
ON THE RING OF UNIPOTENT VECTOR BUNDLES ON
ELLIPTIC CURVES IN POSITIVE CHARACTERISTICS

STEFAN SCHRÖER
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Abstract. Using Fourier–Mukai transforms, we prove some results about the

ring of unipotent vector bundles on elliptic curves in positive characteristics.

This ring was determined by Atiyah in characteristic zero, who showed that it
is a polynomial ring in one variable. It turns out that the situation in charac-

teristic p > 0 is completely different and rather bizarre: the ring is nonnoethe-
rian and contains a subring whose spectrum contains infinitely many copies

of Spec(Z), which are glued with successively higher and higher infinitesimal

identification at the point corresponding to the prime p.

Contents

Introduction 1
1. Krull–Schmidt and Fourier–Mukai 2
2. Formal groups and convolution rings 4
3. The multiplication table 6
4. Convolution rings as integral extensions 9
5. Application of Lucas’ Theorem 9
6. Stone spaces 13
References 14

Introduction

Using sheaf theoretic methods, Atiyah [2] described the category of locally free
sheaves on elliptic curves. In particular, he determined all irreducible locally free
sheaves. Later, Oda [19] gave another approach based on isogenies. More recently,
Polishchuk [20] as well as Hein and Ploog [10] used to this end Fourier–Mukai
transforms, which were introduced by Mukai [16].

Given two irreducible sheaves F ,F ′ on an elliptic curve E, their tensor product is
usually no longer irreducible, and one has a decomposition F ⊗F ′ =

⊕
i F
⊕λi
i into

irreducible summands. To understand this decomposition, it essentially suffices to
consider sheaves F having a filtration 0 = F0 ⊂ . . . ⊂ Fn = F with Fi/Fi−1 = OE .
Such sheaves are called unipotent. The classification of unipotent sheaves neither
depends on the elliptic curve nor the ground field: For each integer n ≥ 1, there
is, up to isomorphism, precisely one irreducible unipotent sheaf Fn of rank n. For
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example, the extensions of OE by itself coming from the nontrivial classes in the
1-dimensional H1(E,OE) = Ext1(OE ,OE) yield F2.

The decomposition of tensor products of unipotent sheaves, however, does de-
pend on the characteristic. For characteristic zero, Atiyah was able to determine
the ring structure on the free abelian group R generated by the isomorphism classes
of indecomposable unipotent sheaves: It turns out that it is nothing but the poly-
nomial ring Z[F2].

The goal of this paper is to analyze the ring R in positive characteristics. The
idea is to use Fourier–Mukai transforms, which induce an equivalence between the
category of unipotent sheaves and the category of sheaves supported by the origin
0 ∈ E, according to a result of Mukai [15]. Under this equivalence, tensor products
of unipotent sheaves corresponds to convolution products of sheaves supported by
the origin, which is defined in terms of the formal group attached to the elliptic
curve. The latter has not much to do with geometry, and is basically a matter of
linear or commutative algebra. We shall see that this links our original problem to
the behavior of Jordan normal forms under tensor products, and to the modular
representation ring of the additive group of the p-adic integers.

Our main results in characteristic p > 0 are the following: First, we show that
the ring structure of R depends only on p, and not on the elliptic curve. In par-
ticular, there is no difference between ordinary and supersingular elliptic curves.
Second, we show that Z ⊂ R is an integral extension, and that Spec(R) contains
infinitely many irreducible components, such that R is nonnoetherian. Third, we
describe the subring R∞ ⊂ R generated by the irreducible unipotent sheaves of
prime power rank explicitly. Its spectrum is an inverse limit of copies of Spec(Z),
which are glued together at the points corresponding to the prime p with respect to
successively higher and higher infinitesimal identifications. The rings R∞ admits a
dense embedding into the ring or Witt vectors W (Z). The localization R∞ ⊗Q is
the 0-dimensional ring of almost constant sequences in (a0, a1, . . .) of rational num-
bers, and its spectrum is the Alexandroff compactification of a countable discrete
space.

The paper is organized as follows: Section 1 contains basic facts on the Krull–
Schmidt Theorem and Fourier–Mukai transforms. In Section 2, we introduce the
convolution ring R attached to formal groups, and relate them to tensor products
of unipotent sheaves and the modular representation ring of the group of p-adic
integers. The basic properties of the multiplication table are gathered in Section
3. I have included proofs in order to make the paper self-contained, although the
results are probably not new. In Section 4 we show that Z ⊂ R is an integral ring
extension. The core of the paper is contained in Section 5: Here we apply a variant
of Lucas’ Theorem on congruences of binomial coefficients to study the subring
R∞ ⊂ R generated by elements with p-power rank and give a detailed description
of its spectrum. In Section 6 we interpret these results in terms of Stone spaces,
that is, compact totally discrete spaces.

Acknowledgement. I wish to thank Tobias Barthel, James Borger, Adrian Langer
and the referee for inspiring comments.

1. Krull–Schmidt and Fourier–Mukai

We start by recalling elementary facts about the Krull–Schmidt Theorem. Let
C be an abelian category. An object V is called indecomposable if V 6= 0, and in
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every decomposition V = V1 ⊕ V2 we have either V1 = 0 or V2 = 0. If every object
admits a decomposition V = V1 ⊕ . . . ⊕ Vn into indecomposable objects and this
decomposition is unique up to isomorphism and ordering of the summands, one
says that the Krull–Schmidt Theorem holds for the category C.

According to Atiyah’s result [1], this is the case if each Hom set is endowed
with the structure of a finite-dimensional k-vector space so that the composition
maps are bilinear. A prominent example is the category of coherent sheaves with
proper support on a scheme or algebraic stack of finite type over k, or on a complex
analytic space.

For lack of better notation, we define the K-group K(C) as the free abelian group
generated by the isomorphism classes [V ] of objects in C, modulo the relations
[V ] = [V ′] + [V ′′] coming from direct sum decompositions V ' V ′ ⊕ V ′′. Note
that we use only relations coming from split short exact sequences, rather than
arbitrary short exact sequences. If the Krull–Schmidt Theorem holds, then K(C)
is the free abelian group generated by the isomorphism classes of indecomposable
objects. Often the category C is endowed with tensor products, which induce a ring
structure on the abelian group K(C). Given two indecomposable objects V ′, V ′′, it
is often a challenging problem to decompose V ′ ⊗ V ′′ into indecomposable objects.

Let us now turn to abelian varieties. Fix a ground field k of characteristic p ≥ 0,
let A be an abelian variety, and consider the abelian category Coh(A) of coherent
sheaves on A. Inside, we have the subcategory Coh0(A) of all coherent sheaves
supported by the origin 0 ∈ A, and the subcategory Cohu(A) of all unipotent
sheaves. Here a coherent sheaf F is called unipotent if there is a filtration 0 = F0 ⊂
F1 ⊂ . . . ⊂ Fn = F with subquotients Fi/Fi−1 ' OA. Note that unipotent sheaves
are locally free, and that tensor products of unipotent sheaves are unipotent.

A surprising result of Mukai tells us that there is a canonical equivalence of
abelian categories Coh0(A) ' Cohu(Â), where Â = Pic0

A is the dual abelian variety.
Here it is most elegant to work with the triangulated category Db

coh(A) of bounded
complexes of coherent sheaves on A. Let P be the Poincaré bundle on A× Â. The
Fourier–Mukai transform is defined as

ΦP : Db
coh(A) −→ Db

coh(Â), F• 7−→ R pr2∗(P ⊗ pr∗1(F•)),

where pri denote the projections from A × Â. According to Mukai’s fundamental
result ([16], Theorem 2.2), this functor is an equivalence of triangulated categories.
Up to shift by g = dim(A), it induces an equivalence of abelian categories

Cohu(A) −→ Coh0(Â), F 7−→ ΦP(F)[g] = Rg pr2∗(P ⊗ pr∗1(F)),

as discussed in loc. cit. Example 2.9. Note that Mukai observed this equivalence
already in [15], Theorem 4.12. Moreover, he showed that the tensor product corre-
sponds under the Fourier–Mukai transform to the convolution product, which we
shall discuss in the next section. For a comprehensive account of Fourier–Mukai
transforms, we refer to Huybrechts’ monograph [11].

The upshot is that to understand the decomposition of tensor products of unipo-
tent sheaves into irreducible ones, it suffices to understand the corresponding de-
composition of convolution products for sheaves supported by the origin. The latter
is “merely” linear algebra, and in some aspects a much simpler task.

Remark 1.1. As Adrian Langer pointed out to me, there is a more general ap-
proach to describe unipotent sheaves via the Tannakian formalism, which works
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over arbitrary proper schemes X with k = H0(X,OX). As Nori observed in [17],
Chapter IV, Section 1, the unipotent sheaves F comprise a Tannaka category U(X),
and the choice of a rational point x0 ∈ X defines a fiber functor to the category
of finite-dimensional k-vector spaces. In turn, the automorphism algebra of the
fiber functor, which receives from the tensor product in the Tannaka category the
structure of a Hopf algebra, defines an inverse system of finite group schemes Gα,
an the Tannaka category U(X) becomes isomorphic to the Tannaka category of
representations of the inverse system Gα on finite-dimensional k-vector spaces.

Remark 1.2. Burban and Kreussler showed that an equivalence between the cat-
egory of unipotent bundles and the category of torsion sheaves supported by the
origin also holds for nodal Weierstraß cubics (see [5], Theorem 2.21). It seems
possible to extend the setting of the present paper into this direction.

2. Formal groups and convolution rings

Fix a ground field k of characteristic p ≥ 0, and let X = Spf(k[[t]]) be the
formal affine line. Consider the category Coh0(X) of all coherent OX-modules F
supported by the origin 0 ∈ X. Then V = Γ(X,F) is a finite dimensional vector
space endowed with a nilpotent endomorphism ϕ : V → V induced by the action
of the indeterminate t ∈ k[[t]]. In fact, the functor

F 7−→ (V, ϕ)

is an equivalence between Coh0(X) and the category of finite-dimensional vector
spaces endowed with a nilpotent endomorphism. Using the Jordan normal form,
we conclude that each indecomposable object is isomorphic to precisely one Fn,
n ≥ 1. This Fn corresponds to the n-dimensional vector space V = k[[t]]/(tn) with
the shift operator ϕ(ti) = ti+1, or equivalently to the standard vector space V = kn

with Jordan matrix

Jn =


0
1 0

. . . . . .
1 0

 ∈ Mat(n, k).

Let fn = [Fn] be its isomorphism class, such that K(Coh0(X)) is the free abelian
group generated by the fn, n ≥ 1. How to decompose a given F ∈ Coh0(X)? It
turns out that the Hilbert function

lF (i) = dimH0(X,F/miF), m = tk[[t]]

does the job:

Lemma 2.1. Write [F ] =
∑
λifi. Then we have λi = 2lF (i)− lF (i+1)− lF (i−1).

Proof. By additivity, it suffices to treat the case F = Fn. Set l(i) = lFn(i). We
compute

l(i) = dim k[[t]]/(tn, ti) =

{
i if i ≤ n;
n else.

Whence the first discrete derivative l′(i) = l(i+ 1)− l(i) takes values

l′(i) =

{
1 if i ≤ n− 1;
0 else.
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In turn, the second discrete derivative l′′(i) = l(i+2)−2l(i+1)+ l(i) is zero, except
for l′′(n− 1) = −1. The assertion follows. �

Now choose a formal group law F (x, y) ∈ k[[x, y]], and regard X as a formal
group. Let µ : X×X→ X be the resulting multiplication morphism, which is given
by k[[t]]→ k[[x, y]], t 7→ F , and consider the convolution product

F ? F ′ = µ∗(F ⊗k F ′)
for objects F ∈ Coh0(X). In terms of vector spaces with nilpotent endomorphisms,
the convolution product is given by V ⊗ V ′, with the induced nilpotent endo-
morphism F (ϕ ⊗ idV ′ , idV ⊗ϕ′), which by abuse of notation we simply denote by
F (ϕ,ϕ′). It is easy to see that the convolution product endows the free abelian
group K(Coh0(X)) with a ring structure.

Recall that by Lazard’s results [12], the isomorphism classes of 1-dimensional
formal groups over algebraically closed ground fields of characteristic p > 0 cor-
respond to a single numerical invariant, the height h ∈ {∞, 1, 2, . . .}. The formal
additive group Ĝa, say with F (x, y) = x+y, has height h =∞, whereas the formal
multiplicative group Ĝm, say with F (x, y) = x+y+xy, has height h = 1. All other
cases cannot be expressed in terms of polynomials, and to my knowledge there is
no explicit formula known for the formal group laws with 1 < h < ∞. Somewhat
surprising, the formal group law plays almost no role for the multiplication table
in our ring K(Coh0(X)):

Proposition 2.2. The multiplicative structure of the ring K(Coh0(X)) depends
only on the characteristic p ≥ 0 of our ground field k.

Proof. Set F = Fm ?Fn. In light of Lemma 2.1, it suffices to check that the Hilbert
function lF (i) = dim k[[x, y]]/(xm, yn, F i) depends only on p ≥ 0 rather then of F .
By definition, a formal group law F (x, y) satisfies F (x, 0) = x and F (0, y) = y,
whence is of the form F (x, y) = x+ y + xyv = ux+ y for some u, v ∈ k[[x, y]] with
u invertible. Setting x′ = ux, we have

k[[x, y]]/(xm, yn, F i) = k[[x′, y]]/(x′m, yn, (x′ + y)i).

The latter is clearly independent of the formal group law F , and in fact gives
the Hilbert function with respect to the formal additive group Ĝa. Note that the
dependence on the characteristic p ≥ 0 enters via the binomial expansion of (x′+y)i

over k, as we shall see in the next section. �

We call the ring R = K(Coh0(X)) the convolution ring in characteristic p ≥ 0.
Note that the underlying abelian group is free, with basis fi, i ≥ 1, and that the
multiplication table fmfn =

∑
λifi depends only on the characteristic p ≥ 0. The

unit element is f1 = 1. For some formulas, it is convenient to define f0 = 0. Clearly,
the ring does not change under base field extensions k ⊂ k′. The convolution ring is
essentially the ring of unipotent locally free sheaves on elliptic curves with respect
to tensor products:

Proposition 2.3. The ring K(Cohu(E)) of unipotent locally free sheaves on an
elliptic curve E in characteristic p ≥ 0 is isomorphic to the convolution ring R in
characteristic p.

Proof. Let X be the formal group attached to the elliptic curve Ê = E. Clearly,
we have Coh0(X) = Coh0(Ê). According to [15], Theorem 4.12, the Fourier–Mukai
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transform

Cohu(E) −→ Coh0(Ê), F 7−→ ΦP(F)[g] = Rg pr2∗(P ⊗ pr∗1(F))

is an equivalence of categories, and transforms tensor products into convolution
products. The assertion follows. �

In particular, it plays no role whether the elliptic curve E is ordinary or su-
persingular. This property, however, seems to enter if one considers the action of
Frobenius.

The multiplicities in fmfn =
∑
λifi are related to a difficult problem in linear

algebra:

Proposition 2.4. The multiplicities λi are the number of Jordan blocks Ji in the
Jordan normal form of the endomorphism Jm ⊗ id + id⊗Jn of km ⊗ kn.

Proof. We may choose the additive formal group law F (x, y) = x + y, and the
assertion follows from the definition of convolution products. �

This problem was studied in characteristic zero, for example, by Roth [22] and
Trampus [24]; for more recent developments in positive characteristics, see McFall
[14] and Norman [18].

There is also an interesting connection to representation theory: Let p > 0, and
consider the additive profinite group G = Zp = lim←−Z/pmZ of p-adic integers. Let R
be the category of continuous representations of G on finite-dimensional Fp-vector
spaces. Such a representation G→ GL(n,Fp) factors over a finite quotient Z/pmZ,
and the image of the generator 1 ∈ Z/pmZ is a matrix A ∈ GL(n,Fp) whose
minimal polynomial divides T p

m − 1 = (T − 1)p
m

. Whence the matrix A − En
is nilpotent, where En ∈ Mat(n,Fp) denotes the unit matrix. The upshot is that
K(R) is the free abelian group generated by classes f ′i , i ≥ 1 corresponding to the
unipotent Jordan matrices Ji+Ei. In turn, we obtain a bijection of abelian groups

R −→ K(R), fi 7−→ f ′i .

The tensor product endows K(R) with a ring structure; we call it the ring of
continuous modular representations.

Proposition 2.5. The preceding bijection respects multiplication, and yields an
identification of the convolution ring R in characteristic p with the ring K(R).

Proof. Here we use the multiplicative formal group law F (x, y) = x + y + xy =
(x+1)(y+1)−1, together with the fact that tensor products of unipotent matrices
are unipotent. Clearly, the number of unipotent Jordan blocks Ji + Ei in the
Jordan normal form of the unipotent endomorphism (Jm +Em)⊗ (Jn +En) is the
same as the number of nilpotent Jordan blocks Ji in the corresponding nilpotent
endomorphism F (Jm, Jn) = (Jm + Em)⊗ (Jn + En)− Emn. �

This ring of continuous modular representations was studied, for example, by
Srinivasan [23], Green [8], and Ralley [21].

3. The multiplication table

We keep the notation from the preceding section, and start to investigate the
multiplication table of the convolution ring R in characteristic p ≥ 0, whose under-
lying abelian group is defined in terms of the formal affine line X = Spf(k[[t]]). Its
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multiplication is defined with the help of a formal group law F (x, y), but depends
only on the characteristic p ≥ 0. We therefore assume from now on that the formal
group law is simply F (x, y) = x+ y.

Recall that R is the free abelian group on the generators fn, n ≥ 1. These
classes are given by the coherent sheaves Fn, which in turn correspond to the
vector spaces k[[t]]/(tn) endowed with the shift operator, or equivalently the vector
space kn endowed with the Jordan matrix Jn. We start with two obvious facts:

Proposition 3.1. Let m,n ≥ 0 be integers, and write fmfn =
∑
λifi. Then∑

iλi = mn

Proof. Set V = k[[t]]/(tm) and V ′ = k[[t]]/(tn). Clearly
∑
iλi must be the dimen-

sion of V ⊗ V ′, which indeed is mn. �

Proposition 3.2. Let 0 ≤ m ≤ n be integers, and write fmfn =
∑
λifi. Then we

have
∑
λi = m.

Proof. The integer
∑
λi is the number of Jordan blocks in the Jordan normal form

of F (Jm, Jn). Equivalently, it is the dimension of F/tF , where F = Fm ?Fn. The
latter equals the dimension of

k[[x, y]]/(xm, yn, F ) = k[[x, y]]/(xm, yn, x+ y)

which clearly equals m. �

The next observation permits us to translate certain problems from linear algebra
into commutative algebra:

Proposition 3.3. Let m,n ≥ 1 be integers, and write fmfn =
∑
λifi. Then the

largest integer r ≥ 1 with λr 6= 0 coincides with the smallest integer s ≥ 1 with the
property (x+ y)s ≡ 0 modulo (xm, yn).

Proof. The largest integer r ≥ 1 with λr 6= 0 is nothing but the size of the largest
Jordan block in the Jordan normal form of the nilpotent endomorphism F (Jm, Jn)
of km ⊗ kn. In turn, this is the smallest integer s ≥ 1 with F (Jm, Jn)s = 0. The
linear map k[[x, y]]/(xm, yn)→ End(km⊗kn) given by x 7→ Jm⊗id and y 7→ id⊗Jm
is injective, which can be seen by identifying the vector space km ⊗ kn with the
k-algebra k[[x, y]]/(xm, yn). Consequently, our s ≥ 1 is also the smallest integer
with F (x, y)s ∈ (xm, yn). �

With this at hand we deduce several useful facts:

Proposition 3.4. Let m,n ≥ 0 be integers, and write fmfn =
∑
λifi. Then λi = 0

for all i ≥ m+ n.

Proof. By the Binomial Theorem, F (x, y)m+n−1 = (x + y)m+n−1 is contained in
the ideal (xm, yn), and the assertion follows from Lemma 3.3. �

Proposition 3.5. We have

f2fn =

{
fn−1 + fn+1 if p does not divide n;
2fn else,

for all n ≥ 1.
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Proof. The case n = 1 is trivial, so assume n ≥ 2. According to Proposition 3.2
and 3.4, we have f2fn = fi + fj for some i ≤ j ≤ n+ 1, which furthermore satisfies
i + j = 2n by Proposition 3.1. The only solutions are i = j = n and i = n − 1,
j = n+1. Clearly (x+y)n ≡

(
n
1

)
xyn−1 modulo (x2, yn), and therefore (x+y)n ≡ 0

if and only if p divides n. Now the assertion follows from Lemma 3.3. �

Corollary 3.6. The ring R is integral if and only if p = 0. In this case, the
homomorphism of rings Z[X]→ R defined by X 7→ f2 is bijective.

Proof. If p 6= 0, then (f2 − 2f1)fp = 0, whence the ring R is not integral. Now
suppose p = 0. Using the relation f2fn = fn−1 + fn+1, we inductively infer that
fn2 = fn+1 +

∑
i≤n λifi for some coefficients λi. Consider the standard Z-bases

tj ∈ Z[X] and fj+1 ∈ R, j ≥ 0. With respect to these bases, the matrix of
Z[X] → R, viewed as a homomorphism of free Z-modules, is an upper triangular
matrix all whose diagonal entries are 1, whence is invertible. �

Corollary 3.7. Let 1 ≤ m ≤ n be integers. If p = 0 or p > m+ n− 2, then

fmfn =
m−1∑
i=0

fm+n−1−2i.

Proof. By induction on m ≥ 1. The case m = 1 is trivial. Now suppose m ≥ 2,
such that fm = f2fm−1 − fm−2 by Proposition 3.5. We have inductively

fmfn = f2fm−1fn − fm−2fn

= f2

m−2∑
i=0

fm+n−2−2i −
m−3∑
i=0

fm+n−3−2i

=
m−2∑
i=0

(fm+n−3−2i + fm+n−1−2i)−
m−3∑
i=0

fm+n−3−2i

= fn−m+1 +
m−2∑
i=0

fm+n−1−2i,

as desired. �

The following observation will be crucial in the next section:

Proposition 3.8. Let m,n ≥ 0, and write fmfn =
∑
λifi. Let r ≥ 0 be an integer

so that p divides
(
m+n−2−a
m−1−b

)
for all 0 ≤ b ≤ a ≤ m+ n− 2− r. Then λi = 0 for all

integers i > r.

Proof. We have

(x+ y)r ≡
∑(

r

j

)
xjyr−j modulo (xm, yn),

where the sum runs over all integers j subject to the conditions

(1) 0 ≤ j ≤ r, j ≤ m− 1, r − j ≤ n− 1.

Setting r = m+ n− 2− a and j = m− 1− b, we observe that the conditions in (1)
ensures that 0 ≤ b ≤ a ≤ m + n − 2 − r. Whence (x + y)r ≡ 0 modulo (xm, yn).
Now Lemma 3.3 implies that λr+1 = λr+2 = . . . = 0. �
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4. Convolution rings as integral extensions

From now on, we assume that the characteristic is p > 0. The ring extension
Z ⊂ R is obviously faithfully flat, since R is a nonzero free Z-module. In this section
we shall see that the ring extension is also integral, in other words, each element
from R is a root of a monic polynomial with integer coefficients. This hinges on
the following observation:

Lemma 4.1. Let q = pν and m,n ≤ q. Then fmfn =
∑
λifi with λi = 0 for i > q.

Proof. In light of Proposition 3.3, it suffices to check (x+y)q ≡ 0 modulo (xm, yn).
But this is obvious because (x+ y)q = xq + yq. �

This directly leads to:

Theorem 4.2. The ring extension Z ⊂ R is integral. In particular, we have
dim(R) = 1.

Proof. Given a prime power q = pν , the subgroup R′ ⊂ R generated by the
f1, f2, . . . , fq is a subring, according to Lemma 4.1. This subring is obviously
a finite Z-algebra. The upshot is that R is a union of subrings that are finite
Z-algebras. Consequently R is an integral Z-algebra. The statement about the
dimension follows from [4], Chapter VIII, §2, No. 3, Theorem 1. �

5. Application of Lucas’ Theorem

We now shall study products fmfn in the convolution ring R where the indices
m,n are p-powers. Our results hinge on the classical Theorem of Lucas on con-
gruences for binomial coefficients ([13], Section 21). Let a, b ≥ 0 be integers, and
a =

∑
aip

i and b =
∑
bip

i be their p-adic expansion, with digits 0 ≤ ai, bi < p.
Then Lucas Theorem asserts(

a

b

)
≡
∏
i

(
ai
bi

)
mod p.

For our purposes, the following variant is useful: Fix a prime power q = pi, and now
consider the q-adic expansion a =

∑
aiq

i and b =
∑
biq

i, with digits 0 ≤ ai, bi < q.

Lemma 5.1. With the preceding notation, we also have
(
a
b

)
≡
∏
i

(
ai
bi

)
modulo p.

Proof. This can be seen as in the prove of Lucas’ Theorem given by Fine [7]. We
reproduce the argument for the sake of the reader: Fix a =

∑
aiq

i. Inside the
polynomial ring Fp[T ], we have

(1 + T )a =
∏
i≥0

(1 + T q
i

)ai =
∏
i≥0

∑
c≥0

(
ai
c

)
T cq

i

=
∑

c0,c1,...≥0

∏
i≥0

(
ai
ci

)
T ciq

i

.

In the latter sum, a summand vanishes if ci ≥ ai for one index i ≥ 0, an in particular
if ci ≥ p for one i ≥ 0. Discarding these trivial summands and using the uniqueness
of q-adic expansions with digits 0 ≤ bi < q for the numbers b =

∑
biq

i, the above
expression equals

∑
b≥0

∏
i≥0

(
ai
bi

)
T b. The result follows by comparing with the

binomial expansion of (1 + T )a. �

The following congruence property of successive binomial coefficients will be
crucial for us:
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Lemma 5.2. Let q = pν and 0 ≤ m ≤ q be integers. Then
(
m+q−2−a
q−1−b

)
≡ 0 modulo

p for all integers 0 ≤ b ≤ a ≤ m− 2.

Proof. Clearly, the first digit of the q-adic expansions of m+ q− 2−a and q− 1− b
are m − 2 − a and q − 1 − b, respectively. The assumptions yield the inequality
m−2−a < q−1− b, which ensures

(
m−2−a
q−1−b

)
= 0. The statement now follows from

Lemma 5.1. �

Proposition 5.3. Let q = pν and 0 ≤ m ≤ q be integers. Then fmfq = mfq.

Proof. Write fmfq =
∑
λifi. In light of Lemma 5.2, we may apply Proposition 3.8

with n = r = q and deduce that λi = 0 for i > q. Whence we have the inequality
iλi ≤ qλi for all i. We also know

∑
λi = m and

∑
iλi = mq. Whence

mq =
∑

iλi ≤
∑

qλi = qm.

It follows that all our inequalities iλi ≤ qλi are actually equalities. The latter
implies λ1 = . . . = λq−1 = 0, and finally λq = m. �

These relations have rather strange consequences. Consider the subset

S =
{
pjfpi | i, j ≥ 0

}
⊂ R.

This is a multiplicative subset by Proposition 5.3, and p becomes invertible in the
localization S−1R. We thus have a canonical map Z[p−1]→ S−1R.

Proposition 5.4. The canonical map Z[p−1]→ S−1R is bijective.

Proof. To check that the map is surjective, it suffices to verify that fm/1 ∈ S−1R
is in its image. Choose some q = pν with m ≤ q. Then fmfq = mfq, whence
fm/1 = m/1 lies in the image. The map is also injective: Suppose m/pν ∈ Z[p−1]
maps to zero. Then mpjfpi = 0 for some i, j ≥ 0, whence m = 0. �

Given an integers ν ≥ 0, we now consider the subgroup Rν ⊂ R generated by
the f1, fp, . . . , fpν ∈ R. According to Proposition 5.3, this is a subring, whence a
finite flat Z-algebra of rank ν + 1.

Proposition 5.5. The ring Rν is reduced.

Proof. Let x =
∑
i≥j µifpi be a nonzero element, say with µj 6= 0. We compute

x2 = µ2
jp
jfpj +

∑
i>j µ

′
ifpi for certain integers µ′i. It follows that x2 6= 0, and this

implies that Rν is reduced. �

We now seek to understand the geometry of the map Spec(Rν) → Spec(Z). To
this end, we first turn our attention to the fiber ring Rν ⊗ Fp.

Proposition 5.6. The Fp-algebra Rν ⊗ Fp is isomorphic to the local Artin ring
Fp[x1, . . . , xν ]/(x1, . . . , xν)2.

Proof. Proposition 5.3 implies that (fpi ⊗ 1)(fpj ⊗ 1) = 0 for 1 ≤ i, j ≤ ν. Whence
we obtain a homomorphism

Fp[x1, . . . , xν ]/(x1, . . . , xν)2 −→ Rν ⊗ Fp, xi 7−→ fpi ⊗ 1,

which is obviously surjective. This map is bijective, because both algebras have the
same dimension as vector spaces over Fp. �
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Next we look at the rings Rν [1/p] = Rν ⊗Z[1/p] obtained by inverting p, which
we view as an algebra over Z[1/p]. The elements

ei = fpi ⊗ 1/pi ∈ Rν [p−1], 0 ≤ i ≤ ν

form a Z[1/p]-basis and satisfy the relations eiej = ej for 0 ≤ i ≤ j ≤ ν. These
relations imply that the linear maps

ϕj : Rν [1/p] −→ Z[1/p], ei 7−→

{
1 if i ≤ j,
0 else

are homomorphisms of algebras. In turn, we obtain a homomorphism of algebras

Φν : Rν [1/p] −→
ν∏
i=0

Z[1/p], x 7−→ (ϕ0(x), ϕ1(x), . . . , ϕν(x)).

Proposition 5.7. The homomorphism Φν : Rν [1/p]→
∏ν
i=0 Z[1/p] is bijective.

Proof. Both Z[1/p]-modules in question are free of rank ν+ 1, whence it suffices to
check that Φν is surjective. Clearly, the images

(2) Φν(ei) = (0, . . . , 0︸ ︷︷ ︸
i entries

, 1, . . . , 1) ∈
ν∏
i=0

Z[1/p], 0 ≤ i ≤ ν

are module generators, whence the result. �

Remark 5.8. As James Borger pointed out to me, the rings Rν are related to the
ring of Witt vectors W (Z). For a general exposition of Witt vectors, we refer to
[4], Chapter 9, §1. Recall that the Witt vector (1, 0, 0, . . .) ∈ W (Z) is the identity
element, and that the Verschiebung

V : W (Z)→W (Z), (a0, a1, . . .) 7−→ (0, a0, a1, . . .)

is an endomorphism of the underlying additive group. Consider the additive map

Rν −→W (Z), fpi 7−→ V i(1).

This map is a homomorphism of rings, because we have V i(1)×V j(1) = piV j(1) for
i ≤ j. The latter follows with induction on i ≥ 0 from loc. cit., No. 5, Proposition
3. Using the commutative diagram

Wν(Z) −−−−→
∏ν
i=0 Zy y

Wν(Q) −−−−→
'

∏ν
i=0 Q,

where the vertical maps are the canonical inclusions and the horizontal maps are
given by the ghost components, we infer that Wν(Z) is a finite flat Z-algebra of
rank ν+1. It is generated by the images of the V i(1), which follows with induction
on ν ≥ 0 from loc. cit., No. 6, Lemma 4. The upshot is that the composite
maps Rν → Wν(Z) are surjective, whence bijective. Using that that canonical
map W (Z) → lim←−Wn(Z) is bijective, we conclude that the union

⋃
ν Rν might be

regarded as a dense subring of W (Z).

We now come to the second main result of this paper:
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Theorem 5.9. The affine scheme Spec(R) contains infinitely many irreducible
components. In particular, the ring R is not noetherian.

Proof. Seeking a contradiction, we assume that the spectrum of R has only finitely
many irreducible components. Then the spectrum X of the localization R⊗Q also
has only finitely many irreducible components, say X = X1∪. . .∪Xν . Now consider
the subalgebra Rν ⊗Q ⊂ R ⊗Q, and let f : X → Yν be the induced morphism of
affine scheme. The space Yν = Spec(Rν ⊗Q) is discrete and contains ν + 1 points
y0, y1, . . . , yν ∈ Yν . Without loss of generality we may assume that f(Xi) 6= y0 for
all i, that is, y0 6∈ f(X). On the other hand, the map f : X → Yν is dominant,
because Rν → R is injective, contradiction. �

We now may use Proposition 5.7 to determine the normalization of the reduced
ring Rν . Consider the induced map Rν ↪→ Rν [p−1] →

∏ν
i=0 Z[1/p]. According to

Formula (2), we have

(3) Φν(fpi) = (0, . . . , 0︸ ︷︷ ︸
i entries

, pi, . . . , pi),

whence there is a factorization Φν : Rν →
∏ν
i=0 Z.

Proposition 5.10. The inclusion Rν ⊂
∏ν
i=0 Z is the normalization of the reduced

ring Rν in its total fraction ring.

Proof. The map in question becomes bijective after inverting p, and the ring
∏ν
i=0 Z

is normal. We infer that the normalization is of the form
∏ν
i=0Ri ⊂

∏ν
i=0 Z for

some subrings Ri ⊂ Z. Since the ring Z contains only one subring, namely itself,
the inclusion in question must be the normalization of Rν . �

Proposition 5.11. The image of the inclusion map Φν : Rν →
∏ν
i=0 Z is the

subring consisting of elements of the form (b0, . . . , bν) with bj ≡ bj−1 modulo pj for
1 ≤ j ≤ ν.

Proof. Clearly, the entries b0 = . . . = bi−1 = 0 and bi = . . . = bν = pi of Φν(fpi)
satisfy the conditions. By additivity, these conditions hold for all images. Con-
versely, suppose we have entries with bj ≡ bj−1 modulo pj for 1 ≤ j ≤ ν. By
induction on ν, we have Φν−1(x) = (b0, . . . , bν−1) for some x =

∑ν−1
i=0 λifpi . Then

Φν(x) = (b0, . . . , bν−1, bν−1) and Φν(x+λνfpν ) = (b0, . . . , bν−1, bν−1 +λνp
ν). Since

bν ≡ bν−1 modulo pν , some λν solves the equation bν = bν−1 + λνp
ν . Whence

(b0, . . . , bν) lies in the image. �

Now recall that the conductor ideal c ⊂ Rν for the birational inclusion Rν ⊂∏ν
i=0 Z is defined as the annihilator ideal of coker(Φν) = (

∏ν
i=0 Z)/Rν . This is the

largest ideal in Rν that is at the same time an ideal in the overring
∏ν
i=0 Z.

Proposition 5.12. The conductor ideal c ⊂
∏ν
i=0 Z is the principal ideal generated

by (p, p2, . . . , pν , pν).

Proof. Let (b0, . . . , bn) ∈ c. Then we have biai ≡ bi−1ai−1 modulo pi, for all ai ∈ Z,
1 ≤ i ≤ ν. Setting ai = 0 and ai−1 = 1 we deduce bi−1 ∈ piZ. Moreover, aν = 1
and aν−1 = 0 yields bν ∈ pνZ. Whence the conductor algebra is contained in the
principal ideal defined by (p, p2, . . . , pν , pν). Conversely, it is easy to check that the
latter element lies in the conductor ideal. �
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We thus have an identification of residue rings

(
ν∏
i=0

Z)/c = (
ν−1∏
i=0

Z/pi+1Z)× Z/pνZ,

and Φν(fpi) ∈
∏ν
i=0 Z, 1 ≤ i ≤ ν vanishes modulo c. In turn, we obtain a commu-

tative diagram ∏ν
i=0 Z −−−−→ (

∏ν
i=0 Z)/cx x

Rν −−−−→ Z/pνZ
where the map on the right is the diagonal map, and the lower map is given by
sending fpi , 1 ≤ i ≤ ν to zero. According to general properties of conductor ideals,
this diagram is cartesian, and the induced commutative diagram of affine schemes⋃ν

i=0 Spec(Z) ←−−−− Spec((
∏ν
i=0 Z)/c)y y

Spec(Rν) ←−−−− Spec(Z/pνZ)

is cartesian and cocartesian [6]. Roughly speaking, the scheme Spec(Rν) is obtained
from ν + 1 disjoint copies of Spec(Z) by gluing the copies along the points of
characteristic p together, with higher and higher infinitesimal identification along
successive copies.

6. Stone spaces

Keeping the notation from the previous section, we now consider the subring

R∞ =
⋃
ν≥0

Rν ⊂ R,

which is a free Z-module generated by all the fpi ∈ R with i ≥ 0. We seek to
understand its spectrum. To achieve this, we merely have to analyze the canonical
inclusion Rν ⊂ Rν+1. To simplify things, we shall tensor with Q. Consider the
diagram

(4)

Rν −−−−→ Rν+1

Φν

y yΦν+1∏ν
i=0 Q −−−−→

∏ν+1
i=0 Q

where the lower map is given by (a0, . . . , aν) 7→ (a0, . . . , aν , aν), that is, by dupli-
cating the last entry. It follows from Formula (3) that this diagram is commutative.
Set Yν = Spec(

∏ν+1
i=0 Q). The induced map Yν+1 → Yν is easy to understand: If

yνi ∈ Yν denotes the point corresponding to the i-th projection
∏ν
i=0 Q→ Q, then

we have

yν+1
i 7−→

{
yνi if i ≤ ν
yνν if i = ν + 1.

We now consider the inverse limit Y = lim←−Yν ⊂
∏
Yν . Being an inverse limit of

finite discrete spaces, it is a Stone space, that is, a compact and totally disconnected
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space. In our case it consists of the points

yi = (y0
0 , y

1
1 , . . . , y

i
i , y

i+1
i , yi+2

i . . .) ∈ Y, i ≥ 0,

whose entries become eventually constant in the lower index, together with the
distinguished point

y∞ = (y0
0 , y

1
1 , y

2
2 , . . .) ∈ Y,

whose entries always change in the lower index. We now come back to our ring
R∞:

Theorem 6.1. The ring R∞⊗Q is 0-dimensional. Its spectrum is homeomorphic,
as a topological space, to Y , and this is the Alexandroff compactification of the
discrete space {y0, y1, . . .} obtained by putting the point y∞ at “infinity”.

Proof. Let prν : Y → Yν be the canonical projection onto the ν-th factor. The
subspace {y0, y1, . . .} = Y r {y∞} is discrete, because pr−1

ν (yνi ) = {yi} whenever
i < ν. Since Y is compact, it must be the Alexandroff compactification of the
discrete subspace Y r{y∞}, by the uniqueness of the latter ([3], §9, No. 8, Theorem
4).

We clearly have R∞ = lim−→ν
Rν , whence there is a canonical continuous map

Spec(R∞) → lim←−ν Spec(Rν), and the latter is a homeomorphism by [9], Corollary
8.2.10. In particular, R∞ ⊗Q has Krull dimension zero. �

Reduced 0-dimensional rings are also called absolutely flat, or von Neumann
regular. It is easy to give an explicit description of R∞ ⊗Q. Let us call a sequence
of rational numbers (a0, a1, . . .) almost constant if ai = ai+1 = . . . for some index
i ≥ 0. The description of R∞ given by (4) immediately gives:

Proposition 6.2. The ring R∞⊗Q is isomorphic to the subring of
∏∞
i=0 Q whose

elements are the almost constant sequences (a0, a1, . . .).

Having understood the ring R∞, one next should analyze the ring extension
R∞ ⊂ R. Let us mention the following:

Proposition 6.3. The fiber of the morphism Spec(R)→ Spec(R∞) over the point
y∞ consist of only one point.

Proof. For each fpi ∈ R∞, the open subset D(fpi) ⊂ Spec(R∞) contains y∞ by (3),
and we also have y∞ ∈ D(p). The assertion now follows from Proposition 5.4. �
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