A-H-bimodules and equivalences

Claudia Menini, Ferrara, Italy, Alexander Seidel, Düsseldorf, Germany, Blas Torrecillas, Almeria, Spain, and Robert Wisbauer, Düsseldorf, Germany

Abstract

In [6, Theorem 2.2] Doi gave a Hopf-algebraic proof of a generalization of Oberst's theorem on affine quotients of affine schemes. He considered a commutative Hopf algebra H over a field, coacting on a commutative H-comodule algebra A. If A^{coH} denotes the subalgebra of coinvariant elements of A and $\beta : A \otimes_{A^{coH}} A \longrightarrow A \otimes H$ the canonical map, he proved that the following are equivalent:

- (a) $A^{coH} \subset A$ is a faithfully flat Hopf Galois extension;
- (b) the functor $(-)^{coH} : \mathcal{M}_A^H \longrightarrow A^{coH}$ -Mod is an equivalence;
- (c) A is coflat as a right H-comodule and β is surjective.

Schneider generalized this result in [14, Theorem 1] to the noncommutative situation imposing as a condition the bijectivity of the antipode of the underlying Hopf algebra. Interpreting the functor of coinvariants as a Hom-functor, Menini and Zuccoli gave in [10] a moduletheoretic presentation of parts of the theory. Refining the techniques involved we are able to generalize Schneiders result to H-comodulealgebras A for a Hopf algebra H (with bijective antipode) over a commutative ring R under fairly weak assumptions.

Introduction

Let H denote a Hopf algebra over a commutative ring R with $_RH$ projective, and A a right H-comodule algebra. This setup generalizes such different situations as group scheme actions on affine schemes or R-algebras graded by a group. Using this setup with commutativity-conditions for the algebras involved, Doi gave in [6, Theorem 2.2] a Hopf algebraic proof of Oberst's theorem on affine quotients of affine schemes (conf. [12]). Schneider generalized this result to the non-commutative situation, i.e., he showed in [14, Theorem 1] that for a Hopf algebra H with bijective antipode over a field k and an Hcomodule-Algebra A, the functor of coinvariants $(-)^{coH} : \mathcal{M}_A^H \to A^{coH}$ -Mod is an equivalence of categories if and only if A is injective as a right H-comodule and the canonical map $\beta : A \otimes_{A^{coH}} A \to A \otimes H$ is surjective.

It was observed by Menini and Zuccoli in [10] that parts of the theory can be described by general module-theoretic methods. Refining these techniques we are able to generalize the main part of Schneiders paper to H-comodulealgebras A for a Hopf algebra H over a ground ring R.

In Section 1 we study general properties of (A-H)-bimodules for a Hopf algebra H over an arbitrary commutative ring R, provided $_RH$ is projective. In particular we show in 1.6 that \mathcal{M}_A^H is subgenerated by $A \otimes_R H$ and hence can be identified with $\sigma_{A^{op}\#H^*}[A \otimes_R H]$ where $A^{op}\#H^*$ is a suitable smashproduct.

Using results from [10] it is shown in 1.10 that for H a semiperfect Hopf algebra over a QF-ring R the category \mathcal{M}_A^H can be identified with $A^{op} \# T$ -Mod, where T is the left rational part of H^* .

The second section is devoted to the question when A is a (projective) generator in \mathcal{M}_A^H . This part presents the module-theoretic background which makes it possible to describe (faithfully) flat Hopf-Galois extensions $A^{coH} \subset A$ as (projective) generators in the category of (A-H)-bimodules (conf. 2.5 and 2.6).

In Section 3 we assume that the antipode of the Hopf algebra H is bijective. We proof in 3.1 that $A \otimes_R H$ is a generator in the category \mathcal{M}_A^H if and only if A is H-generated as a right H-comodule. In 3.3 we give a refinement of Corollary 3.2 in [14]: For $_RA$ flat over R we characterise coflatness of A as an object in \mathcal{M}_A^H as projectivity of A as an object in \mathcal{M}_A^H . The main result in Section 3 is a generalisation of Schneiders theorem on faithfully flat Hopf-Galois extensions ([14]. Theorem 1) under fairly weak assumptions from ground-fields to ground-rings (see 3.5). The same theorem is extended to Hopf-Galois extensions over ground-QF-rings in 3.7.

1 Right (A-H)-bimodules

Let H be a Hopf R-algebra with multiplication $\mu : H \otimes_R H \to H$, unit 1_H , comultiplication $\Delta : H \to H \otimes_R H$ and counit $\varepsilon : H \to R$. We will always assume H to be projective as an R-module. The dual module $H^* = \operatorname{Hom}_R(H, R)$ endowed with the convolution product is an *R*-algebra. For the canonical structures on *H* and H^* we use the notation (for $h, x \in H, f \in H^*$)

> $f \rightarrow h = (1 \otimes f)\Delta(h)$ for H as left H^* -module and $h \rightarrow f = [x \mapsto f(xh)]$ for H^* as left H-module.

Let A be a right H-comodule algebra, i.e., an R-algebra $\mu_A : A \otimes_R A \to A$ with unit 1_A and a right H-comodule structure $\rho_A : A \to A \otimes_R H$ which is an algebra morphism.

For any two right *H*-comodules $\varrho_M : M \to M \otimes_R H$ and $\varrho_N : N \to N \otimes_R H$ the tensor product $M \otimes_R N$ can be either endowed with the trivial comodule structure (e.g. $id \otimes \varrho_N$) or with the twisted one - intertwining the two comodule structures involved - i.e.

$$\varrho_{M\otimes_R N} := (id \otimes id \otimes \mu_H) \circ (id \otimes \tau \otimes id) \circ (\varrho_M \otimes \varrho_N).$$

The resulting comodule with this *crossed* comodule strucure we denote by $M \otimes_{R}^{c} N$.

For any right A-module N, we consider $N \otimes_R H$ as a right $A \otimes_R H$ -module and a right A-module by

$$(n \otimes c)(a \otimes h) := na \otimes ch$$
, and $(n \otimes c) \cdot a := (n \otimes c)\varrho_A(a)$.

1.1 (A-H)-bimodules. An R-module M is called a right (A-H)-bimodule if M is a right A-module $\psi_M : M \otimes_R A \to M$, and a right H-comodule $\varrho_M : M \to M \otimes_R H$, such that ϱ_M is A-linear, i.e., for $m \in M$, $a \in A$,

$$\varrho_M(ma) = \varrho_M(m) \cdot a \ (= \varrho_M(m)\varrho_A(a)),$$

or - equivalently - ψ_M is a right comodule morphism, where $M \otimes_R^c A$ has the right comodule structure defined above, i.e.,

$$(\psi_M \otimes id) \circ \varrho_{MA}(m \otimes a) = \varrho_M(\psi_M(m \otimes a)) = \varrho_M(ma).$$

We denote by \mathcal{M}_A^H the category which has as objects all (A-H)-bimodules and as set of morphisms between (A-H)-bimodules M and N the mappings which are both A-module and H-comodule maps (denoted by $\operatorname{Bim}_A^H(M, N)$). This is obviously an additive category which is closed under infinite direct sums and has kernels and cokernels.

1.2 Basic properties of (*A*-*H*)-bimodules.

(1) For every right A-module N, $N \otimes_R H$ is an (A-H)-bimodule by

 $\begin{array}{lll} \varrho_{N\otimes_R H} & : & N\otimes_R H \to (N\otimes_R H)\otimes_R H, & n\otimes c \mapsto n\otimes \Delta c\,, \\ \psi_{N\otimes_R H} & : & (N\otimes_R H)\otimes_R A \to N\otimes_R H, & n\otimes c\otimes a \mapsto (n\otimes c)\varrho_A(a)\,. \end{array}$

For any (A-H)-bimodule M, the structure map $\varrho_M : M \to M \otimes_R H$ is an (A-H)-bimodule map.

(2) If $\alpha : N_1 \to N_2$ is an (epi) morphism in Mod-A, then

 $\alpha \otimes id_H : N_1 \otimes_R H \to N_2 \otimes_R H$

is an (epi) morphism of (A-H)-bimodules.

(3) For every right H-comodule L, $L \otimes_R^c A$ is an (A-H)-bimodule by

 $\begin{array}{lll} \psi_{L\otimes_R^c A} & : & (L\otimes_R^c A)\otimes_R A \to L\otimes_R^c A, & l\otimes a\otimes b\mapsto l\otimes ab\,,\\ \varrho_{L\otimes_R^c A} & : & L\otimes_R^c A \to (L\otimes_R^c A)\otimes_R H, & l\otimes a\mapsto \sum_{i,j}l_j\otimes a_i\otimes \tilde{l}_j\tilde{a}_i\,. \end{array}$

For any (A-H)-bimodule M, the structure map $\psi_M : M \otimes_R^c A \to M$ is an (A-H)-bimodule map.

(4) If $\beta: L_1 \to L_2$ is an (epi) morphism of H-comodules, then

$$\beta \otimes id_A : L_1 \otimes_R^c A \to L_2 \otimes_R^c A$$

is an (epi) morphism of (A-H)-bimodules.

Proof. This can be immediately verified from the definitions (see [5, Example 1.1, 1.2]).

As a first interesting application we observe:

1.3 Corollary. Assume the right *H*-comodule *G* is a generator in \mathcal{M}^H . Then (with the structure from (3)) $G \otimes_R^c A$ is a generator in \mathcal{M}_A^H .

Proof. Let M be any (A-H)-bimodule. Then there exists an H-comodule epimorphism $G^{(\Lambda)} \to M$ which yields the (A-H)-epimorphisms

$$G^{(\Lambda)} \otimes^c A \to M \otimes^c A \to M.$$

1.4 Remark. By 1.2, the tensor products $H \otimes_R^c A$ and $A \otimes_R H$ both are (A-H)-bimodules. If the antipode S has a composition inverse \overline{S} , then the two bimodules are isomorphic by the maps

where $\varrho(a) = \sum_i a_i \otimes \tilde{a}_i \in A \otimes H$.

The (A-H)-bimodules may be considered as modules over an algebra which is defined by a suitable multiplication on $A^{op} \otimes_R H^*$.

1.5 The smash product $A^{op} # H^*$. Any module $M \in \mathcal{M}_A^H$ is a left H^* -module and we have in fact a left action

$$(A^{op} \otimes_R H^*) \otimes_R M \to M, \quad (a \otimes k) \otimes m \mapsto (a \otimes k)\varrho_M(m).$$

Notice that this does not make M an $A^{op} \otimes_R H^*$ -module with respect to the usual ring structure on $A^{op} \otimes_R H^*$. We define a new multiplication on $A^{op} \otimes_R H^*$ by

$$(a \otimes k)(b \otimes h) = \sum_{j} b_j a \otimes (\tilde{b}_j \to k) * h,$$

where $a, b \in A, k, h \in H^*$ and $\varrho_A(b) = \sum_j b_j \otimes b_j$.

The resulting algebra is called the *(left)* smash product of A and H^* . We denote it by $A^{op} # H^*$ and for $a \otimes f$ we write a # f. $1_A # \varepsilon_H$ is the unit of $A^{op} # H^*$ and it is an exercise in handling the definitions to show that every (A-H)-bimodule is a left $A^{op} # H^*$ -module and (A-H)-bimodules morphisms are precisely the $A^{op} # H^*$ -module morphisms.

The maps $A^{op} \to A^{op} \# H^*, a \mapsto a \# \varepsilon_H$, and $H^* \to A^{op} \# H^*, k \mapsto 1_A \# k$, are algebra embeddings. In particular every left $A^{op} \# H^*$ -module is a right A-module and a left H^* -module.

1.6 The category \mathcal{M}_A^H . Let A be a right H-comodule algebra.

- (1) The category \mathcal{M}_A^H is equal to $\sigma_{A^{op}\#H^*}[A \otimes_R H] = \sigma_{A^{op}\#H^*}[H \otimes_R^c A]$, the subcategory of left $A^{op}\#H^*$ -modules subgenerated by $A \otimes_R H$ or $H \otimes_R^c A$.
- (2) For any $M \in \mathcal{M}_A^H$ and $N \in \text{Mod-}A$,

$$\operatorname{Bim}_{A}^{H}(M, N \otimes_{R} H) \to \operatorname{Hom}_{A}(M, N), \ f \mapsto (id \otimes \varepsilon) \circ f,$$

is an *R*-module isomorphism with inverse map $h \mapsto (h \otimes id) \circ \varrho$.

(3) For $N \in \mathcal{M}^H$ and $M \in \mathcal{M}^H_A$,

 $\operatorname{Bim}_{A}^{H}(N \otimes_{R}^{c} A, M) \to \operatorname{Com}^{H}(N, M), \ g \mapsto g(- \otimes 1_{A}),$

is an R-isomomorphism (functorial in M) with inverse map $f \mapsto \psi_M \circ (f \otimes id_A).$

Proof. (1) By 1.2, $A \otimes_R H$ is an (A-H)-bimodule hence an $A^{op} # H^*$ -module and so are all objects in $\sigma_{A^{op} # H^*} [A \otimes_R H]$.

Let $M \in \mathcal{M}_A^H$ and $\alpha : A^{(\Lambda)} \to M$ an epimorphism in Mod-A. Then the maps

$$\alpha \otimes id: A^{(\Lambda)} \otimes_R H \to M \otimes_R H$$
 and $\varrho_M: M \to M \otimes_R H$

are morphisms in \mathcal{M}_A^H , proving that M is subgenerated by $A \otimes_R H$.

To show that $H \otimes_R^c A$ is also a subgenerator recall that for every (A-H)bimodule $M, M \otimes_R H$ is an H-generated right H-comodule. A comodule epimorphism $H^{(\Lambda)} \to M \otimes_R H$ yields a bimodule epimorphism

$$(H \otimes^c A)^{(\Lambda)} \simeq H^{(\Lambda)} \otimes^c A \to (M \otimes H) \otimes^c_R A.$$

Since $\varrho_M : M \to M \otimes_R H$ splits in *R*-Mod, we have $M \otimes_R^c A \subset (M \otimes_R H) \otimes_R^c A$ in \mathcal{M}_A^H . But $\mu_M : M \otimes_R^c A \to M$ is an epimorphism in \mathcal{M}_A^H and we are done.

(2) This fact comes from the adjunction of the functors $U_H : \mathcal{M}_A^H \to \text{Mod-}A$ (forgetting the *H*-comodule structure) and $-\otimes_R H : \text{Mod-}A \to \mathcal{M}_A^H$ ([22, 3.12]).

(3) This is dual two (2). The relation stems from the adjunction of the functors $U_A : \mathcal{M}_A^H \to \mathcal{M}^H$ (the functor forgetting the A-module structure) and $-\otimes_R^c A : \mathcal{M}^H \to \mathcal{M}_A^H$.

Remark: It is worth noting that properties which can be characterised via morphism functors like generation or projectivity are closley related through the adjunctions. For example - if N is a projective object (a generator) in \mathcal{M}^H , than $N \otimes_R^c A$ becomes projective (a generator) in \mathcal{M}^H_A using (3) of 1.6 thus giving an alternative proof of 1.3.

We denote by $\mathcal{T}^H : H^*\text{-}Mod \to \mathcal{M}^H$ the rational functor, assigning to any left $H^*\text{-}module M$ the largest right H-subcomodule of M, i.e. the trace of \mathcal{M}^H in M (the rational part of M). Similarly for any left $A^{op} \# H^*\text{-}module M$ the trace of \mathcal{M}^H_A in M (as a bimodule) is the largest R-submodule of M belonging to \mathcal{M}^H_A , which we denote by $\mathcal{T}^H_A(M)$.

For a left $A^{op} # H^*$ -module M the trace $\mathcal{T}^H(M)$ is an H-subcomodule and the trace $\mathcal{T}^H_A(M)$ is a subbimodule of M. The next proposition connects these two concepts.

1.7 Proposition. Let $M \in A^{op} # H^*$ -Mod. Then

- (1) $\mathcal{T}^H(M) \in \mathcal{M}^H_A$.
- (2) $M \in \mathcal{M}_A^H$ if and only if $M = \mathcal{T}^H(M)$.

Proof. (1) First of all note that the H^* -module structure of $\mathcal{T}^H(M)$ coincides with the one inherited from M so that for every $m \in \mathcal{T}^H(M)$ and for $f \in H^*$ we have

$$f \cdot m = (1 \# f)m = (1 \otimes f)\varrho(m),$$

where $\varrho : \mathcal{T}^H(M) \to \mathcal{T}^H(M) \otimes H$ is the structure map. Moreover for every $m \in \mathcal{T}^H(M)$ and $a \in A$, putting $\varrho_A(a) = \sum_j a_j \otimes \tilde{a}_j$ and $\varrho(m) = \sum_i m_i \otimes \tilde{m}_i$ we have:

$$f \cdot ma = (1\#f)(a\#\varepsilon)m = ((1\#f)(a\#\varepsilon))m$$
$$= \sum_{j}(a_{j}\#(\tilde{a}_{j} \to f))m$$
$$= \sum_{i,j}(a_{j}\#\varepsilon)m_{i}(\tilde{a}_{j} \to f)(\tilde{m}_{i})$$
$$= \sum_{i,j}(a_{j}\#\varepsilon)m_{i}f(\tilde{m}_{i}\tilde{a}_{j})$$
$$= \sum_{i,j}m_{i}a_{j}f(\tilde{m}_{i}\tilde{a}_{j}).$$

The map

$$\varphi: \mathcal{T}^{H}(M) \otimes^{c} A \longrightarrow \mathcal{T}^{H}(M)A, \quad m \otimes a \longmapsto ma \ (= (a \# \varepsilon)m),$$

is an H^* -morphism, since

$$f \cdot (m \otimes a) = (1 \# f) \sum_{i,j} (m_i \otimes a_j) \otimes \tilde{m}_i \tilde{a}_j \longmapsto \sum_{i,j} m_i a_j f(\tilde{m}_i \tilde{a}_j) = f \cdot ma,$$

and therefore the image of the right *H*-comodule $\mathcal{T}^{H}(M) \otimes^{c} A$ under φ is also an *H*-comodule, i.e. $\mathcal{T}^{H}(M)A \subset \mathcal{T}^{H}(M)$.

(2) (\Rightarrow) clear by definition. (\Leftarrow) follows by (1).

As a consequence of the last proposition we get

1.8 Corollary. If \mathcal{M}^H is closed under extensions in H^* -Mod, then \mathcal{M}^H_A is closed under extensions in $A^{op} \# H^*$ -Mod.

Proof. Consider an exact sequence in $A^{op} # H^*$ -Mod,

 $0 \longrightarrow K \longrightarrow L \longrightarrow M \longrightarrow 0,$

where $K, M \in \mathcal{M}_A^H$. Then $L = \mathcal{T}^H(L) \in \mathcal{M}^H$ and so $L \in \mathcal{M}_A^H$ by 1.7. \Box

The following observations are inspired by ideas from Cai-Chen [4].

1.9 Dense subalgebras of $A^{op} # H^*$. Let $T \subset H^*$ be a subalgebra and assume _RA to be flat.

(1) If T is dense in H^* , then $A^{op} \# T$ is an $A \otimes_R H$ -dense subalgebra of $A^{op} \# H^*$ and we have

$$\sigma_{A^{op}\#T}[A\otimes_R H] = \mathcal{M}_A^H.$$

- (2) If T is a ring with enough idempotents then $A^{op}#T$ also has enough idempotents.
- (3) Now let T be $\mathcal{T}^{H}(_{H^*}H^*)$. If $T \subset H^*$ is H-dense, then we have

$$A^{op} \# T = \mathcal{T}^H(A^{op} \# H^*) = \mathcal{T}^H_A(A^{op} \# H^*).$$

Moreover for any $M \in \mathcal{M}_A^H$ we have $(A^{op} \# T)M = M$.

Proof. (1) Consider any (A-H)-bimodule M. Let $a \# f \in A^{op} \# T$ and take any $m_1, \ldots, m_n \in M$. Putting $\varrho_M(m_l) = \sum_i m_{li} \otimes \tilde{m}_{li}$, we have for each $l \leq n$,

$$(a\#f)(m_l) = \sum_i f(\tilde{m}_{li})m_{li}a.$$

By assumption there exists $t \in T$ such that $t(\tilde{m}_{li}) = f(\tilde{m}_{li})$, for all (finitely many) i and $l \leq n$. So $(a \# f)(m_l) = (a \# t)(m_l)$ for all $l \leq n$, showing that $A^{op} \# T$ is *M*-dense in $A^{op} \# H^*$ (modulo the annihilator of *M*).

In particular $A^{op} \# T$ is $A \otimes_R H$ -dense in $A^{op} \# H^*$ and this implies

$$\sigma_{A^{op}\#T}[A \otimes_R H] = \sigma_{A^{op}\#H^*}[A \otimes_R H] = \mathcal{M}_A^H$$

(e.g., [1, Proposition 3.1], [20, 15.7]).

(2) Assume $\{e_{\lambda}\}_{\Lambda}$ is a set of enough orthogonal idempotents of T. Then $\{1_A \# e_{\lambda}\}_{\Lambda}$ is a set of enough orthogonal idempotents of $A^{op} \# T$.

(3) Since T is dense in H^* , we know that $\mathcal{T}^H(N) = TN$ for any $N \in H^*$ -Mod(see [22, 2.6] for details). Now by 1.7,(1)

$$\mathcal{T}^{H}(A^{op}\#H^{*}) = T(A^{op}\#H^{*}) = (1\#T)(A^{op}\#H^{*}) = A^{op}\#T \in \mathcal{M}_{A}^{H}.$$

Using (1) above we get density of $A^{op} \# T$ in $A^{op} \# H^*$. Applying the formalism of [22, 2.6] to $\sigma_{A^{op} \# T}[A \otimes_R H]$ we get $\mathcal{T}_A^H(M) = (A^{op} \# T)M$, for any $M \in A^{op} \# H^*$ -Mod.

As a special case of the situation described above we recall the properties of semiperfect coalgebras. **1.10 Proposition.** Let H be a (left) semiperfect Hopf algebra over a QF ring R with trace ideal $T := \operatorname{Rat}_{(H^*}H^*)$. Then

$$\sigma_{A^{op}\#T}[A \otimes_R H] = \mathcal{M}_A^H = A^{op} \#T - Mod,$$

and $T \otimes_{R}^{c} A$ and $H \otimes_{R}^{c} A$ are generators in \mathcal{M}_{A}^{H} .

Moreover $A^{op} \# T$ is an algebra with enough idempotents and $A \otimes_R H$ and $H \otimes_R^c A$ are isomorphic as $A^{op} \# H^*$ -modules.

Proof. By [9, 3.9] and [22, 6.4] H and T are generators in \mathcal{M}^H and T is dense in H^* . So the first assertions follow from 1.9 and 1.3.

Since the antipode of H is bijective (by [9, 3.8]) $A \otimes_R H$ and $H \otimes_R^c A$ are isomorphic bimodules (by 1.4).

2 A as an A-H-bimodule

In this section we study the structure of A as an A-H-bimodule. It turns out, that this leads to the equivalence-theorems for bimodule-categories studied in [14] or [10].

2.1 Coinvariants. For any $M \in \mathcal{M}_A^H$ put

 $M^{coH} = \{ m \in M \mid \varrho_M(m) = m \otimes 1_H \}, \text{ in particular}$ $A^{coH} = \{ a \in A \mid \varrho_A(a) = a \otimes 1_H \}.$

(1) There is an R-module isomorphism

 $\nu_M : \operatorname{Bim}^H_A(A, M) \to M^{coH}, \ f \mapsto f(1_A),$

with inverse map $\omega_M : m \mapsto [a \mapsto (a \otimes \varepsilon_H)m].$

(2) In particular we have a ring isomorphism

$$\nu_A$$
: End_A^H(A) = Bim_A^H(A, A) $\rightarrow A^{coH}$,

 M^{coH} is a right A^{coH} -module and ν_M is an A^{coH} -module morphism.

Proof. The proof of [10, 3.15] also applies for coalgebras over rings.

2.2 A^{coH} -modules and (A-H)-bimodules. Let $V \in Mod-A^{coH}$. Then $V \otimes_{A^{coH}} A$ is a right A-module and has a right H-comodule structure induced by the right comodule structure of A,

$$V \otimes_{A^{coH}} A \to V \otimes_{A^{coH}} A \otimes_R H, \quad v \otimes a \mapsto v \otimes \varrho_A(a).$$

For any $M \in \mathcal{M}_A^H$, there are (A-H)-bimodule morphisms

$$\Psi_M : \operatorname{Bim}_A^H(A, M) \otimes_{A^{coH}} A \to M, \quad f \otimes a \mapsto f(a),$$

$$\Phi_M : \qquad M^{coH} \otimes_{A^{coH}} A \to M, \quad m \otimes a \mapsto ma,$$

which are connected by the commutative diagram

where $\nu_M \otimes id$ is an isomorphism (by 2.1) and hence Ψ_M is injective (surjective) if and only if Φ_M is.

The next proposition provides some more technical relationships between coinvariants and constructions related to A-modules.

2.3 A-modules and coinvariants. For every $N \in Mod-A$,

$$\Lambda_N: N \to (N \otimes_R H)^{coH}, \quad n \mapsto n \otimes 1_H,$$

is an isomorphism of right A^{coH} -modules with inverse map $\sum_i n_i \otimes h_i \mapsto \sum_i n_i \varepsilon_H(h_i).$

Combined with the isomorphism $\nu_{N\otimes H}$: $\operatorname{Bim}_{A}^{H}(A, N\otimes_{R} H) \to (N\otimes_{R} H)^{coH}$ (see 2.1) this yields an isomorphism

$$\Theta_N : \operatorname{Bim}_A^H(A, N \otimes_R H) \to N, \ f \mapsto (1 \otimes \varepsilon) f(1_A)$$

We have the commutative diagram

From this we derive an isomorphism

$$\Theta_N \otimes id: \operatorname{Bim}_A^H(A, N \otimes_R H) \otimes_{A^{coH}} A \to N \otimes_{A^{coH}} A,$$

$$f \otimes a \qquad \mapsto (1 \otimes \varepsilon) f(1_A) \otimes a.$$

Moreover we obtain a map

$$\beta^{N}: N \otimes_{A^{coH}} A \xrightarrow{\Lambda_{N} \otimes id} (N \otimes_{R} H)^{coH} \otimes_{A^{coH}} A \xrightarrow{\Phi_{N \otimes_{R}} H} N \otimes_{R} H,$$
$$n \otimes a \qquad \mapsto \qquad (n \otimes 1)\varrho(a),$$

which yields the commutative diagram

Proof. All these assertions are straightforward to verify (e.g., [10, Lemma 3.18, ff]). \Box

We will use the mappings introduced above to characterize A as a generator in \mathcal{M}_A^H . Hereby it is helpful to observe that an isomorphism for some single module implies isomorphisms for a whole class of modules. Such a situation is considered in our next proposition.

2.4 $\Psi_{A\otimes_R H}$ as isomorphism. With the previous notation assume that $_{A^{coH}}A$ is flat and

 $\Psi_{A\otimes_R H} : \operatorname{Bim}_A^H(A, A \otimes_R H) \otimes_{A^{coH}} A \to A \otimes_R H, \quad f \otimes a \mapsto f(a),$

is an isomorphism. Then

- (1) A is a subgenerator in \mathcal{M}_A^H ;
- (2) for each $M \in \mathcal{M}_A^H$, Ψ_M is a monomorphism;
- (3) for every A-generated $M \in \mathcal{M}_A^H$, Ψ_M is an isomorphism.

Proof. (1) Since $\Psi_{A\otimes_R H}$ is an isomorphism, $A \otimes_R H$ is A-generated as a bimodule and hence A is a subgenerator in $\sigma_{A^{op}\#H^*}[A \otimes_R H] = \mathcal{M}_A^H$.

- (2) With slight modifications the proof of [10, Lemma 3.22] applies.
- (3) If M is A-generated as an (A-H)-bimodule, then Ψ_M is surjective. \Box

We are now prepared to give a number of interesting properties which make A a generator in $\sigma_{A^{op}\#H^*}[A \otimes_R H] = \mathcal{M}_A^H$. This essentially extends [10, Theorem 3.27] from base fields to base rings.

2.5 A as generator in \mathcal{M}_A^H . Let A be a right H-comodule algebra. The following are equivalent:

- (a) A is a generator in \mathcal{M}_A^H ;
- (b) the functor $\operatorname{Bim}_{A}^{H}(A, -) : \mathcal{M}_{A}^{H} \to \operatorname{Mod}_{A^{coH}}$ is faithful;

(c) for every $M \in \mathcal{M}_A^H$, we have an (A-H)-bimodule isomorphism

 $\Phi_M: M^{coH} \otimes_{A^{coH}} A \to M, \ m \otimes a \mapsto ma;$

(d) $_{A^{coH}}A$ is flat and for every $A \otimes_R H$ -generated (A-H)-bimodule M,

$$\Psi_M : \operatorname{Bim}_A^H(A, M) \otimes_{A^{coH}} A \to M, \ f \otimes a \mapsto f(a) \,,$$

is an isomorphism;

(e) $A^{coH}A$ is flat and we have an isomorphism

 $\Psi_{A\otimes_R H}: \operatorname{Bim}_A^H(A, A\otimes_R H) \otimes_{A^{coH}} A \to A \otimes_R H, \ f \otimes a \mapsto f(a);$

(f) $A^{coH}A$ is flat and we have an isomorphism

$$\beta^A : A \otimes_{A^{coH}} A \to A \otimes_R H, \ a \otimes b \mapsto (b \otimes 1_H) \varrho_A(a).$$

Proof. $(a) \Leftrightarrow (b)$ This holds for any category (e.g., [20, 13.2]).

 $(a) \Leftrightarrow (c) \Leftrightarrow (d)$ are proved in [10, Theorems 2.2, 2.3].

 $(d) \Leftrightarrow (e)$ This is shown in 2.4.

 $(e) \Leftrightarrow (f)$ follows from the diagrams in 2.3.

In any Grothendieck category, a finitely generated projective generator determines a category equivalence and we have this if we impose on A slightly stronger conditions than in 2.5. Our result extends [10, Theorem 3.29] (for the case D = H) from base fields to base rings.

2.6 A as projective generator in \mathcal{M}_A^H . Let A be a right H-comodule algebra. Then the following are equivalent:

- (a) A is a projective generator in \mathcal{M}_A^H ;
- (b) we have a category equivalence

(c) $_{A^{coH}}A$ is faithfully flat and we have isomorphisms

$$\begin{split} \Psi_{A\otimes_R H} &: \operatorname{Bim}_A^H(A, A\otimes_R H) \otimes_{A^{coH}} A \to A \otimes_R H; \\ (\beta^A &: A \otimes_{A^{coH}} A \to A \otimes_R H, \ a \otimes b \mapsto (b \otimes x) \varrho_A(a)); \end{split}$$

(d) for any $M \in \mathcal{M}_A^H$ and $N \in Mod A^{coH}$, we have isomorphisms

$$\Psi_M : \operatorname{Bim}_A^H(A, M) \otimes_{A^{coH}} A \to M, \quad f \otimes a \mapsto f(a),$$

$$\Omega_N : N \to \operatorname{Bim}_A^H(A, N \otimes_{A^{coH}} A), \quad n \mapsto [a \mapsto n \otimes a].$$

Proof. Since A is finitely generated as an (A-H)-bimodule the assertions follow from characterizations of progenerators in $\sigma[M]$ (see [20, 18.5 and 46.2]) and 2.5.

2.7 Remarks. (1) For A = H, $H^{coH} = R \cdot 1_H$ and the map

$$\beta: H \otimes_R H \to H \otimes_R H, \ h \otimes g \mapsto (h \otimes 1_H) \Delta(g),$$

is an isomorphism. So H is a generator in Bimod-H and we obtain the Fundamental Theorem of Hopf modules.

(2) Let A be a right H-comodule algebra. If

$$\beta^A$$
: $A \otimes_{A^{coH}} A \to A \otimes_R H$, $a \otimes b \mapsto (a \otimes 1_H) \varrho_A(b)$,

is an isomorphism then $A^{coH} \subset A$ is called a *right Hopf-Galois extension* (see [10, 3.23]). 2.5 and 2.6 characterize such extensions.

Combining our observations we obtain an extension of Beattie-Dăscălescu-Raianu [2, Theorem 3.1] to Hopf algebras over QF rings. Recall that a left modules M over any ring S is said to be a *weak generator* if for any right S-module $L, L \otimes_S M = 0$ implies L = 0.

2.8 Comodule algebras over semiperfect Hopf algebras. Let H be a semiperfect Hopf algebra over a QF ring R and A be a right H-comodule algebra.

- (1) The following are equivalent:
 - (a) A is a generator in \mathcal{M}_A^H ;
 - (b) A generates $H \otimes_{R}^{c} A$ (or $T \otimes_{R}^{c} A$) as bimodules;
 - (c) the map $\Psi_{H\otimes_R^c A}$: $\operatorname{Bim}_A^H(A, H\otimes_R^c A) \otimes_{A^{coH}} A \to H\otimes_R^c A$ is surjective (bijective);

(d) the map $\Psi_{T\otimes_R^c A}$: $\operatorname{Bim}_A^H(A, T\otimes_R^c A) \otimes_{A^{coH}} A \to T\otimes_R^c A$ is surjective.

(2) The following are equivalent:

(a) A is a projective generator in \mathcal{M}_A^H ;

- (b) the map $\Psi_{A\otimes_R^c H}$: $\operatorname{Bim}_A^H(A, H\otimes_R^c A) \otimes_{A^{coH}} A \to H\otimes_R^c A$ is surjective and $_{A^{coH}}A$ is a weak generator;
- (c) A is injective in \mathcal{M}_A^H and the map $\Psi_{A\otimes_R^c H} : \operatorname{Bim}_A^H(A, H \otimes_R^c A) \otimes_{A^{coH}} A \to H \otimes_R^c A$ is surjective.

Proof. (1) By [9, 3.9], H and T are (projective) generators in \mathcal{M}^H and hence $H \otimes_R^c A$ and $T \otimes_R^c A$ are generators in \mathcal{M}_A^H (see 1.3). Now the assertions follow from 2.5.

(2) $(a) \Rightarrow (b)$ follows from 2.6.

 $(b) \Rightarrow (a)$ As in the proof of (1), $H \otimes^{c} A$ is a generator in \mathcal{M}_{A}^{H} . The surjectivity of $\Psi_{A \otimes_{R}^{c} H}$ implies, that A is a generator in \mathcal{M}_{A}^{H} as well. So by 2.5 A is flat over A^{coH} . Now the weak generator property makes A faithfully flat over A^{coH} and we are done using 2.6.

 $(a) \Leftrightarrow (c)$ will be proved in the next section 3.6,(4). Note that under the assumptions on H the antipode is bijective.

3 Schneiders theorem revisited

From now on we assume, that the antipode S of the Hopf algebra H is bijective with composition inverse \overline{S} . In [14] Schneider generalizes Oberst's result on affine quotients [12] to the non-commutative situation. His proof is a Hopf algebraic one. But the result is module theoretic in nature - relating equivalences between categories of modules to the exactness of functors between them - so we will give a module theoretic proof of the theorem in this section.

The key observation is the following :

3.1 $A \otimes_R H$ as generator in \mathcal{M}_A^H .

Let H be a Hopf algebra with bijective antipode, A a right H-comodule algebra. Then the following are equivalent:

- (a) $A \otimes_R H$ is a generator in \mathcal{M}_A^H ;
- (b) $A \otimes_R H$ generates A in \mathcal{M}_A^H ;
- (c) A is H-generated as right H-comodule.

Proof. $(a) \Rightarrow (b)$ is trivial.

 $(b) \Rightarrow (c)$ By assumption $A \otimes_R H$ generates A in \mathcal{M}_A^H and therefore in \mathcal{M}^H . Recall that $A \otimes_R H$ has trivial right comodule structure and therefore is H-generated in \mathcal{M}^H . Combining this two facts we see that A is H-generated as right H-comodule. $(c) \Rightarrow (a)$ Let $\phi: H^{(\Lambda)} \to A$ be an epimorphism in \mathcal{M}^H and $M \in \mathcal{M}^H_A$ with right A-module structure given by $\mu_M: M \otimes_R^c A \to M$. Since M is a right Hcomodule the module $M \otimes_R^c H$ with the structure given 1.2(2) becomes a Hopf module (i.e. an object in \mathcal{M}^H_H). By the Fundamental theorem of Hopf modules $M \otimes_R^c H$ is H-generated as a Hopf module and therefore it is H-generated as right H-comodule, say by $\psi: H^{(\Delta)} \to M \otimes_R^c H$ in \mathcal{M}^H . This gives rise to a surjective map in \mathcal{M}^H

$$(H^{(\Delta)})^{(\Lambda)} \longrightarrow (M \otimes_R^c H)^{(\Lambda)} \simeq M \otimes_R^c H^{(\Lambda)}.$$

Combining this map with the surjection

$$M \otimes_R^c H^{(\Lambda)} \xrightarrow{id \otimes \phi} M \otimes_R^c A \xrightarrow{\mu_M} M$$

yields that each (A-H)-bimodule is H-generated as right H-comodule.

Given now an epimorphism $\theta: H^{(\Delta)} \to M$ in \mathcal{M}^H for $M \in \mathcal{M}_A^H$ we get by 1.2 (4) an epimorphism

$$(H \otimes_R^c A)^{(\Delta)} \simeq H^{(\Delta)} \otimes_R^c A \xrightarrow{\theta \otimes id} M \otimes_R^c A \xrightarrow{\mu_M} M$$

in \mathcal{M}_A^H . Now using the bijectivity of the antipode, which gives the isomorphism $H \otimes_R^c A \simeq A \otimes_R H$ by 1.4 we see that $A \otimes_R H$ is a generator in \mathcal{M}_A^H . \Box

Before formulating the main result we need some technical machinery.

Recall that for an *R*-coalgebra *C*, the cotensor product of a right *C*comodule $\rho_M : M \to M \otimes_R C$ and a left *C*-comodule $\rho_N : N \to C \otimes_R N$ (denoted by $M \square_C N$) is defined by the exact sequence of *R*-modules

$$0 \to M \square_C N \to M \otimes_R N \xrightarrow{\alpha} M \otimes_R C \otimes_R N,$$

where $\alpha = \rho_M \otimes id_N - id_M \otimes \rho_N$.

Clearly for a right C-comodule M the cotensor product gives rise to a functor

$$M\square_C - : {}^C\mathcal{M} \longrightarrow R - Mod.$$

In general this is neither left nor right exact. If M is flat over R the cotensor functor is left exact. If it is right exact and $_RM$ is flat we call M coflat. If Ris a QF-ring and $M \in \mathcal{M}^C$ is flat over R, the properties of M being coflat as right C-comodule and being injective in \mathcal{M}^C coincide ([21]).

Recall that for an H-comodule M there exist two different comodule structures on the tensor product of M with H. The module $M \otimes_R H$ is endowed with comodule structure $\varrho_{M \otimes_R H} = id_M \otimes \Delta$ (trivial right comodule structure) and the module $H \otimes_R^c M$ with structure map $\varrho_{H \otimes_R^c M} = \mu_{34} \circ \tau_{23} \circ (\Delta \otimes \varrho_M)$ (crossed comodule structure). In general these two structures are different, but under the hypothesis that the antipode of His bijective with inverse \bar{S} we can state some canonical isomorphisms between these comodule structures. In this case there exists an H-colinear isomorphism

There is a close relation between the cotensor functor $A\Box_H$ and the functor of coinvariants. In order to state the next result we give another natural isomorphism.

Recall that the antipode of H gives rise to a functor $\mathcal{S} : {}^{H}\mathcal{M} \to \mathcal{M}^{H}$ which assigns to a left H-comodule $\varrho_{U} : U \to H \otimes_{R} U$ the right H-comodule

$$\varrho_{U^S} = (id \otimes S) \circ \tau \circ \varrho_U : U^S \longrightarrow U^S \otimes_R H,$$

leaving the morphisms unchanged.

If the antipode S of H is bijective, \mathcal{S} is a categorical equivalence with inverse functor given by $\bar{\mathcal{S}} : \mathcal{M}^H \to {}^H \mathcal{M}$,

$$\varrho_V: V \to V \otimes_R H \quad \longmapsto \quad \varrho_{\bar{s}_V} = (\bar{S} \otimes id) \circ \tau \circ \varrho_{\bar{s}_V}: {}^{\bar{s}}V \to H \otimes_R {}^{\bar{s}}V.$$

3.2 Canonical isomorphism.

Let H be a Hopf algebra over R with bijective antipode S and U and V be right H-comodules. Then there exists a canonical R-linear isomorphism (functorial in U and V)

$$U\Box_H{}^{\bar{S}}V \longrightarrow (U \otimes_R^c V)^{coH}.$$

Proof. Recall that the module $U \otimes_R^c V$ becomes a right *H*-comodule with right crossed comodule structure $\varrho_{U \otimes_R^c V}$. Now consider the following diagram of *R*-modules, where the horizontal lines are the defining sequences for the cotensor product and coinvariants, respectively:

where $\psi : H \otimes_R {}^{\bar{S}}V \to V \otimes_R H$, $h \otimes v \mapsto \sum_i v_i \otimes h \tilde{v}_i$ is an *R*-isomorphism and $\iota : U \otimes_R V \to U \otimes_R V \otimes_R H$, $u \otimes v \mapsto u \otimes v \otimes 1_H$ is the canonical embedding.

Then the right rectangle commutes with downward *R*-isomorphisms $id_{U\otimes V}$ and $id_U \otimes \psi$, since the elements are mapped via

$$\begin{array}{cccc} u \otimes v &\longmapsto & \sum_{i} u_{i} \otimes \tilde{u}_{i} \otimes v - \sum_{j} u \otimes \bar{S}(\tilde{v}_{j}) \otimes v_{j} \\ \downarrow & & \downarrow \\ u \otimes v &\longmapsto & \sum_{i} u_{i} \otimes v_{i} \otimes \tilde{u}_{i} \tilde{v}_{i} - u \otimes v \otimes 1_{H} \end{array}$$

By the kernel property of $(U \otimes_R V)^{coH}$ there exists an *R*-linear isomorphism $\gamma: U \Box_H {}^{\bar{S}}V \longrightarrow (U \otimes_R V)^{coH}$ which makes the diagram commute. \Box

The next result will be needed in the proof of 3.7 but it is interesting in its own right. It relates coflatness of A as an object in \mathcal{M}^H to projectivity of A as an object in \mathcal{M}^H_A . It refines Corollary 3.2 in [14].

3.3 A coflat in \mathcal{M}^H .

Let H be a Hopf algebra over R with $_RH$ projective. Assume that the antipode of H is bijective. Let A be a right H-comodule algebra which is flat over R. Then the following are equivalent:

- (a) A is a projective in \mathcal{M}_A^H ;
- (b) the functor $\operatorname{Com}^H(R, -) : \mathcal{M}_A^H \longrightarrow R$ -Mod is exact;
- (c) the functor $(-\Box_H R) : \mathcal{M}_A^H \longrightarrow R$ -Mod is exact;
- (d) the functor $(R\Box_H -) \circ \overline{S} : \mathcal{M}_A^H \longrightarrow R$ -Mod is exact;
- (e) ${}^{\bar{S}}A$ is coflat as left H-comodule;
- (f) A is coflat as right H-comodule;
- (g) A^{op} is coflat as right H^{op} -comodule;
- (h) A is projective in $_{A}\mathcal{M}^{H}$.

Proof. Recall that projectivity of A in \mathcal{M}_A^H is equivalent to the exactness of the functor $\operatorname{Bim}_A^H(A, -) : \mathcal{M}_A^H \to \operatorname{Mod} - A^{coH}$ which is the same as exactness of the functor $(-)^{coH} : \mathcal{M}_A^H \to \operatorname{Mod} - A^{coH}$ by 2.3.

 $(a) \Leftrightarrow (b)$ follows from the Bim-Com relations $\operatorname{Bim}_A^H(A, -) \simeq \operatorname{Com}^H(R, -)$ in 1.6.

(a) \Leftrightarrow (c) By 3.2, the functor $(-\Box_H R)$ is canonically isomorphic to the functor $(-)^{coH}$.

 $(c) \Leftrightarrow (d)$ is clear since S is bijective.

 $(a) \Rightarrow (e)$ By the canonical isomorphism for A and a right H-comodule M from 3.2 we know that $M \square_H {}^{\bar{S}}A \simeq (M \otimes_R A)^{coH}$. But this isomorphism is

functorial in M and by assumption the composition of functors $(-\otimes_R A)^{coH}$ is exact (A flat over R). So is $-\Box_H {}^{\bar{S}}A$ which means that ${}^{\bar{S}}A$ is coflat as left H-comodule.

 $(e) \Rightarrow (a)$ Note that for each $M \in \mathcal{M}_A^H$ the A-multiplication map $\mu_M : M \otimes_R^c A \to M$ is H-colinear and splits in \mathcal{M}^H by $\nu_M : M \to M \otimes_R^c A, m \mapsto m \otimes 1_A$. We have to show that under the assumption on $\bar{S}A$ being coflat the left exact functor $(-)^{coH}$ preserves epimorphisms in \mathcal{M}_A^H .

Let $f: M \to N$ be an epimorphism in \mathcal{M}_A^H and consider the commutative diagram with the vertical arrows epimorphisms.

$$\begin{array}{cccc} M \otimes^c A & \xrightarrow{f \otimes id} & N \otimes^c A \\ \downarrow \mu_M & & \downarrow \mu_N \\ M & \xrightarrow{f} & N. \end{array}$$

Since $(-)^{coH}$ is left exact and μ_M and μ_N split in \mathcal{M}^H we have the commuting diagram with vertical arrows still epimorphic.

$$\begin{array}{cccc} (M \otimes^{c} A)^{coH} & \stackrel{(f \otimes id)^{coH}}{\longrightarrow} & (N \otimes^{c} A)^{coH}. \\ \downarrow^{\mu_{M}^{coH}} & & \downarrow^{\mu_{N}^{coH}} \\ M^{coH} & \stackrel{f^{coH}}{\longrightarrow} & N^{coH} \end{array}$$

We know that f^{coH} is surjective if $(f \otimes id)^{coH}$ is. But by the functorial isomorphism $(-\otimes_R^c A)^{coH} \simeq -\Box_H^{\bar{S}}A$ from 3.2, we have $(f \otimes id)^{coH} = (f)\Box_H^{\bar{S}}A$.

By assumption $-\Box_H {}^{\bar{S}}A$ is exact so it preserves epimorphisms and the proof is complete.

 $(e) \Leftrightarrow (f)$ is clear since S is bijective.

 $(f) \Leftrightarrow (g)$ is trivial since H^{op} has the same coalgebra structure as H and A^{op} has the same right comodule structure as A.

 $(g) \Leftrightarrow (h)$ follows from $(a) \Leftrightarrow (e)$ applied to the H^{op} -right comodule algebra A^{op} .

Note that the proof given here for $(a) \Leftrightarrow (e)$ follows the proof of *Satz 5.8* in Oberst [12]. Studying the proof carefully we obtain in particular the following corollary for (not necessarily flat) comodule algebras:

3.4 A relatively coflat.

Let H be a Hopf algebra projective over R with bijective antipode. Let A be a right H-comodule algebra. Then the following are equivalent:

(a) A is relatively projective in \mathcal{M}_A^H , i.e. the functor $\operatorname{Bim}_A^H(A, -)$ is exact on R-split, exact sequences in \mathcal{M}_A^H ; (b) A is relatively coflat, i.e. the functor $A\Box_H$ is (left and right) exact with respect to R-split, exact sequences in \mathcal{M}^H .

Proof. Of course the functor $- \otimes_R A$ is always relative exact (even for nonflat A) and the functor $-\Box_H {}^{\bar{S}}A$ is always left exact with respect to R-split sequences. Starting with split sequences, we can imitate the proof of $(a) \Leftrightarrow (e)$ from the previous result. \Box

Recall that a right *H*-comodule *N* is called *relative injective* (in \mathcal{M}^H), if the functor Com(-, N) is exact with respect to *R*-split, exact sequences in \mathcal{M}^H (see [6, 1.4]). Now we are able to state the main result. It is a supplement to 2.6 for the special case of a bijective antipode and an *H*-generated right *H*-comodule algebra *A*.

3.5 A as a projective generator in \mathcal{M}_A^H .

Let H be a Hopf algebra over R with $_{R}H$ projective. Assume that the antipode of H is bijective. Let A be a right H-comodule algebra which is H-generated as a right H-comodule. Then the following are equivalent:

- (a) A is a projective generator in \mathcal{M}_A^H ;
- (b) the functor $\operatorname{Bim}_{A}^{H}(A, -) : \mathcal{M}_{A}^{H} \to \operatorname{Mod} A^{coH}$ is an equivalence;
- (c) the functor $\operatorname{Bim}_{A}^{H}(A, -): {}_{A}\mathcal{M}^{H} \to A^{\operatorname{coH}}\operatorname{-Mod}$ is an equivalence;
- (d) the functor $\operatorname{Bim}_{A}^{H}(A, -) : \mathcal{M}_{A}^{H} \to \operatorname{Mod}_{A^{coH}}$ is exact and the map

$$\Psi_{A\otimes_R H} : \operatorname{Bim}_A^H(A, A\otimes_R H) \otimes_{A^{coH}} A \to A \otimes_R H,$$

is surjective.

(e) A is relative injective as right H-comodule and the canonical map

 $\beta^A : A \otimes_{A^{coH}} A \to A \otimes_R H, \ a \otimes b \mapsto (b \otimes x)\varrho_A(a)$

is surjective.

Proof. $(a) \Leftrightarrow (b)$ This is a well known fact for abelian categories (see for example [20, 46.2]).

 $(a) \Rightarrow (d)$ Since A is projective in \mathcal{M}_A^H , the functor $\operatorname{Bim}_A^H(A,-)$ is exact. The surjectivity of $\Psi_{A\otimes_R H}$ stems from the fact, that A is a generator by assumption.

 $(d) \Rightarrow (a)$ Under the hypotheses A is H-generated as right H-comodule. Now by 3.1 we obtain that the module $A \otimes_R H$ is a generator in \mathcal{M}_A^H . The surjectivity of $\Psi_{A\otimes H}$ shows that A generates $A\otimes_R H$ in \mathcal{M}_A^H and therefore A is a generator. Since A is always finitely generated in \mathcal{M}_A^H we have by exactness of $\operatorname{Bim}_A^H(A, -)$ that A is a progenerator in \mathcal{M}_A^H .

 $(a) \Rightarrow (e)$ As mentioned above $A \otimes_R H$ is a generator in \mathcal{M}_A^H . But this module is always relative injective as a right *H*-comodule since *H* has this property. *A* is always finitely generated in \mathcal{M}_A^H and by assumption *A* is projective in \mathcal{M}_A^H so it is a direct summand of $(A \otimes_R H)^k$ in \mathcal{M}_A^H for some *k*. Forgetting the *A*-module-structure, *A* is an *H*-colinear direct summand of $(A \otimes_R H)^k$. Of course $(A \otimes_R H)^k$ is relative injective, since $A \otimes_R H$ is. Hence *A* as a direct summand is relative injective in \mathcal{M}^H . The surjectivity of β is clear by 2.5 since *A* is a generator in \mathcal{M}_A^H .

(e) \Rightarrow (a) The surjectivity of β shows by 2.5 that A generates $A \otimes_R H$ in \mathcal{M}_A^H . By assumption and 3.1 $A \otimes_R H$ is a generator in \mathcal{M}_A^H and so is A. Moreover relative injectivity of A in \mathcal{M}^H implies projectivity of A in \mathcal{M}_A^H .

 $(e) \Leftrightarrow (c)$ Since S is bijective, it is easy to show that the canonical map $\beta^{A^{op}}$ is surjective too. So the assertion follows from $(e) \Leftrightarrow (b)$ applied to A^{op} as a right H^{op} -comodule algebra.

Note that $(e) \Rightarrow (a)$ corresponds to Schneiders theorem [14, 3.5] and our techniques provide a fairly simple proof of this fact. The proof in [14] shows the isomorphism of the adjunction $M \simeq M^{coH} \otimes_B A$ for $M \in \mathcal{M}_A^H$ and $B = A^{coH}$. However, under the assumptions in (e) this isomorphism follows from the fact, that A is a generator in \mathcal{M}_A^H .

It is an interesting problem whether (relative) coflatness of A is sufficient to make A H-generated as a right H-comodule, which would make it possible to weaken the hypotheses of our previous result. Nevertheless the result applies in many cases:

3.6 Applications.

Let A be a right H-comodule algebra. Then A is H-generated as right H-comodule provided one of the following holds:

- (1) A is weakly H-injective in \mathcal{M}^H ;
- (2) A is relative injective in \mathcal{M}^H ;
- (3) H is finitely generated over the ring R;
- (4) R is a QF-ring and H is co-Frobenius.

Proof. (1) is proved in [20], 16.11.

(2) is equivalent to the fact that A is an H-colinear direct summand in $A \otimes_R H$, and the last module is H-generated as a trivial right H-comodule.

Under the assumptions in (3) and (4), H is a generator in \mathcal{M}^H by [9, 3.9]. In both cases the antipode S is always bijective.

Note that the main result could be compared with other Hopf algebraic proofs of the theorem on affine quotients. In particular we obtain a pure module theoretic proof of Schneider's Theorem I in [14] for the case of QFrings.

3.7 Schneiders theorem over QF-rings.

Let H be a Hopf algebra over a QF-ring R with $_{R}H$ projective. Assume that the antipode of H is bijective. Let A be a right H-comodule algebra which is flat over R. Then the following are equivalent:

(a) A is a projective generator in \mathcal{M}_A^H ;

(b) the functor $\operatorname{Bim}_{A}^{H}(A, -) : \mathcal{M}_{A}^{H} \to \operatorname{Mod} A^{\operatorname{co} H}$ is an equivalence;

- (c) the functor $\operatorname{Bim}_{A}^{H}(A, -) : {}_{A}\mathcal{M}^{H} \to A^{coH}$ -Mod is an equivalence;
- (d) A is injective in \mathcal{M}^H and we have a surjective map

$$\beta^A$$
 : $A \otimes_{A^{coH}} A \to A \otimes_R H, \ a \otimes b \mapsto (b \otimes 1)\varrho_A(a).$

Moreover, if one of these conditions is satisfied, A is H-generated as a right H-comodule.

Proof. $(a) \Leftrightarrow (b)$ is well known for abelian categories.

 $(a) \Rightarrow (d)$ Since A is projective the functor $\operatorname{Bim}_{A}^{H}(A, -)$ is exact on \mathcal{M}_{A}^{H} . By 3.3 this is equivalent to A being coflat in \mathcal{M}^{H} . Now A is flat and R is a QF-ring, so A is an injective object in \mathcal{M}^{H} (see [21]). The surjectivity of β^{A} stems again from the fact that A generates $A \otimes_{R} H$.

 $(d) \Rightarrow (a)$ By [21] injectivity of A is equivalent to A being coflat over H. By the previous result 3.3 this is the same as exactness of the functor $\operatorname{Bim}_{A}^{H}(A, -)$, which means A is a projective object in \mathcal{M}_{A}^{H} . But injectivity of A in \mathcal{M}^{H} implies that A is H-generated as a right H-comodule (by [20, 16.11]). Hence our previous result 3.5 applies.

 $(b) \Rightarrow (c)$ Since (b) is equivalent to (d), A is H-generated under the assumption (b) and we can use our previous result 3.5.

 $(c) \Rightarrow (b)$ By applying the equivalence of (b) and (d) to A^{op} and H^{op} we get that A is H-generated as right H-comodule, so 3.5 applies.

References

- T. Albu, R. Wisbauer, *M-density*, *M-adic completion and M-subgeneration*, Rend. Sem. Mat. Univ. Padova 98, 141-159 (1997)
- [2] M. Beattie, S. Dăscălescu, S. Raianu, Galois Extensions for Co-Frobenius Hopf Algebras, J. Algebra 198, 164-183 (1997)
- [3] M. Beattie, S. Dăscălescu, L. Grünenfelder, C. Năstăsescu, Finiteness Conditions, Co-Frobenius Hopf Algebras, and Quantum Groups, J. Algebra 200, 312-333 (1998)
- [4] Cai Chuanren, Chen Huixiang, Coactions, Smash Products, and Hopf Modules, J. Algebra 167, 85-99 (1994)
- Y. Doi, Cleft comodule algebras and Hopf modules, Comm. Algebra 12(10), 1155-1169 (1984)
- [6] Y. Doi, Algebras with total integrals, Comm. Algebra 13, 2137-2159 (1985)
- S. Donkin, On Projective Modules for Algebraic Groups, J. London Math. Soc. 54, 75-88 (1996)
- [8] B.J. Lin, Semiperfect Coalgebras, J. of Algebra 49, 357-373 (1977)
- C. Menini, B. Torecillas, R. Wisbauer, Strongly Rational Comodules and Semiperfect Hopf Algebras over QF Rings, preprint (1999)
- [10] C. Menini, M. Zuccoli, Equivalence Theorems and Hopf-Galois Extensions, J. Algebra 194, 245-274 (1997)
- [11] S. Montgomery, Hopf Algebras and Their Actions on Rings, American Mathematical Society (1993)
- [12] U. Oberst, Affine Quotientenschemata nach affinen, algebraischen Gruppen und induzierte Darstellungen, J. Algebra 44, 503-538 (1977)
- [13] D.E. Radford, Finiteness Conditions for a Hopf Algebra with a Nonzero Integral, J. Algebra 46, 189-195 (1977)
- [14] H.-J. Schneider, Principal homogenous spaces for arbitrary Hopf algebras, Israel J. Math. 72, 167-195 (1990)
- [15] H.-J. Schneider, Lectures on Hopf Algebras, Lecture Notes, Universidad Nacional de Cordoba (1994)

- [16] J.B. Sullivan, The uniqueness of integrals for Hopf algebras and some existence theorems of integrals for commutative Hopf algebras, J. Algebra 19, 426-440 (1971)
- [17] M.E. Sweedler, Integrals for Hopf Algebras, Ann. Math. 89, 323-335 (1969)
- [18] M.E. Sweedler, *Hopf Algebras*, W.A. Benjamin, Inc., (1969)
- [19] J. Gomez Torrecillas, C. Năstăsescu, Quasi-co-Frobenius Coalgebras, J. Algebra 174, 909-923 (1995)
- [20] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading (1991)
- [21] R. Wisbauer, Introduction to coalgebras and comodules, Lecture Notes, Düsseldorf (1996)
- [22] R. Wisbauer, Semiperfect coalgebras over rings, Algebras and Combinatorics, ICA'97, Hong Kong, K.P. Shum, E. Taft, Z.X. Wan (ed), Springer Singapore, 487-512 (1999)

Addresses:

	Alexander Seidel and
Claudia Menini	Robert Wisbauer
Dipartimento di Matematica	Department of Mathematics
Universitá di Ferrara	University of Düsseldorf
Via Machiavelli 35	D-40225 Düsseldorf, Germany
44100 Ferrara - Italy	${\it seidel@math.uni-duesseldorf.de}$
men@ifeuniv.unife.it	wisbauer@math.uni-duesseldorf.de

Blas Torrecillas Departamento de Algebra y Analisis Universidad de Almeria 04071 Almeria - Spain btorreci@ualm.es