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Abstract. We give a new proof, in scheme-theoretic language, of Tate’s clas-
sical result on genus change of curves over imperfect fields in characteristic
p > 0. Namely, for normal geometrically integral curves, the difference be-
tween arithmetic and geometric genus over the algebraic closure is divisible by

(p − 1)/2.

Introduction

A peculiar feature of geometry in characteristic p > 0 is that a regular scheme
X of finite type over an imperfect field K may cease to be regular after purely
inseparable base change. This striking behavior easily appears for the generic fiber
of morphisms f : S → B between smooth schemes over algebraically closed ground
fields: Here K = κ(B) is the function field of B, and X = SK is the generic fiber
in the sense of scheme theory. When it comes to classification of fibrations, for
example in the Enriques classification of surfaces, the theory of Albanese maps, or
the minimal model program, it is crucial to understand this behavior.

The simplest situation is that X is a proper normal curve over an imperfect
field K. If K ⊂ K ′ is a purely inseparable field extension, the induced curve
X ′ = X ⊗K K ′ is not necessarily normal. Let X̃ ′ be its normalization. Then the
genus g̃ = h1(OX̃′) may be strictly smaller that the genus g = h1(OX) of our
original curve. Tate [8] proved that such genus change is not arbitrary:

Theorem. (Tate) The difference g − g̃ is divisible by (p − 1)/2.

In particular, this puts an upper bound on the characteristic in terms of the
possible genera occurring in genus change situations. This is a prominent man-
ifestation of the intuitive principle that a given geometrical deviation in positive
characteristics in a fixed dimension should occur only at finitely many primes. Ex-
ample: Quasielliptic fibrations (the case g = 1, g̃ = 0) are possible only at prime
p = 2 and p = 3.

In 1952, Tate naturally stated and proved his result in the language of function
fields and repartitions. In my opinion, it is desirable to have a proof in the modern
language of schemes as well. Indeed, in the special case g̃ = 0, Shepherd-Barron
[7] found such a proof for the inequality g ≥ (p − 1)/2, using vector bundles on
algebraic surfaces. The goal of this paper is to give an easy direct proof of Tate’s
result, using only relative dualizing sheaves and relative Frobenius maps for curves.
The result takes the following form:
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Theorem. Let Y be the normalization of the Frobenius pullback X(p). Then the
degree of the relative dualizing sheaf ωY/X(p) is divisible by p − 1.

Our proof hinges on a result of Kiehl and Kunz [6], which implies that a finite
universal homeomorphism between regular curves locally admits p-bases. We expect
that this approach, with appropriate Gorenstein assumptions, will be useful in
higher dimensions as well.

Acknowledgement. I wish to thank Igor Dolgachev for stimulating discussions.

1. Normalization after Frobenius pullback

Let K be a field of characteristic p > 0, and X be a normal K-scheme of finite
type. Throughout, we assume that X geometrically integral, that is, the induced
schemes X ′ = X ⊗K K ′ remain integral for all base field extensions K ⊂ K ′. The
scheme X ′, however, is not necessarily normal. In this section, we shall collect some
useful facts about the normalization of X ′. Our first observation is:

Lemma 1.1. Let K ⊂ K ′ be a base field extension. Set X ′ = X ⊗K K ′, and let
Y ′ → X ′ be the normalization. Then the K ′-scheme Y ′ is geometrically integral.

Proof. Geometric irreducibility and geometric reducedness easily follow from [3],
Proposition 4.5.9, and Proposition 4.6.1, respectively. �

Next, we consider the Frobenius pullback X(p), which is defined by the cartesian
square

X(p) −−−−→ X




y





y

Spec(K) −−−−→
FK

Spec(K).

Here FK denotes the absolute Frobenius morphism, which corresponds to the Frobe-
nius map Fr : K → K, λ 7→ λp. The K-scheme X(p) is of finite type and geomet-
rically integral, but not necessarily normal. In any case, the Frobenius pullback
is closely related to the original normal scheme X via the relative Frobenius mor-
phisms FX/K : X → X(p). This is a finite universal homeomorphism, coming from
the commutative square

X
FX

−−−−→ X




y





y

Spec(K) −−−−→
FK

Spec(K).

Using iterated Frobenius maps, we obtain similarly the iterated Frobenius pullback
X(pn), together with the iterated relative Frobenius morphism Fn

X/K : X → X(pn).

The following observation will be useful:

Lemma 1.2. There is an integer n0 ≥ 0 such that for all integers n ≥ n0 the
normalization of X(pn) is geometrically normal.

Proof. Clearly, it suffices to find one integer n ≥ 0 so that the normalization of

X(pn) is geometrically normal. To do so, choose a perfect closure K ⊂ Kp−∞

. Set

Z = X ⊗K Kp−∞

, and let ν : Z̃ → Z be the normalization. The scheme Z̃ is
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geometrically normal over Kp−∞

, because the latter is perfect. According to [4],

Theorem 8.8.2, there is an intermediate field K ⊂ K ′ ⊂ Kp−∞

that is finite over

K, so that the scheme Z̃ and the morphism ν : Z̃ → Z over Kp−∞

are induced
from a scheme X̃ ′ and a morphism ν′ : X̃ ′ → X ′ over K ′. Here of course we write
X ′ = X ⊗K K ′. By [3], Corollary 6.7.8, the K ′-scheme X̃ ′ is geometrically normal.
Since ν′ is birational, ν′ must be the normalization map of X ′, and remains so after
any base field extension of K ′.

Since the field extension K ⊂ K ′ is finite and purely inseparable, there is an
integer n ≥ 0 with the property λpn

∈ K for all λ ∈ K ′. By the universal property
of splitting fields, there exists a homomorphism i : K ′ → K so that the composite

K ⊂ K ′
i
→֒ K equals the n-fold Frobenius map. Consequently, X̃ ′ ⊗K′ K is the

normalization of X(pn) = X ′ ⊗K′ K, where the tensor products are with respect
to i : K ′ → K. This concludes the proof, since we saw in the preceding paragraph
that X̃ ′ is geometrically normal. �

In this context, the following fact seems noteworthy as well:

Lemma 1.3. If X(p) is normal, then X is geometrically normal.

Proof. According to Serre’s Criterion, the condition that X(p) is normal means that
it is regular in codimension ≤ 1 and satisfies Serre’s Condition (S2). Using that the
canonical projection X(p) → X is a homeomorphism, we infer with [2], Theorem
22.5.8 that X must be geometrically regular in codimension ≤ 1. Furthermore, [3],
Corollary 6.7.8 implies that X and all its base changes satisfy (S2). We conclude
that X is geometrically normal. �

2. Genus change for algebraic curves

Now let X be a proper normal curve over K. Recall ([5], Chapter III, Section
7) that the dualizing sheaf of X exists and is invertible, and is given by

ωX/K = Extn−1(OX ,OPn(−n − 1))

for any embedding X ⊂ P
n. As in the preceding section, we also assume that X

is geometrically integral. The degree of an invertible sheaf L on X is defined as
the integer deg(L) = χ(L) − χ(OX). The main result of this paper relates the
degrees of the dualizing sheaves on the Frobenius pullback and its normalization.
We formulate it in terms of the relative dualizing sheaf:

Theorem 2.1. Let ν : Y → X(p) be the normalization map. Then the degree of
the relative dualizing sheaf ωY/X(p) is divisible by p − 1.

Proof. The idea is to compute with relative dualizing sheaves on X. Since X is
normal, there is a unique morphism f : X → Y with FX/K = ν ◦ f . The various
relative dualizing sheaves satisfy

(1) ωX/X(p) = ωX/Y ⊗ f∗(ωY/X(p)).

Similarly we have ωX/K = ωX/X(p) ⊗ F ∗

X/K(ωX(p)/K). Together with the formula

F ∗

X/K(ωX(p)/K) = F ∗
X(ωX/K) = ω⊗p

X/K , this yields

(2) ωX/X(p) = ω
⊗(1−p)
X/K .

On the other hand, it follows from results of Kiehl and Kunz that the morphism
f : X → Y locally admits p-bases ([6], Korollar 2 of Satz 5). Therefore the sheaf of
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relative Kähler differentials Ω1
X/Y is locally free of finite rank. It is related to the

relative dualizing sheaf by

(3) ωX/Y = det(Ω1
X/Y )⊗(1−p),

according to loc. cit., Satz 9. Substituting formula (3) and (2) into (1), we in-
fer that the degree of f∗(ωY/X(p)) is divisible by p − 1. Finally, observe that

deg(f∗(ωY/X(p))) = deg(f) · deg(ωY/X(p)), by the projection formula. Clearly, the
surjection f : X → Y is purely inseparable, hence its degree is a p-power. From
this we infer that the degree of ωY/X(p) must be divisible by p − 1. �

Actually, the preceding result is equivalent to the following seemingly stronger
statement:

Theorem 2.2. Let K ⊂ L be an arbitrary field extension, and Y be the normaliza-
tion of X⊗K L. Then the degree of the relative dualizing sheaf ωY/X⊗KL is divisible
by p − 1.

Proof. First note the following transitivity property: Suppose K ⊂ L′ ⊂ L is
an intermediate field. Let Y ′ be the normalization of X ⊗K L′. Then Y is the
normalization of both X ⊗K L and Y ′ ⊗L′ L, and we have

ωY/X⊗KL = ωY/Y ′⊗L′L ⊗ ϕ∗(ωY ′/X⊗KL′ ⊗L′ L),

where ϕ : Y → Y ′ ⊗L′ L is the normalization map. Clearly, if two of the three
dualizing sheaves have degree divisible by p − 1, so has the third.

Using this transitivity property, we now settle the special case that the field
L in our field extension K ⊂ L is perfect. Choose an integer n ≥ 0 so that the
normalization Y ′ of the Frobenius pullback X(pn) is geometrically normal, as in
Lemma 1.2. Since the field L is perfect, there exists precisely one homomorphism
i : K → L so that the composition i ◦ Frn is our given extension K ⊂ L, according
to [1], Chap. V, §5, No. 2, Proposition 3. Consider the intermediate field L′ = i(F ).
Induction on n, together with the transitivity property and Theorem 2.1, shows that
the degree of ωY ′/X⊗KL′ is divisible by p− 1. Since Y ′ is geometrically normal, we
have Y = Y ′⊗L′ L. Another application of the transitivity property yields that the
degree of ωY/X⊗KL is divisible by p − 1, as desired.

It remains to treat the general case. Choose a perfect closure L ⊂ Lp−∞

. Ac-
cording to the preceding paragraph, the theorem holds true for the field extensions

K ⊂ Lp−∞

and L ⊂ Lp−∞

. By transitivity, it must hold for K ⊂ L as well. �

We now may retrieve Tate’s result:

Corollary 2.3. (Tate) Let K ⊂ L be an arbitrary field extension, and Y be the
normalization of X ⊗K L. Then the difference h1(OX) − h1(OY ) is divisible by
(p − 1)/2.

Proof. According to Lemma 1.1, the L-scheme Y is geometrically integral. In
particular, we have K = H0(X,OX) and L = H0(Y,OY ). Whence

h1(OX) − h1(OY ) = χ(OY ) − χ(OX) =
1

2
(deg(ωX/K) − deg(ωY/K)),

the latter by Serre duality and Riemann–Roch. The term on the right is nothing
but − 1

2 deg(ωY/X⊗KL), so the statement follows from Theorem 2.2. �
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