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1. INTRODUCTION

In a course on linear algebra one learns that a vector space V over a field k
contains a basis eα ∈ V , α ∈ I. This means that any vector v ∈ V can be written
in a unique way as a linear combination

v =
∑

α∈I

λαeα.

A little care has to be taken if the index set I is infinite: Then one demands that
all but finitely many coefficients λα ∈ k vanish. The upshot is that the linear map⊕

α∈I

k −→ V, (λα) 7−→
∑

α∈I

λαeα

is bijective. This sounds easy enough. One should bear in mind, however, that
nobody is able to write down explicitly a basis for such innocent Q-vector spaces as
the real numbers V = R or the infinite product V =

∏∞
m=1Q. Indeed, to establish

the existence of a basis in infinite-dimensional vector spaces one has to use the axiom
of choice, or equivalently Zorn’s Lemma, and thereby abandons all explicitness. To
emphasize this aspect, especially in analysis, such a basis is sometimes referred to
as a Hamel basis.

The existence of a basis does not carry over from vector spaces to modules.
Indeed, a module M over a ring R is called free if it contains a basis. Throughout,
we are interested in modules over the ring of integers Z, that is, abelian groups.
Some abelian groups are free, others are not. For example, the abelian group of
complex n-th roots of unity

µn =
{

1, e2πi/n, e2πi2/n, . . . , e2πi(n−1)/n
}
⊂ C×

does not contain a basis for n > 1. Obvious reason: This group is nonzero and
finite; if were free, the group would be infinite.

Sometimes, it is a bit more tricky to decide whether or not a given abelian group
contains a basis. Consider, for example, the rational numbers Q. To see that Q,
viewed as an abelian group, is not free, one may proceed as follows: Suppose there
were a basis eα ∈ Q, α ∈ I. Write the rational number 1/1 = n1eα1 + . . . + nreαr

as a linear combination this basis. After reordering the summands, we may assume
n1 6= 0. To proceed, choose an integer n not dividing n1, and express the rational
number 1/n = m1eβ1 + . . . + mseβs as a linear combination of our basis. Equating
the two expressions for the rational number n · 1/n = 1/1, we obtain

nm1eβ1 + . . . + nmseβs = n1eα1 + . . . + nreαr .
1
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The uniqueness of such linear combinations implies that the common factor n in
the coefficients of the left hand side divides the coefficient n1 on the right hand
side, a contradiction.

The following is my favorite example of an abelian group without a basis: The
infinite product of copies of the integers

∞∏
m=1

Z = Z× Z× Z× . . . .

Its elements are unrestricted infinite tuples (n1, n2, n3, . . .) of integers. This group
is sometimes called the Baer-Specker group. At first glance, one might suspect that
this group is free. However, it follows from results of Baer dating back to 1937 that
the group is not free [1]:

Theorem. The abelian group
∏∞

m=1 Z has no basis.

I am very fond of surprising facts like this. Nevertheless, I always used to forget
the reasoning. Consequently, from time to time I found myself racking my brains
to recall the proof. In the next section I give a direct, down-to-earth proof that I
find easy to remember.

The infinite direct product
∏∞

m=1 Z contains an obvious free subgroup, namely
the infinite direct sum

⊕∞
m=1 Z. In some sense, however, this subgroup is rather

small, because the infinite direct sum has the cardinality of the set of natural
numbers, whereas the infinite direct product has the cardinality of the set of real
numbers. Actually, Specker [4] proved that every countable subgroup of the Baer-
Specker group is free.

The proof for the nonfreeness of
∏∞

m=1 Z is somewhat buried under more general
statements in Baer’s original paper ([1], Theorem 12.4). His reasoning, which com-
bines cardinality arguments with reduction modulo prime numbers, also appears
in very readable form in Kaplansky’s monograph on infinite abelian groups ([2],
Theorem 21). The proof given below is related more to Kaplansky’s technique of
splitting-off countable summands [3].

2. THE PROOF OF BAER’S RESULT

Let G =
∏∞

m=1 Z be the infinite product of copies of the integers. Our task is to
show that this abelian group is not free. Seeking a contradiction, we assume that
there is a basis eα ∈ G, α ∈ I. Note that the index set I must be uncountable. This
is because any infinite product of sets with at least two elements is uncountable,
whereas any abelian group with a countable number of generators is countable.

To start with, consider the standard vectors

sk = (. . . , 0, 1, 0, . . .) ∈ G,

whose sole nonzero entry is a 1 in the k-th position. Note that the sk, k ≥ 1, gen-
erate the infinite direct sum inside the infinite direct product. Write the standard
vectors sk =

∑
α∈I λαkeα as linear combinations of our basis, where all but finitely

many coefficients are zero. Let J ⊂ I be the subset of all indices α ∈ I with the
property that λαk 6= 0 for at least one index k ≥ 1. Being the countable union of
finite sets, the set J is countable. The idea of the proof is to consider the subgroup
H ⊂ G generated by the basis elements eα with α ∈ J .
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We shall exploit the following two properties of H ⊂ G: First, H is countable
and contains the infinite direct sum

⊕∞
m=1 Z. Second, the quotient group G/H

contains a basis, namely the cosets of the eα with α ∈ I − J .
To achieve the desired contradiction, consider elements y ∈ G whose entries are

strictly increasing in the multiplicative sense; this means

y = (n1, n2, n3, . . .) ∈ G

so that each quotient ni+1/ni is an integer 6= ±1. Any sequence (q1, q2, . . .) of
integers qi 6= ±1 yields such a y = (n1, n2, . . .) by setting ni = q1q2 . . . qi. As noted
in the first paragraph of this section, there are uncountably many such (q1, q2, . . .).
Whence there are also uncountably many y ∈ G as above. The upshot is that we
may pick one such y ∈ G so that the coset ȳ ∈ G/H is nonzero, because H is merely
countable. Now comes the crucial observation: Since

y ≡ (0, . . . , 0︸ ︷︷ ︸
i entries

, ni+1, ni+2, . . .) modulo H,

the equation ȳ = nx has a solution x ∈ G/H for all the integers n = n1, n2, . . ..
According to the lemma below, this is impossible in free abelian groups. By con-
struction, however, the quotient G/H contains a basis, a contradiction. ¤
Lemma. Let A be a free abelian group, and let v ∈ A be a nonzero element. Then
there are only finitely many integers n ∈ Z so that the equation v = nx admits a
solution x ∈ A.

Proof. We already saw the argument in Section 1, in the special case A = Q; let me
repeat it for the sake of completeness. Without loss of generality we may assume
A =

⊕
α∈I Z. Write v = (nα)α∈I , and choose some index β ∈ I with nβ 6= 0. If the

equation v = nx has a solution x ∈ A, then n divides nβ . Being a nonzero integer,
nβ has only finitely many divisors. ¤
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