(OX)).

The term on the right vanishes, since Y has only rational singularities, whence
pg = lengthR1f∗(OY ). Let D = −Kf = (q−2)E be the anticanonical cycle, where
E = f−1(s). It follows with the Grauert–Riemenschneider Vanishing Theorem
(see [11], Theorem 1.5) that R1f∗(OY (−D)) = R1h∗(g

∗OY (−D)) = 0, whence the
canonical surjection

H0(R1f∗(OY )) −→ H1(D,OD)
is bijective. Moreover, Riemann–Roch gives χ(OD) = (D +Kf ) ·D = 0, such that
pg = h1(OD) = h0(OD).

According to Proposition 3.1 and Proposition 3.2, we have

Ered = P1 and E = qEred and E · Ered = −1.
Consider the integral Weil divisors (i/q)E = iEred. We deduce from Proposition
3.1 that the kernel Ki in the exact sequence

0 −→ Ki −→ O((i+1)/q)E −→ O(i/q)E −→ 0

is an invertible sheaf on Ered = P1 of degree

deg(Ki) = bi/qc − q {i/q}
where bi/qc and {i/q} denotes integral and fractional parts, respectively. Let us
tabulate the kernels Ki for 0 ≤ i < q(q − 2) in a matrix of size (q − 2)× q:

(9)

OP1(0) OP1(−1) OP1(−2) . . . OP1(1− q)
OP1(1) OP1(0) OP1(−1) . . . OP1(2− q)

...
...

. . .
...

OP1(q − 3) OP1(q − 4) . . . OP1(−1) OP1(−2)

Only kernels of degree ≥ 0 may contribute to h0(OD), and the total possible con-
tribution is

(q − 2) · h0(OP1) + (q − 3) · h0(OP1(1)) + . . .+ 1 · h0(OP1(q − 3))

=

q−2∑
i=1

i(q − 1− i)

= (q − 1)

q−2∑
i=1

i−
q−2∑
i=1

i2

= (q − 1)(q − 1)(q − 2)/2− (q − 2)(q − 1)(2q − 3)/6

= q(q − 1)(q − 2)/6.
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But some coboundary maps in the exact sequence

(10) H0(O((i+1)/q)E) −→ H0(O(i/q)E)
∂−→ H1(Ki) −→ H1(O((i+1)/q)E)

might be nonzero, so we only get an upper bound pg ≤ q(q − 1)(q − 2)/6, rather
than an equality.

To obtain a lower bound, we consider the cycle 2E ⊂ Y . The second row in (9)
reveals that some cycle E ⊂ F ⊂ 2E has

h0(OF ) = h0(OP1(0)) + h0(OP1(1)) + h0(OP1(0)) = 4 and h1(OF ) = h1(OE).
Now suppose that we would have h1(OF ) = h1(O2E). Then in each step lead-
ing from F to 2E the coboundary map in (10) must surjects onto the respective
cohomology groups

H1(OP1(−2)), H1(OP1(−3)), . . . H1(OP1(2− q)).
It follows that

4 = h0(OF ) > h1(OP1(2− q)) = q − 3,

whence q ≤ 5. This already implies the inequality pf < pg for q > 5.
It remains to rule out the case h1(OE) = h1(O2E) and q = 5. The preceding

paragraph reveals that than h0(O2E) = 1, and the short exact sequence

0 −→ OE(−E) −→ O2E −→ OE −→ 0

yields χ(OE(−E)) = 0. On the other hand, Riemann–Roch gives

χ(OE(−E)) = −Z2 + χ(OE) = −q + 1− (q − 1)(q − 2)/2 = −q(q + 1)/2 < 0,

contradiction. �

4. Vanishing of Irregularity

We continue to study the normal surface (C × C ′)/G. Let f : Y → (C × C ′)/G
be the blowing-up of the unique singularity. We saw in the preceding section that
the singular locus Sing(Y ) consists of q + 1 rational double points of type Aq−1.
Let g : X → Y be the minimal resolution of these double points. We now dispose
off the irregularity h1(OX).

Proposition 4.1. The irregularity h1(OX) vanishes.

Proof. Since Y contains only rational singularities, it suffices to check h1(OY ) =

0. Let Ỹ → C × C ′ be the blowing-up of the reduced fixed point (a, a′). We

claim that the schematic preimage on Ỹ of the singular point s ∈ (C × C ′)/G is a
Cartier divisor, such that the universal property of blowing-ups gives a commutative
diagram

C × C ′ ←−−−− Ỹy y
(C × C ′)/G ←−−−− Y.

This is a local problem. Using the notation from Section 2, we have to understand
what happens with the ideal

(w,w′) = (w,w′, wu′ − w′u) ⊂ k[[u, u′]]

on Ỹ . But (w,w′) = (uq, u′q) according to (3), and it obvious that the latter ideal
becomes invertible upon blowing-up of (u, u′).
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The G-action on C × C ′ induces a G-action on Ỹ , and the canonical morphism
Ỹ /G→ Y is an isomorphism by the Main Theorem of Zariski. It follows from (3)
that the G-action on the cotangent space m/m2 for the fixed point (a, a′) ∈ C ×C ′

is trivial, whence the G-action on the exceptional curve Ẽ ⊂ Ỹ is trivial as well.
Now Lemma 4.2 below ensures that the induced map H1(Y,OY ) → H1(Ỹ ,OỸ ) is
injective.

To finish the argument, consider the reduced fiber union F = ϕ−1
1 (0)red ∪

ϕ−1
2 (0)red for the two projections ϕi : (C × C ′)/G → P1. Its preimage on Ỹ

contains the strict transform F̃ ⊂ Ỹ of C × {a′} ∪ {a} × C ′ ⊂ C × C ′, which is
isomorphic to a disjoint union C q C ′, and we have a commutative diagram

H1(Ỹ ,OỸ ) −−−−→ H1(F̃ ,OF̃ )x x
H1(Y,OY ) −−−−→ H1(F,OF ).

The term H1(F,OF ) vanishes by Corollary 2.3. Since the map on the left is injec-

tive, it suffices to check that the the restriction map H1(Ỹ ,OỸ ) → H1(F̃ ,OF̃ ) is
injective. Indeed, the maps

H1(C,OC)⊕H1(C ′,OC′) = H1(Ỹ ,OỸ ) −→ H1(F̃ ,OF̃ ) = H1(C,OC)⊕H1(C ′,OC′)

are all bijective. �

In the course of the preceding proof we have used a fact that appears to be of
independent interest. Let us formulate it in a rather general way: Suppose X is
a scheme over a field k, and G be a finite group acting on X so that the quotient
Y = X/G exists as a scheme.

Lemma 4.2. Assumptions as above. Suppose additionally that k = H0(X,OX) and
that there is a rational fixed point x ∈ X. Then the canonical map H1(Y,OY ) →
H1(X,OX) is injective.

Proof. The idea is to use G-equivariant cohomology Hr(X,G,OX), which was in-
troduced in [13]. Consider the two spectral sequences with E2-terms

Er,s2 = Hr(Y,Hs(G,OX)) and Er,s2 = Hr(G,Hs(X,OX))

abutting to Hr+s(X,G,OX), where Hs(G,OX) denotes the sheaf of cohomology
groups. They give rise to a commutative diagram
(11)

0

��
H1(Y,H0(G,OX))

�� ))TTTTTTTTTTTTTTT

0 // H1(G,H0(X,OX)) //

))TTTTTTTTTTTTTTT
H1(X,G,OX) //

��

H0(G,H1(X,OX))

H0(G,H1(G,OX))
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with exact row and column, and the composition given by the upper diagonal arrow

H1(Y,OY ) = H1(Y,H0(G,OX)) −→ H0(G,H1(X,OX)) ⊂ H1(X,OX)

is our map in question. By a diagram chase, it therefore suffices to check that
the other composition H1(G,H0(X,OX)) → H0(G,H1(G,OX)) is injective. Now
comes in our rational fixed point x ∈ X: Composing further with the restriction
map induced by {x} ⊂ X, we obtain

H1(G,H0(X,OX)) −→ H0(G,H1(G,κ(x))) = H1(G,κ(x)).

By assumption, the map H0(X,OX)→ κ(x) is bijective, whence the assertion. �

Remark 4.3. Let ν : X → Y be the quotient map. If X is normal, and the order
of G is prime to the characteristic of k, then the existence of a trace map shows
that OY ⊂ ν∗(OX) is a direct summand, such that Hr(Y,OY ) → Hr(X,OX) is
injective for all r ≥ 0.

Remark 4.4. On the other hand, if Y is an Enriques surface in characteristic p = 2
with PicτY = µ2, and X → Y is the K3-covering, such that G = π1(Y ) is cyclic of
order two and Y = X/G, then H1(Y,OY ) is 1-dimensional, whereas H1(X,OX)
vanishes. We note in passing that this situation is somewhat typical:

Lemma 4.5. Suppose G is cyclic, acts freely on X, and k = H0(X,OX). Then the
kernel of the canonical map H1(Y,OY )→ H1(X,OX) is at most 1-dimensional.

Proof. Making a diagram chase in (11), the dimension of the kernel is bounded
by the dimension of H1(G,H0(X,OX)). Clearly, H0(X,OX) = k is the trivial
G-module. Let n = ord(G). Then H1(G, k) is isomorphic to the kernel of the
multiplication map n : k → k, whence a k-vector space of dimension at most
one. �

5. Place in the Enriques classification

We now study the global geometry of the normal surface (C × C ′)/G in more
detail. Recall that f : Y → (C × C ′)/G is the blowing-up of the singularity. We
saw in Section 3 that Y is normal and contains (q − 1) rational double points of
type Aq−1. Let g : X → Y be the minimal resolution of these singularities. Then
the composite map h : X → (C × C ′)/G is the minimal resolution of singularities.
Let X → S be the contraction to a minimal model S. We display our surfaces and
maps in a commutative diagram:

C × C ′

&&MMMMMMMMMM X

g
����

��
��

��
//

h

uullllllllllllllll

ψ1,ψ2

��

S

(C × C ′)/G

ϕ1,ϕ2

))RRRRRRRRRRRRRRRR Y
f

oo

P1

The top row contains the smooth surfaces, the middle row the normal surfaces, and
the arrows ϕi, ψi are the maps induced from the two projections pr1 : C ×C ′ → C
and pr2 : C × C ′ → C ′.



SURFACES OF GENERAL TYPE 17

The goal of this section is to determine the place of X, or rather its minimal
model S, in the Enriques classification of surfaces, in dependence on the prime power
q = ps. An elementary argument involving only intersection numbers already gives:

Proposition 5.1. If q ≥ 7, then the surface X is of general type.

Proof. We first compute the number K2
X on the smooth surface X. Obviously

KX = Kh+h
∗K(C×C′)/G, such that K2

X = K2
h+K

2
(C×C′)/G. But K

2
h = −q(q−2)2

by Proposition 3.4, whereas K2
(C×C′)/G = 2q(q − 3)2 according to Proposition 2.1.

The upshot is

(12) K2
X = q(q2 − 8q + 14) = q((q − 4)2 − 2).

Now suppose that q ≥ 7. Then K2
X > 0, and the Theorem of Riemann–Roch gives

χ(ω⊗t
X ) = (t2 − t)K2

X/2 + χ(OX).

So for t� 0 either tKX or (1− t)KX is effective. The latter is impossible, because
the canonical divisor on X maps to the canonical divisor on (C × C ′)/G, which is
effective. Thus tKX , and in turn tKS is effective. Since K2

S ≥ K2
X > 0, it follows

from the Enriques classification of surfaces that the minimal surface S is of general
type. �

To understand the remaining cases, and the geometry of the contraction X → S
as well, we have to analyze the two fibrations ψi : X → P1, i = 1, 2 induced by the
projections pr1 : C × C ′ → C and pr2 : C × C ′ → C ′. Let us first record:

Lemma 5.2. We have ψi∗(OX) = OP1 .

Proof. By the Main Theorem of Zariski, it suffices to check this at the generic point.
Let E = k(C) be the function field of C, such that L = EG = k(P1) is the function
field of the projective line. By construction, the generic fiber Xη of f1 : X → P1

is isomorphic to (C ⊗k E)/G = (CL ⊗L E)/G. In other words, the generic fiber is
a twisted form of CL with respect to the étale topology. This description ensures
that H0(Xη,OXη ) = L, and the result follows. �

Now let F1 ⊂ X and F2 ⊂ X be the respective schematic fibers for the pro-
jections ψ1 : X → P1 and ψ2 : X → P1 containing the exceptional divisor
A0 +

∑q
i=0

∑q−1
j=1 Ai,j for the resolution of singularities X → (C × C ′)/G. Up

to multiplicities, the fiber Fi, i = 1, 2 is the union of this exceptional divisor
A0 +

∑q
i=0

∑q−1
j=1 Ai,j with another integral curve Bi ⊂ X, which is birational

to P1 = C/G = C ′/G. One can say more about the curves B1, B2 ⊂ X:

Proposition 5.3. The curves B1, B2 ⊂ X are (−1)-curves, and the reduction of
the fiber union F1 ∪ F2 ⊂ X has only simple normal crossings.

Proof. By symmetry, it suffices to treat B1. Being an integral component of a
reducible fiber, it has selfintersection B2

1 < 0. Thus it suffices to check that KX ·
B1 < 0. In light of Corollary 3.4 and Proposition 3.3, we have Kh ·B1 ≤ −(q − 2).
The image of qB1 on the normal surface (C × C ′)/G is a schematic fiber. Using
the projection formula and computing intersections on C×C ′, we deduce the value
h∗(B1) ·K(C×C′)/G = q − 3. The upshot is that

KX ·B1 = Kh ·B1 +K(C×C′)/G · h∗(B1) ≤ −1,
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whence B1 is a (−1)-curve. Consequently, Kh ·B1 = −(q−2). In light of Corollary

3.4, it follows that Bi intersects the exceptional divisor A0+
∑q
i=0

∑q−1
j=1 Ai,j in pre-

cisely one component where the fundamental cycle attains its minimal multiplicity,
that is, j = q − 1. We conclude that the reduced fiber F1,red is simple normal
crossing. �

Let us choose the indices i for the Ai,j so that B1 · A0,q−1 = B2 · Aq,q−1 = 1.
Thus the dual graph of the fiber union F1 ∪ F2 looks like this:

A

A A

A A A
q,1 q,2

0,1 0,2 0,q−1

0

q,q−1

A B
1

B
2

Figure 2: Dual graph for fiber union F1 ∪ F2 on X.

We are now in position to compute the multiplicities occurring in the schematic
fibers Fi ⊂ X:

Proposition 5.4. The schematic fibers are given by F1 = Z +
∑q−1
j=1 jA0,j + qB1

and F2 = Z +
∑q−1
j=1 jAq,j + qB2.

Proof. It suffices to treat F1. By definition of the fundamental cycle Z, we have

Z +

q−1∑
j=1

jA0,j + qB1 = qA0 +

q∑
i=1

q−1∑
j=1

(q − j)Ai,j +
q−1∑
j=1

qA0,j + qB1,

and it is a straightforward computation that this cycle is numerically trivial on all
irreducible components of F1. It is therefore a rational multiple of F1. Our cycle
contains B1 with multiplicity q. But qB1 is the strict transform of the fiber for
ϕ1 : (C × C ′)/G→ P1, by Proposition 2.1. Thus our cycle coincides with F1. �

Note that the component A0,q−1 has multiplicity one in the fiber F2 ⊂ X, and
similarly for Aq,q−1 ⊂ F1 ⊂ X. In particular, the fibers are neither multiple nor
wild. Moreover:

Corollary 5.5. The sheaf R1ψi∗(OX) is locally free of rank (q − 1)(q − 2)/2, and
the formation of the direct image OP1 = ψi∗(OX) commutes with base change.

Proof. This follows from [27], Theorem 7.2.1, because each geometric fiber of ψi
contains a reduced irreducible component. �

This leads to a very useful consequence concerning fundamental group:

Corollary 5.6. The fundamental group π1(X) vanishes.
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Proof. Let X ′ → X be a finite étale covering with X ′ nonempty. We have to check
that it has a section. Consider the projection ψ = ψ1 : X → P1, and let

X ′ −→ T ′ −→ P1

be the Stein factorization for the composition ψ′ : X ′ → P1, which is given by T ′ =
Spec(ψ′

∗OX′). As explained in [14], Remark 7.8.10, the finite morphism T ′ → P1 is
étale, since the equality OP1 = ψ∗(OX) commutes with base change. Moreover, the
fiber ψ−1(0) ⊂ X is simply connected, by the description in Proposition 5.4. Using
this as in the proof for [15], Exposé X, Theorem 1.3, we infer that the canonical map
X ′ → X×P1 T ′, which is finite étale, is actually an isomorphism. But the projective
line is simply connected, so T ′ → P1, whence also X ′ → X has a section. �

For later use, we record:

Proposition 5.7. The Picard group Pic(X) is a finitely generated free abelian
group.

Proof. It already follows from Proposition 4.1 that Pic0(X) = 0, whence Pic(X) =
NS(X) is finitely generated. If l 6= p is a prime different from the characteristic,
then the elements L ∈ Pic(X) of order l yield nontrivial µl-torsors X

′ → X, which
are finite étale coverings of degree l. Since the fundamental group vanishes, there
are no such elements.

Finally, suppose there is an element L of order p. To handle this case, first
note that the Artin–Schreier curve C has p-rank σ = 0. This follows from [32],
Theorem 3.5, applied to C → P1. In other words H1(C,Z/pZ) = 0, or equivalently,
Pic(C) contains no element of order p. Then the generic fiber Xη for the second
projection ψ2 : X → P1, which is a twisted form of C over the function field of
P1, admits no invertible sheaf of order p. Thus L|Xη is trivial. It follows that
L ' OX(D), where D is a divisor supported by fibers of ψ2 : X → P1. Now recall
that the intersection form on the integral components of a given fiber is negative
semidefinite. Moreover, the radical is generated by the fiber, since the fibers have
multiplicity one by Proposition 5.4. Using that L is numerically trivial, we first
deduce that each Da, a ∈ P1 is a multiple of the fiber, and then that D is linearly
equivalent to the zero divisor, contradiction. �

The geometry of our surface X simplifies further if we contract in a different way.
Indeed, the curves B1+

∑q−1
i=1 A0,j and B2+

∑q−1
i=1 Aq,j are two disjoint exceptional

curves of the first kind, comprising altogether 2q irreducible components. Let

X −→ S̃

be their contraction, such that S̃ is a smooth surface with

(13) K2
S̃
= K2

X + 2q.

By choosing another minimal model S if necessary, we may tacitly assume that the
contraction X → S factors over S̃. Let Ã0, Ãi,j ⊂ S̃ be the images of the curves
A0, Ai,j ⊂ X for i 6= 0, q. Then

Z̃ =

q−1∑
i=1

q−1∑
j=1

(q − j)Ãi,j

is the image of the fundamental cycle Z ⊂ X for the resolution of singularities
X → (C × C ′)/G.
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Proposition 5.8. We have KS̃ = (q − 4)Z̃, and K2
S̃
= q(q − 4)2.

Proof. Recall that K2
X = q(q2 − 8q + 14) by (12). The map X → S̃ contracts

successively 2q (−1)-curves, such that

K2
S̃
= K2

X + 2q = q(q2 − 8q + 16) = q(q − 4)2.

The canonical class KS̃ is the image of the canonical class KX . Recall that we have

Kh = −(q − 2)Z and h∗K(C×C′)/G = (q − 3)(F1 + F2).

The latter coincides with the cycle 2(q−3)Z, up to components that are contracted

by X → S̃. Consequently KS̃ = (2(q − 3)− (q − 2))Z̃ = (q − 4)Z̃. �
We now have an explicit description of the minimal model:

Theorem 5.9. For q ≥ 4, the surface S̃ is minimal, such that S = S̃.

Proof. We have Ã2
0 = 2− q 6= −1. Consequently, there is no (−1)-curve supported

by Z̃ ⊂ S̃. Since KS̃ is effective, there is no other (−1)-curve on S̃, and the result
follows. �

From this we easily determine the place in the Enriques classification of surfaces.
Recall that a weak del Pezzo surface is a surface whose anticanonical divisor is nef
and big.

Corollary 5.10. The mimimal surface S is of general type if q ≥ 5, a K3-surface
for q = 4, and a weak del Pezzo surface for q = 2, 3.

Proof. First suppose q ≥ 5. Then S = S̃ is minimal, and KS is effective with
K2
S > 0. By the Enriques classification, S is of general type. For q = 4, we have

KS = 0. Whence S is either abelian, bielliptic, quasibielliptic, K3 or Enriques. But
H1(S,OS) = 0 by Proposition 4.1, whence S is either K3 or a classical Enriques
surface. In the latter case, π1(S) is cyclic of order two. In light of Proposition 5.6,

our S must be a K3 surface. Finally, suppose q ≤ 3. Then −KS̃ = (4 − q)Z̃ is

effective, and one easily checks that Z̃ ⊂ S̃ is not an exceptional curve of the first
kind. Thus −KS̃ is nef. It is also big, according to Proposition 5.8. The same
necessarily holds for −KS , hence S is a weak del Pezzo surface. �

6. Canonical models and canonical maps

In this section we introduce projective models for our surfaces. If q ≥ 5 then
S = S̃ is a minimal surface of general type, and the homogeneous spectrum

S̄ = ProjH0(S,
⊕
t≥0

ω⊗t
S )

is called the canonical model of S. The canonical morphism S → S̄ is the contrac-
tion of all (−2)-curves, and the singularities on the normal surface S̄ are at most

rational double points. Clearly, the integral curves Ãi,j ⊂ S̃ = S are (−2)-curves,
which get contracted. It turns out that there are no more:

Proposition 6.1. For q ≥ 5, the canonical model S̄ is obtained by contracting
the (−2)-curves Ãi,j, 1 ≤ i, j ≤ q − 1, such that the singular locus of S̄ comprises
exactly q − 1 rational double points of type Aq−1.
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Proof. The exceptional curve for the contraction S̃ → S̄ is the union of all (−2)-
curves, so all Ãi,j , 1 ≤ i, j ≤ q− 1 get contracted. Suppose there would be another

(−2)-curve Ẽ ⊂ S̃, such that Ẽ is disjoint from the canonical divisor KS̃ = (q−4)Z̃.
This implies that its strict transform E ⊂ (C × C ′)/G is contained in a smooth
fiber of one of the projections ψi : (C × C ′)/G→ P1, contradiction. �

Note that the contraction S̃ → S̄ of the (−2)-curves Ãi,j makes sense for all prime
powers q = ps, and it turns out that the normal surface S̄ has a very satisfactory
projective description. To see this, let Z̄ ⊂ S̄ be the Weil divisor defined as the
image of Z ⊂ X. Recall that the latter is nothing but the fundamental cycle for
the resolution of singularities X → (C × C)/G. Then clearly

Z̄2 = q and Z̄red = P1 and Z̄ = qZ̄red and KS̄ = (q − 4)Z̄.

Since the local Picard group of a rational double point of type Aq−1 is cyclic of
order q, the Weil divisor Z̄ ⊂ S̄ is actually Cartier. The invertible sheaf L̄ = OS̄(Z̄)
defines a rational map ΦZ̄ : S 99K Pn, with n+ 1 = h0(L̄).

Theorem 6.2. The invertible sheaf L̄ = OS̄(Z̄) is very ample, has h0(L̄) = 4, and
the image of the closed embedding ΦZ̄ : S̄ → P3 is a normal surface of degree q
whose singular locus consists of q − 1 rational double points of type Aq−1, all lying
on a line in P3.

Proof. We first check that L̄ is globally generated. Let F̄i ⊂ S̄, i = 1, 2 be the image
of the schematic fibers Fi = ψ−1

i (0) for the two projections ψi : X → P1. Using
the multiplicities computed in Proposition 5.4, we deduce F̄1 = Z̄ = F̄2. Now let
F̄ ′
i ⊂ S̄ be the image of the schematic fibers F ′

i = ψ−1
i (∞). Then F̄i, F̄

′
i are linearly

equivalent. Using that F ′
1 intersects F2 only in the component B2, we deduce that

and Z̄∩F̄ ′
1 is the image of the contracted curve B2 under the canonical map X → S̄.

By symmetry, Z̄ ∩ F̄ ′
2 is the image of B1. The upshot is that Z̄ ∩ F̄ ′

1 ∩ F̄ ′
2 is empty,

hence L̄ is globally generated. We also showed that h0(L̄) ≥ 3.
By the same ideas we verify that the resulting morphism ΦZ̄ : S̄ → Pn is gener-

ically injective, where n + 1 = h0(L̄). Let x, x′ ∈ X be two points not lying on
the cycle Z ∪ F1 ∪ F2 with ψ1(x) 6= ψ1(x

′). The image on S̄ of the schematic fiber
ψ−1
1 (ψ1(x)) ⊂ X is a divisor linearly equivalent to Z̄, which contains the image of

x, but not the image of x′. Consequently, our map ΦZ̄ is generically injective.
Next, we verify h0(L̄) = 4. To this end, consider the short exact sequence

0 −→ OS̄ −→ L̄ −→ L̄|Z̄ −→ 0.

Since h1(OS̄) = 0, we have h0(L̄) = h0(L̄|Z̄)+ 1. The Weil divisors iZ̄red ⊂ S̄ yield
short exact sequences

0 −→ Ki −→ O(i+1)Z̄red
−→ OiZ̄red

−→ 0.

For 0 ≤ i < q, the kernels are Ki = OP1(1− i), which follows from the intersection
number Z̄ · Z̄red = 1 and Proposition 3.1, together with an application of [6],
Theorem 1.9. This gives the estimate h0(L̄Z̄) ≤ h0OP1(1) + h0OP1 = 3. If h0(L̄) =
3, then ΦZ̄ : S̄ → P2 would be a finite surjective map of degree q, contradicting
generic injectivity. Thus h0(L̄) = 4.

Summing up, we have a morphism ΦZ̄ : S̄ → P3 whose image Ŝ ⊂ P3 is a divisor

of degree q, and the induced map ν : S̄ → Ŝ is the normalization map. Clearly, Ŝ is
Cohen–Macaulay and Gorenstein. Using L̄ = Φ∗

Z̄
(OP3(1)) and ωŜ = OŜ(q − 4), we
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deduce ωS̄ = ν∗(ωŜ), such that relative dualizing sheaf ωS̄/Ŝ is trivial. From this

it follows that the conductor locus for the finite birational morphism ν : S̄ → Ŝ
is empty, such that ν is an isomorphism. Consequently L̄ is very ample. Finally
observe that the image of Z̄red, which contains the singular locus of S̄, is a line,
because Z̄ · Z̄red = 1. �

Recall that a proper k-scheme V0 is called liftable in the category of schemes, if
there exists a local ring (R,mR) of characteristic zero with k = R/mR, together
with a proper flat R-scheme V with V ⊗W k = V0. If such V exists at least as an
algebraic space, we say that V0 is liftable in the category of algebraic spaces.

Corollary 6.3. The surface S is liftable in the category of algebraic spaces.

Proof. We first consider the projective normal surface V0 = S̄. Let f0 ∈ k[X0, . . . , X4]
be a homogeneous polynomial of degree deg(f0) = q so that S̄ = V+(f) as sub-
scheme of P3 = Proj k[X0, . . . , X4]. Choose a homogeneous polynomial f of degree
deg(f) = q with coefficients in the ring of Witt vectors R = W (k) reducing to f0
modulo p, and consider the proper R-scheme V = V+(f) ⊂ P3

R. Then V → Spec(R)
is flat and projective, such that S̄ is liftable in the category of schemes.

According to a general result of Artin and Brieskorn [3], there exists a finite
extension R ⊂ R′ and a simultaneous minimal resolution of singularities W →
V ⊗R R′. Here, however, one knows only that the total space W is an algebraic
space, although the individual fibers are projective. Thus S =W0 is liftable in the
category of algebraic spaces. �

7. Numerical invariants and geography

The Chern invariants of a smooth proper surface are the numbers

c21 = K2 and c2 = e.

They are paramount for minimal surfaces of general type, and the study of occur-
rence and distribution of Chern invariants for minimal surfaces of general type is
referred to as surface geography.

Theorem 7.1. The Chern invariants for the smooth surface S̃ are given by the
formulas

K2 = q3 − 8q2 + 16q and e = q3 − 4q2 + 6q,

and χ(OS̃) = (q3 − 6q2 + 11q)/6.

Proof. We already computed the value ofK2 in Proposition 5.8. Recall thatX → S̃
is a sequence of 2q blowing-ups of S̃, such that e(X) = e(S̃)+2q. To determine the
Euler characteristic, we first examine the surface X and its fibration ψ1 : X → P1.
According to Dolgachev’s formula [9] we have

e(X) = e(Xη̄)e(P1) +
∑

(e(Xa)− e(Xη̄) + δa),

where Xη̄ is the geometric generic fiber, the sum runs over all closed point a ∈ P1,
and δa is Serre’s measure of wild ramification attached to the Galois module Ma =
H1(Xη̄,Z/lZ) at the point a ∈ P1. Here l is any prime number different from p.
This invariant is given by

δa =
∑
i≥1

1

[G : Gi]
dimFl

(Ma/M
Gi
a ),
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Here G is the Galois group of a finite Galois extension of the function field κ(η)
trivializing the Galois module Ma, and Gi ⊂ G are the ramification subgroups for
the induced extension of discrete valuation rings. By the very construction, we may
choose this extension induced from C × C ′ → (C × C ′)/G, such that G = Fq.

In light of (5), we have δa = (q − 1) dimFl
(Ma/M

G
a ). According to Proposition

5.7, the Picard group Pic(X) is finitely generated. Since the map Pic(X)→ Pic(Xη)
is surjective, the group Pic(Xη) is finitely generated as well. Thus we may choose
our prime l so that Pic(Xη) contains no nontrivial l-torsion. Since the Brauer
group of the function field of P1 vanishes by Tsen’s Theorem, it then follows that
MG
a = 0, whence dimFl

(Ma/M
G
a ) = (q− 1)(q− 2). In turn, we obtain the value for

e(S̃) = e(X)− 2q. Finally, Riemann–Roch for surfaces χ = (K2 + e)/12 yields the
formula for χ(OS̃). �

Remark 7.2. There are two unfortunate misprints in [9]: The correction terms
in Theorem 1.1 should appear with the sign lost in the proof while passing from
equation (3.2) to (3.3). In the definition of Serre’s measure of wild ramification δ on
top of page 305, the sum should run only for i ≥ 1, which comes from the fact that
the Swan character is the difference of the Artin character and the augmentation
character. Compare also [24].

We now can read off the geometric genus pg = h2(OX) = h0(ωS):

Corollary 7.3. The surface S has geometric genus pg = (q3 − 6q2 + 11q − 6)/6 =
(q − 2)(q − 3)(q − 1)/6.

Proof. According to Proposition 4.1, we have h1(OS) = 0. The statement thus
follows from χ(OS) = (q3 − 6q2 + 11q)/6. �

Using our global invariants, we now can show that our bound on the geometric
genus pg = lengthR1h∗(OX) of the singularity on (C ×C ′)/G in Proposition 3.9 is
actually an equality, at least in a special case:

Corollary 7.4. Suppose q = p is prime. Then the singularity on (C × C ′)/G has
geometric genus pg = p(p− 1)(p− 2)/6.

Proof. The Leray–Serre spectral sequence for h : X → (C × C ′)/G gives an exact
sequences

H1(X,OX) −→ H0(R1h∗(OX)) −→ H2(O(C×C′)/G) −→ H2(OX) −→ 0.

The term on the left vanishes by Proposition 4.1. We thus have

pg = h0(ω(C×C′)/G)− h2(OX).

The first summand was computed in Proposition 2.4, the second in Corollary 7.3,
and the result follows. �

Corollary 7.5. Suppose q ≥ 5. Then the surface of general type S has plurigenera

Pm =
q3 − 8q2 + 16q

2
(m2 −m) +

q3 − 6q2 + 11q

6

for all m ≥ 2.
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Proof. We have H1(X,ω⊗m
X ) = H1(X,ω⊗(1−m)) = 0 for all m ≥ 2 according to

general results of Ekedahl ([10], Theorem 1.7), and the value for

Pm = h0(ω⊗m
S ) = χ(ω⊗m

S ) =
m2 −m

2
K2
S + χ(OS), m ≥ 2

follows from Riemann–Roch and the preceding Theorem. �
Remark 7.6. The Chern quotients of our surfaces S asymptotically tend to

lim
q→∞

c21/c2 = 1.

Note also that we always have 3c2− c21 = 2q(q− 1)2 > 0, such that the Bogomolov–
Miyaoka–Yau inequality c21 < 3c2 holds. Therefore our surfaces S show no exotic
behavior with respect to geography.

Remark 7.7. In the case q = 4, we have KS = 0, and the preceding Theorem
gives e(S) = 24. This yields another proof that S is a K3 surface rather than an
Enriques surface.
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