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Abstract

In [6, Theorem 2.2] Doi gave a Hopf-algebraic proof of a general-
ization of Oberst’s theorem on affine quotients of affine schemes. He
considered a commutative Hopf algebra H over a field, coacting on a
commutative H-comodule algebra A. If AcoH denotes the subalgebra of
coinvariant elements of A and β : A ⊗AcoH A −→ A ⊗H the canonical
map, he proved that the following are equivalent:

(a) AcoH ⊂ A is a faithfully flat Hopf Galois extension;

(b) the functor (−)coH :MH
A −→ AcoH -Mod is an equivalence;

(c) A is coflat as a right H-comodule and β is surjective.

Schneider generalized this result in [14, Theorem 1] to the non-
commutative situation imposing as a condition the bijectivity of the
antipode of the underlying Hopf algebra. Interpreting the functor of
coinvariants as a Hom-functor, Menini and Zuccoli gave in [10] a module-
theoretic presentation of parts of the theory. Refining the techniques
involved we are able to generalize Schneiders result to H-comodule-
algebras A for a Hopf algebra H (with bijective antipode) over a com-
mutative ring R under fairly weak assumptions.

Introduction

Let H denote a Hopf algebra over a commutative ring R with RH projective,

and A a right H-comodule algebra. This setup generalizes such different sit-

uations as group scheme actions on affine schemes or R-algebras graded by

a group. Using this setup with commutativity-conditions for the algebras in-

volved, Doi gave in [6, Theorem 2.2] a Hopf algebraic proof of Oberst’s theorem
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on affine quotients of affine schemes (conf. [12]). Schneider generalized this

result to the non-commutative situation, i.e., he showed in [14, Theorem 1]

that for a Hopf algebra H with bijective antipode over a field k and an H-

comodule-Algebra A, the functor of coinvariants (−)coH :MH
A → AcoH-Mod is

an equivalence of categories if and only if A is injective as a right H-comodule

and the canonical map β : A⊗AcoH A→ A⊗H is surjective.

It was observed by Menini and Zuccoli in [10] that parts of the theory can

be described by general module-theoretic methods. Refining these techniques

we are able to generalize the main part of Schneiders paper to H-comodule-

algebras A for a Hopf algebra H over a ground ring R.

In Section 1 we study general properties of (A-H)-bimodules for a Hopf

algebra H over an arbitrary commutative ring R, provided RH is projective.

In particular we show in 1.6 that MH
A is subgenerated by A⊗R H and hence

can be identified with σAop#H∗ [A⊗R H] where Aop#H∗ is a suitable smash-

product.

Using results from [10] it is shown in 1.10 that for H a semiperfect Hopf

algebra over a QF-ring R the categoryMH
A can be identified with Aop#T -Mod,

where T is the left rational part of H∗.

The second section is devoted to the question when A is a (projective)

generator in MH
A . This part presents the module-theoretic background which

makes it possible to describe (faithfully) flat Hopf-Galois extensions AcoH ⊂ A

as (projective) generators in the category of (A-H)-bimodules (conf. 2.5 and

2.6).

In Section 3 we assume that the antipode of the Hopf algebra H is bijective.

We proof in 3.1 that A⊗RH is a generator in the categoryMH
A if and only if A

is H-generated as a right H-comodule. In 3.3 we give a refinement of Corollary

3.2 in [14]: For RA flat over R we characterise coflatness of A as an object in

MH as projectivity of A as an object inMH
A . The main result in Section 3 is a

generalisation of Schneiders theorem on faithfully flat Hopf-Galois extensions

([14]. Theorem 1) under fairly weak assumptions from ground-fields to ground-

rings (see 3.5). The same theorem is extended to Hopf-Galois extensions over

ground-QF-rings in 3.7.

1 Right (A-H)-bimodules

Let H be a Hopf R-algebra with multiplication µ : H ⊗R H → H, unit 1H ,

comultiplication ∆ : H → H ⊗R H and counit ε : H → R. We will always

assume H to be projective as an R-module.
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The dual module H∗ = HomR(H,R) endowed with the convolution product

is an R-algebra. For the canonical structures on H and H∗ we use the notation

(for h, x ∈ H, f ∈ H∗)

f ⇀ h = (1⊗ f)∆(h) for H as left H∗-module and

h ⇁ f = [x 7→ f(xh)] for H∗ as left H-module.

Let A be a right H-comodule algebra, i.e., an R-algebra µA : A⊗R A→ A

with unit 1A and a right H-comodule structure %A : A→ A⊗R H which is an

algebra morphism.

For any two right H-comodules %M : M →M⊗RH and %N : N → N⊗RH
the tensor product M ⊗R N can be either endowed with the trivial comodule

structure (e.g. id⊗%N) or with the twisted one - intertwining the two comodule

structures involved - i.e.

%M⊗RN := (id⊗ id⊗ µH) ◦ (id⊗ τ ⊗ id) ◦ (%M ⊗ %N).

The resulting comodule with this crossed comodule strucure we denote by

M ⊗cR N .

For any right A-module N , we consider N ⊗RH as a right A⊗RH-module

and a right A-module by

(n⊗ c)(a⊗ h) := na⊗ ch, and (n⊗ c) · a := (n⊗ c)%A(a) .

1.1 (A-H)-bimodules. An R-module M is called a right (A-H)-bimodule

if M is a right A-module ψM : M ⊗R A → M , and a right H-comodule

%M : M →M ⊗R H, such that %M is A-linear, i.e., for m ∈M , a ∈ A,

%M(ma) = %M(m) · a (= %M(m)%A(a)) ,

or - equivalently - ψM is a right comodule morphism, where M ⊗cR A has the

right comodule structure defined above, i.e.,

(ψM ⊗ id) ◦ %MA(m⊗ a) = %M(ψM(m⊗ a)) = %M(ma).

We denote byMH
A the category which has as objects all (A-H)-bimodules

and as set of morphisms between (A-H)-bimodules M and N the mappings

which are both A-module and H-comodule maps (denoted by BimH
A (M,N)).

This is obviously an additive category which is closed under infinite direct

sums and has kernels and cokernels.
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1.2 Basic properties of (A-H)-bimodules.

(1) For every right A-module N , N ⊗R H is an (A-H)-bimodule by

%N⊗RH : N ⊗R H → (N ⊗R H)⊗R H, n⊗ c 7→ n⊗∆c ,

ψN⊗RH : (N ⊗R H)⊗R A→ N ⊗R H, n⊗ c⊗ a 7→ (n⊗ c)%A(a) .

For any (A-H)-bimodule M , the structure map %M : M → M ⊗R H is

an (A-H)-bimodule map.

(2) If α : N1 → N2 is an (epi) morphism in Mod-A, then

α⊗ idH : N1 ⊗R H → N2 ⊗R H

is an (epi) morphism of (A-H)-bimodules.

(3) For every right H-comodule L, L⊗cR A is an (A-H)-bimodule by

ψL⊗cRA : (L⊗cR A)⊗R A→ L⊗cR A, l ⊗ a⊗ b 7→ l ⊗ ab ,
%L⊗cRA : L⊗cR A→ (L⊗cR A)⊗R H, l ⊗ a 7→ ∑

i,j lj ⊗ ai ⊗ l̃j ãi .

For any (A-H)-bimodule M , the structure map ψM : M ⊗cR A → M is

an (A-H)-bimodule map.

(4) If β : L1 → L2 is an (epi) morphism of H-comodules, then

β ⊗ idA : L1 ⊗cR A→ L2 ⊗cR A

is an (epi) morphism of (A-H)-bimodules.

Proof. This can be immediately verified from the definitions (see [5, Example

1.1, 1.2]). 2

As a first interesting application we observe:

1.3 Corollary. Assume the right H-comodule G is a generator inMH . Then

(with the structure from (3)) G⊗cR A is a generator in MH
A .

Proof. Let M be any (A-H)-bimodule. Then there exists an H-comodule

epimorphism G(Λ) →M which yields the (A-H)-epimorphisms

G(Λ) ⊗c A→M ⊗c A→M.

2

4



1.4 Remark. By 1.2, the tensor products H ⊗cR A and A ⊗R H both are

(A-H)-bimodules. If the antipode S has a composition inverse S̄, then the two

bimodules are isomorphic by the maps

H ⊗cR A → A⊗R H, h⊗ a 7→ ∑
i ai ⊗ hãi,

A⊗R H → H ⊗cR A, a⊗ h 7→ ∑
i hS̄(ãi)⊗ ai,

where %(a) =
∑
i ai ⊗ ãi ∈ A⊗H.

The (A-H)-bimodules may be considered as modules over an algebra which

is defined by a suitable multiplication on Aop ⊗R H∗.

1.5 The smash product Aop#H∗. Any module M ∈ MH
A is a left H∗-

module and we have in fact a left action

(Aop ⊗R H∗)⊗RM →M, (a⊗ k)⊗m 7→ (a⊗ k)%M(m).

Notice that this does not make M an Aop ⊗R H∗-module with respect to the

usual ring structure on Aop⊗RH∗. We define a new multiplication on Aop⊗RH∗
by

(a⊗ k)(b⊗ h) =
∑

j
bja⊗ (b̃j ⇁ k)∗h,

where a, b ∈ A, k, h ∈ H∗ and %A(b) =
∑
jbj ⊗ b̃j.

The resulting algebra is called the (left) smash product of A and H∗. We

denote it by Aop#H∗ and for a ⊗ f we write a#f . 1A#εH is the unit of

Aop#H∗ and it is an exercise in handling the definitions to show that every

(A-H)-bimodule is a left Aop#H∗-module and (A-H)-bimodules morphisms

are precisely the Aop#H∗-module morphisms.

The maps Aop → Aop#H∗, a 7→ a#εH , and H∗ → Aop#H∗, k 7→ 1A#k,

are algebra embeddings. In particular every left Aop#H∗-module is a right

A-module and a left H∗-module.

1.6 The category MH
A . Let A be a right H-comodule algebra.

(1) The categoryMH
A is equal to σAop#H∗ [A⊗R H] = σAop#H∗ [H ⊗cR A], the

subcategory of left Aop#H∗-modules subgenerated by A⊗RH or H⊗cRA.

(2) For any M ∈MH
A and N ∈ Mod-A,

BimH
A (M,N ⊗R H)→ HomA(M,N), f 7→ (id⊗ ε) ◦ f,

is an R-module isomorphism with inverse map h 7→ (h⊗ id) ◦ %.
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(3) For N ∈MH and M ∈MH
A ,

BimH
A (N ⊗cR A,M)→ ComH(N,M), g 7→ g(−⊗ 1A),

is an R-isomomorphism (functorial in M) with inverse map

f 7→ ψM ◦ (f ⊗ idA).

Proof. (1) By 1.2, A ⊗R H is an (A-H)-bimodule hence an Aop#H∗-module

and so are all objects in σAop#H∗ [A⊗R H].

Let M ∈ MH
A and α : A(Λ) → M an epimorphism in Mod-A. Then the

maps

α⊗ id : A(Λ) ⊗R H →M ⊗R H and %M : M →M ⊗R H

are morphisms in MH
A , proving that M is subgenerated by A⊗R H.

To show that H ⊗cR A is also a subgenerator recall that for every (A-H)-

bimodule M , M ⊗R H is an H-generated right H-comodule. A comodule

epimorphism H(Λ) →M ⊗R H yields a bimodule epimorphism

(H ⊗c A)(Λ) ' H(Λ) ⊗c A→ (M ⊗H)⊗cR A.

Since %M : M →M⊗RH splits in R-Mod, we have M⊗cRA ⊂ (M⊗RH)⊗cRA
inMH

A . But µM : M ⊗cRA→M is an epimorphism inMH
A and we are done.

(2) This fact comes from the adjunction of the functors UH :MH
A → Mod-A

(forgetting the H-comodule structure) and − ⊗R H : Mod-A → MH
A ([22,

3.12]).

(3) This is dual two (2). The relation stems from the adjunction of the

functors UA : MH
A → MH (the functor forgetting the A-module structure)

and −⊗cR A :MH →MH
A . 2

Remark: It is worth noting that properties which can be characterised via

morphism functors like generation or projectivity are closley related through

the adjunctions. For example - if N is a projective object (a generator) in

MH , than N ⊗cR A becomes projective (a generator) inMH
A using (3) of 1.6 -

thus giving an alternative proof of 1.3.

We denote by T H : H∗-Mod→MH the rational functor, assigning to any

left H∗-module M the largest right H-subcomodule of M , i.e. the trace ofMH

in M (the rational part of M). Similarly for any left Aop#H∗-module M the

trace ofMH
A in M (as a bimodule) is the largest R-submodule of M belonging

to MH
A , which we denote by T HA (M).

For a left Aop#H∗-module M the trace T H(M) is an H-subcomodule and

the trace T HA (M) is a subbimodule of M . The next proposition connects these

two concepts.
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1.7 Proposition. Let M ∈ Aop#H∗-Mod. Then

(1) T H(M) ∈MH
A .

(2) M ∈MH
A if and only if M = T H(M).

Proof. (1) First of all note that the H∗-module structure of T H(M) coincides

with the one inherited from M so that for every m ∈ T H(M) and for f ∈ H∗
we have

f ·m = (1#f)m = (1⊗ f)%(m),

where % : T H(M) → T H(M) ⊗ H is the structure map. Moreover for every

m ∈ T H(M) and a ∈ A, putting %A(a) =
∑
j aj ⊗ ãj and %(m) =

∑
imi ⊗ m̃i

we have:

f ·ma = (1#f)(a#ε)m = ((1#f)(a#ε))m

=
∑
j(aj#(ãj ⇁ f))m

=
∑
i,j(aj#ε)mi(ãj ⇁ f)(m̃i)

=
∑
i,j(aj#ε)mif(m̃iãj)

=
∑
i,jmiajf(m̃iãj).

The map

ϕ : T H(M)⊗c A −→ T H(M)A, m⊗ a 7−→ ma (= (a#ε)m),

is an H∗-morphism, since

f · (m⊗ a) = (1#f)
∑

i,j
(mi ⊗ aj)⊗ m̃iãj 7−→

∑
i,j
miajf(m̃iãj) = f ·ma,

and therefore the image of the right H-comodule T H(M)⊗cA under ϕ is also

an H-comodule, i.e. T H(M)A ⊂ T H(M).

(2) (⇒) clear by definition. (⇐) follows by (1). 2

As a consequence of the last proposition we get

1.8 Corollary. If MH is closed under extensions in H∗-Mod, then MH
A is

closed under extensions in Aop#H∗-Mod.

Proof. Consider an exact sequence in Aop#H∗-Mod,

0 −→ K −→ L −→M −→ 0,

where K,M ∈MH
A . Then L = T H(L) ∈MH and so L ∈MH

A by 1.7. 2

The following observations are inspired by ideas from Cai-Chen [4].
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1.9 Dense subalgebras of Aop#H∗. Let T ⊂ H∗ be a subalgebra and assume

RA to be flat.

(1) If T is dense in H∗, then Aop#T is an A ⊗R H-dense subalgebra of

Aop#H∗ and we have

σAop#T [A⊗R H] =MH
A .

(2) If T is a ring with enough idempotents then Aop#T also has enough

idempotents.

(3) Now let T be T H(H∗H
∗). If T ⊂ H∗ is H-dense, then we have

Aop#T = T H(Aop#H∗) = T HA (Aop#H∗).

Moreover for any M ∈MH
A we have (Aop#T )M = M .

Proof. (1) Consider any (A-H)-bimodule M . Let a#f ∈ Aop#T and take

any m1, . . . ,mn ∈M . Putting %M(ml) =
∑
imli⊗ m̃li, we have for each l ≤ n,

(a#f)(ml) =
∑

i
f(m̃li)mlia.

By assumption there exists t ∈ T such that t(m̃li) = f(m̃li), for all (finitely

many) i and l ≤ n. So (a#f)(ml) = (a#t)(ml) for all l ≤ n, showing that

Aop#T is M -dense in Aop#H∗ (modulo the annihilator of M).

In particular Aop#T is A⊗R H-dense in Aop#H∗ and this implies

σAop#T [A⊗R H] = σAop#H∗ [A⊗R H] =MH
A

(e.g., [1, Proposition 3.1], [20, 15.7]).

(2) Assume {eλ}Λ is a set of enough orthogonal idempotents of T . Then

{1A#eλ}Λ is a set of enough orthogonal idempotents of Aop#T .

(3) Since T is dense in H∗, we know that T H(N) = TN for any N ∈
H∗-Mod(see [22, 2.6] for details). Now by 1.7,(1)

T H(Aop#H∗) = T (Aop#H∗) = (1#T )(Aop#H∗) = Aop#T ∈MH
A .

Using (1) above we get density of Aop#T in Aop#H∗. Applying the formalism

of [22, 2.6] to σAop#T [A ⊗R H] we get T HA (M) = (Aop#T )M , for any M ∈
Aop#H∗-Mod. 2

As a special case of the situation described above we recall the properties

of semiperfect coalgebras.
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1.10 Proposition. Let H be a (left) semiperfect Hopf algebra over a QF ring

R with trace ideal T := Rat(H∗H
∗). Then

σAop#T [A⊗R H] =MH
A = Aop#T −Mod,

and T ⊗cR A and H ⊗cR A are generators in MH
A .

Moreover Aop#T is an algebra with enough idempotents and A ⊗R H and

H ⊗cR A are isomorphic as Aop#H∗-modules.

Proof. By [9, 3.9] and [22, 6.4] H and T are generators inMH and T is dense

in H∗. So the first assertions follow from 1.9 and 1.3.

Since the antipode of H is bijective (by [9, 3.8]) A⊗R H and H ⊗cR A are

isomorphic bimodules (by 1.4). 2

2 A as an A-H-bimodule

In this section we study the structure of A as an A-H-bimodule. It turns out,

that this leads to the equivalence-theorems for bimodule-categories studied in

[14] or [10].

2.1 Coinvariants. For any M ∈MH
A put

M coH = {m ∈M | %M(m) = m⊗ 1H} , in particular

AcoH = {a ∈ A | %A(a) = a⊗ 1H} .

(1) There is an R-module isomorphism

νM : BimH
A (A,M)→M coH , f 7→ f(1A),

with inverse map ωM : m 7→ [a 7→ (a⊗ εH)m].

(2) In particular we have a ring isomorphism

νA : EndHA (A) = BimH
A (A,A)→ AcoH ,

M coH is a right AcoH-module and νM is an AcoH-module morphism.

Proof. The proof of [10, 3.15] also applies for coalgebras over rings. 2

2.2 AcoH-modules and (A-H)-bimodules. Let V ∈ Mod-AcoH . Then

V ⊗AcoH A is a right A-module and has a right H-comodule structure induced

by the right comodule structure of A,

V ⊗AcoH A→ V ⊗AcoH A⊗R H, v ⊗ a 7→ v ⊗ %A(a).
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For any M ∈MH
A , there are (A-H)-bimodule morphisms

ΨM : BimH
A (A,M)⊗AcoH A → M, f ⊗ a 7→ f(a),

ΦM : M coH ⊗AcoH A → M, m⊗ a 7→ ma,

which are connected by the commutative diagram

BimH
A (A,M)⊗AcoH A

ΨM−→ M f ⊗ a 7→ f(a)

↓νM⊗id ‖ ↓ ‖
M coH ⊗AcoH A

ΦM−→ M f(1)⊗ a 7→ f(1A)a ,

where νM⊗id is an isomorphism (by 2.1) and hence ΨM is injective (surjective)

if and only if ΦM is.

The next proposition provides some more technical relationships between

coinvariants and constructions related to A-modules.

2.3 A-modules and coinvariants. For every N ∈ Mod-A,

ΛN : N → (N ⊗R H)coH , n 7→ n⊗ 1H ,

is an isomorphism of right AcoH-modules with inverse map∑
i ni ⊗ hi 7→

∑
i niεH(hi).

Combined with the isomorphism νN⊗H : BimH
A (A,N⊗RH)→ (N⊗RH)coH

(see 2.1) this yields an isomorphism

ΘN : BimH
A (A,N ⊗R H)→ N, f 7→ (1⊗ ε)f(1A).

We have the commutative diagram

BimH
A (A,N ⊗R H)

ΘN−→ N

↓νN⊗RH ‖
(N ⊗R H)coH

id⊗ε−→ N ⊗R ,

From this we derive an isomorphism

ΘN ⊗ id : BimH
A (A,N ⊗R H)⊗AcoH A → N ⊗AcoH A,

f ⊗ a 7→ (1⊗ ε)f(1A)⊗ a .

Moreover we obtain a map

βN : N ⊗AcoH A
ΛN⊗id−→ (N ⊗R H)coH ⊗AcoH A

ΦN⊗RH−→ N ⊗R H,
n⊗ a 7→ (n⊗ 1)%(a) ,
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which yields the commutative diagram

BimH
A (A,N ⊗R H)⊗AcoH A

ΨN⊗RH−→ N ⊗R H
↓ΘN⊗id ‖

N ⊗AcoH A
βN−→ N ⊗R H .

Proof. All these assertions are straightforward to verify (e.g., [10, Lemma

3.18, ff]). 2

We will use the mappings introduced above to characterize A as a generator

in MH
A . Hereby it is helpful to observe that an isomorphism for some single

module implies isomorphisms for a whole class of modules. Such a situation is

considered in our next proposition.

2.4 ΨA⊗RH as isomorphism. With the previous notation assume that AcoHA

is flat and

ΨA⊗RH : BimH
A (A,A⊗R H)⊗AcoH A→ A⊗R H, f ⊗ a 7→ f(a) ,

is an isomorphism. Then

(1) A is a subgenerator in MH
A ;

(2) for each M ∈MH
A , ΨM is a monomorphism;

(3) for every A-generated M ∈MH
A , ΨM is an isomorphism.

Proof. (1) Since ΨA⊗RH is an isomorphism, A ⊗R H is A-generated as a

bimodule and hence A is a subgenerator in σAop#H∗ [A⊗R H]=MH
A .

(2) With slight modifications the proof of [10, Lemma 3.22] applies.

(3) If M is A-generated as an (A-H)-bimodule, then ΨM is surjective. 2

We are now prepared to give a number of interesting properties which

make A a generator in σAop#H∗ [A⊗R H]=MH
A . This essentially extends [10,

Theorem 3.27] from base fields to base rings.

2.5 A as generator in MH
A . Let A be a right H-comodule algebra. The

following are equivalent:

(a) A is a generator in MH
A ;

(b) the functor BimH
A (A,−) :MH

A → Mod-AcoH is faithful;
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(c) for every M ∈MH
A , we have an (A-H)-bimodule isomorphism

ΦM : M coH ⊗AcoH A→M, m⊗ a 7→ ma;

(d) AcoHA is flat and for every A⊗R H-generated (A-H)-bimodule M ,

ΨM : BimH
A (A,M)⊗AcoH A→M, f ⊗ a 7→ f(a) ,

is an isomorphism;

(e) AcoHA is flat and we have an isomorphism

ΨA⊗RH : BimH
A (A,A⊗R H)⊗AcoH A→ A⊗R H, f ⊗ a 7→ f(a) ;

(f) AcoHA is flat and we have an isomorphism

βA : A⊗AcoH A→ A⊗R H, a⊗ b 7→ (b⊗ 1H)%A(a) .

Proof. (a)⇔ (b) This holds for any category (e.g., [20, 13.2]).

(a)⇔ (c)⇔ (d) are proved in [10, Theorems 2.2, 2.3].

(d)⇔ (e) This is shown in 2.4.

(e)⇔ (f) follows from the diagrams in 2.3. 2

In any Grothendieck category, a finitely generated projective generator

determines a category equivalence and we have this if we impose on A slightly

stronger conditions than in 2.5. Our result extends [10, Theorem 3.29] (for the

case D = H) from base fields to base rings.

2.6 A as projective generator inMH
A . Let A be a right H-comodule algebra.

Then the follwing are equivalent:

(a) A is a projective generator in MH
A ;

(b) we have a category equivalence

BimH
A (A,−) : MH

A → Mod-AcoH ,

( ( )coH : MH
A → Mod− AcoH , M 7→M coH );

(c) AcoHA is faithfully flat and we have isomorphisms

ΨA⊗RH : BimH
A (A,A⊗R H)⊗AcoH A→ A⊗R H;

( βA : A⊗AcoH A→ A⊗R H, a⊗ b 7→ (b⊗ x)%A(a) );

12



(d) for any M ∈MH
A and N ∈ Mod-AcoH , we have isomorphisms

ΨM : BimH
A (A,M)⊗AcoH A→M, f ⊗ a 7→ f(a),

ΩN : N → BimH
A (A,N ⊗AcoH A), n 7→ [a 7→ n⊗ a] .

Proof. Since A is finitely generated as an (A-H)-bimodule the assertions

follow from characterizations of progenerators in σ[M ] (see [20, 18.5 and 46.2])

and 2.5. 2

2.7 Remarks. (1) For A = H, HcoH = R · 1H and the map

β : H ⊗R H → H ⊗R H, h⊗ g 7→ (h⊗ 1H)∆(g),

is an isomorphism. So H is a generator in Bimod-H and we obtain the Fun-

damental Theorem of Hopf modules.

(2) Let A be a right H-comodule algebra. If

βA : A⊗AcoH A→ A⊗R H, a⊗ b 7→ (a⊗ 1H)%A(b) ,

is an isomorphism then AcoH ⊂ A is called a right Hopf-Galois extension (see

[10, 3.23]). 2.5 and 2.6 characterize such extensions.

Combining our observations we obtain an extension of Beattie-Dǎscǎlescu-

Raianu [2, Theorem 3.1] to Hopf algebras over QF rings. Recall that a left

modules M over any ring S is said to be a weak generator if for any right

S-module L, L⊗S M = 0 implies L = 0.

2.8 Comodule algebras over semiperfect Hopf algebras. Let H be a

semiperfect Hopf algebra over a QF ring R and A be a right H-comodule alge-

bra.

(1) The following are equivalent:

(a) A is a generator in MH
A ;

(b) A generates H ⊗cR A (or T ⊗cR A) as bimodules;

(c) the map ΨH⊗cRA : BimH
A (A,H ⊗cR A) ⊗AcoH A → H ⊗cR A is surjective

(bijective);

(d) the map ΨT⊗cRA : BimH
A (A, T ⊗cR A)⊗AcoH A→ T ⊗cR A is surjective.

(2) The following are equivalent:

(a) A is a projective generator in MH
A ;

13



(b) the map ΨA⊗cRH : BimH
A (A,H⊗cRA)⊗AcoH A→ H⊗cRA is surjective and

AcoHA is a weak generator;

(c) A is injective in MH
A and the map

ΨA⊗cRH : BimH
A (A,H ⊗cR A)⊗AcoH A→ H ⊗cR A is surjective.

Proof. (1) By [9, 3.9], H and T are (projective) generators inMH and hence

H⊗cRA and T ⊗cRA are generators inMH
A (see 1.3). Now the assertions follow

from 2.5.

(2) (a)⇒ (b) follows from 2.6.

(b) ⇒ (a) As in the proof of (1), H ⊗c A is a generator in MH
A . The

surjectivity of ΨA⊗cRH implies, that A is a generator inMH
A as well. So by 2.5

A is flat over AcoH . Now the weak generator property makes A faithfully flat

over AcoH and we are done using 2.6.

(a) ⇔ (c) will be proved in the next section 3.6,(4). Note that under the

assumptions on H the antipode is bijective. 2

3 Schneiders theorem revisited

From now on we assume, that the antipode S of the Hopf algebra H is bijec-

tive with composition inverse S̄. In [14] Schneider generalizes Oberst’s result

on affine quotients [12] to the non-commutative situation. His proof is a Hopf

algebraic one. But the result is module theoretic in nature - relating equiv-

alences between categories of modules to the exactness of functors between

them - so we will give a module theoretic proof of the theorem in this section.

The key observation is the following :

3.1 A⊗R H as generator in MH
A .

Let H be a Hopf algebra with bijective antipode, A a right H-comodule

algebra. Then the following are equivalent:

(a) A⊗R H is a generator in MH
A ;

(b) A⊗R H generates A in MH
A ;

(c) A is H-generated as right H-comodule.

Proof. (a)⇒ (b) is trivial.

(b)⇒ (c) By assumption A⊗RH generates A inMH
Aand therefore inMH .

Recall that A ⊗R H has trivial right comodule structure and therefore is H-

generated in MH . Combining this two facts we see that A is H-generated as

right H-comodule.

14



(c)⇒ (a) Let φ : H(Λ) → A be an epimorphism inMH and M ∈MH
A with

right A-module structure given by µM : M ⊗cR A→M . Since M is a right H-

comodule the module M ⊗cRH with the structure given 1.2(2) becomes a Hopf

module (i.e. an object inMH
H). By the Fundamental theorem of Hopf modules

M ⊗cR H is H-generated as a Hopf module and therefore it is H-generated as

right H-comodule, say by ψ : H(∆) → M ⊗cR H in MH . This gives rise to a

surjective map in MH

(
H(∆)

)(Λ)
−→ (M ⊗cR H)(Λ) 'M ⊗cR H(Λ).

Combining this map with the surjection

M ⊗cR H(Λ) id⊗φ−→M ⊗cR A
µM−→M

yields that each (A-H)-bimodule is H-generated as right H-comodule.

Given now an epimorphism θ : H(∆) →M in MH for M ∈MH
A we get by

1.2 (4) an epimorphism

(H ⊗cR A)(∆) ' H(∆) ⊗cR A
θ⊗id−→M ⊗cR A

µM−→M

inMH
A . Now using the bijectivity of the antipode, which gives the isomorphism

H ⊗cR A ' A⊗R H by 1.4 we see that A⊗R H is a generator in MH
A . 2

Before formulating the main result we need some technical machinery.

Recall that for an R-coalgebra C, the cotensor product of a right C-

comodule %M : M → M ⊗R C and a left C-comodule %N : N → C ⊗R N
(denoted by M2CN) is defined by the exact sequence of R-modules

0→M2CN →M ⊗R N
α−→M ⊗R C ⊗R N,

where α = %M ⊗ idN − idM ⊗ %N .
Clearly for a right C-comodule M the cotensor product gives rise to a

functor

M2C− : CM−→ R−Mod.

In general this is neither left nor right exact. If M is flat over R the cotensor

functor is left exact. If it is right exact and RM is flat we call M coflat. If R

is a QF -ring and M ∈ MC is flat over R, the properties of M being coflat as

right C-comodule and being injective in MC coincide ([21]).

Recall that for an H-comodule M there exist two different comodule struc-

tures on the tensor product of M with H.
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The module M⊗RH is endowed with comodule structure %M⊗RH = idM⊗∆

(trivial right comodule structure) and the module H⊗cRM with structure map

%H⊗cRM = µ34 ◦ τ23 ◦ (∆ ⊗ %M) (crossed comodule sructure). In general these

two structures are different, but under the hypothesis that the antipode of H

is bijective with inverse S̄ we can state some canonical isomorphisms between

these comodule structures. In this case there exists an H-colinear isomorphism

H ⊗cRM −→ M ⊗R H, h⊗m 7→ ∑
imi ⊗ hm̃i;

M ⊗R H −→ H ⊗cRM, m⊗ h 7→ ∑
i hS̄(m̃i)⊗mi.

There is a close relation between the cotensor functor A2H− and the func-

tor of coinvariants. In order to state the next result we give another natural

isomorphism.

Recall that the antipode of H gives rise to a functor S : HM→MH which

assigns to a left H-comodule %U : U → H ⊗R U the right H-comodule

%US = (id⊗ S) ◦ τ ◦ %U : US −→ US ⊗R H,

leaving the morphisms unchanged.

If the antipode S of H is bijective, S is a categorical equivalence with

inverse functor given by S̄ :MH → HM,

%V : V → V ⊗R H 7−→ %S̄V = (S̄ ⊗ id) ◦ τ ◦ %S̄V : S̄V → H ⊗R S̄V.

3.2 Canonical isomorphism.

Let H be a Hopf algebra over R with bijective antipode S and U and V

be right H-comodules. Then there exists a canonical R-linear isomorphism

(functorial in U and V )

U2H
S̄V −→ (U ⊗cR V )coH .

Proof. Recall that the module U ⊗cR V becomes a right H-comodule with

right crossed comodule structure %U⊗cRV . Now consider the following diagram

of R-modules, where the horizontal lines are the defining sequences for the

cotensor product and coinvariants, respectively:

0 −→ U2H
S̄V −→ U ⊗R S̄V

%U⊗idV −idU⊗%S̄V−→ U ⊗R H ⊗R S̄V
... γ ↓idU⊗V ↓idU⊗ψ

0 −→ (U ⊗cR V )coH −→ U ⊗cR V
%U⊗cV −ι−→ (U ⊗cR V )⊗R H,

where ψ : H ⊗R S̄V → V ⊗RH, h⊗ v 7→
∑
i vi⊗ hṽi is an R-isomorphism and

ι : U ⊗R V → U ⊗R V ⊗RH, u⊗ v 7→ u⊗ v⊗ 1H is the canonical embedding.
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Then the right rectangle commutes with downward R-isomorphisms idU⊗V
and idU ⊗ ψ, since the elements are mapped via

u⊗ v 7−→ ∑
i ui ⊗ ũi ⊗ v −

∑
j u⊗ S̄(ṽj)⊗ vj

↓ ↓
u⊗ v 7−→ ∑

i ui ⊗ vi ⊗ ũiṽi − u⊗ v ⊗ 1H

By the kernel property of (U⊗RV )coH there exists an R-linear isomorphism

γ : U2H
S̄V −→ (U ⊗R V )coH which makes the diagram commute. 2

The next result will be needed in the proof of 3.7 but it is interesting in its

own right. It relates coflatness of A as an object in MH to projectivity of A

as an object in MH
A . It refines Corollary 3.2 in [14].

3.3 A coflat in MH.

Let H be a Hopf algebra over R with RH projective. Assume that the

antipode of H is bijective. Let A be a right H-comodule algebra which is flat

over R. Then the following are equivalent:

(a) A is a projective in MH
A ;

(b) the functor ComH(R,−) :MH
A −→ R-Mod is exact;

(c) the functor (−2HR) :MH
A −→ R-Mod is exact;

(d) the functor (R2H−) ◦ S̄ :MH
A −→ R-Mod is exact;

(e) S̄A is coflat as left H-comodule;

(f) A is coflat as right H-comodule;

(g) Aop is coflat as right Hop-comodule;

(h) A is projective in AMH .

Proof. Recall that projectivity of A in MH
A is equivalent to the exactness of

the functor BimH
A (A,−) :MH

A → Mod−AcoH which is the same as exactness

of the functor (−)coH :MH
A → Mod− AcoH by 2.3.

(a)⇔ (b) follows from the Bim-Com relations BimH
A (A,−) ' ComH(R,−)

in 1.6.

(a) ⇔ (c) By 3.2, the functor (−2HR) is canonically isomorphic to the

functor (−)coH .

(c)⇔ (d) is clear since S is bijective.

(a) ⇒ (e) By the canonical isomorphism for A and a right H-comodule

M from 3.2 we know that M2H
S̄A ' (M ⊗R A)coH . But this isomorphism is
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functorial in M and by assumption the composition of functors (− ⊗R A)coH

is exact (A flat over R). So is −2H
S̄A which means that S̄A is coflat as left

H-comodule.

(e) ⇒ (a) Note that for each M ∈ MH
A the A-multiplication map µM :

M ⊗cR A → M is H-colinear and splits in MH by νM : M → M ⊗cR A, m 7→
m ⊗ 1A. We have to show that under the assumption on S̄A being coflat the

left exact functor (−)coH preserves epimorphisms in MH
A .

Let f : M → N be an epimorphism in MH
A and consider the commutative

diagram with the vertical arrows epimorphisms.

M ⊗c A f⊗id−→ N ⊗c A
↓µM ↓µN
M

f−→ N.

Since (−)coH is left exact and µM and µN split in MH we have the com-

muting diagram with vertical arrows still epimorphic.

(M ⊗c A)coH
(f⊗id)coH−→ (N ⊗c A)coH .

↓µcoHM ↓µcoHN
M coH fcoH−→ N coH

We know that f coH is surjective if (f ⊗ id)coH is. But by the functorial

isomorphism (−⊗cRA)coH ' −2H
S̄A from 3.2, we have (f⊗id)coH = (f)2H

S̄A.

By assumption −2H
S̄A is exact so it preserves epimorphisms and the proof

is complete.

(e)⇔ (f) is clear since S is bijective.

(f) ⇔ (g) is trivial since Hop has the same coalgebra structure as H and

Aop has the same right comodule structure as A.

(g)⇔ (h) follows from (a)⇔ (e) applied to the Hop-right comodule algebra

Aop. 2

Note that the proof given here for (a)⇔ (e) follows the proof of Satz 5.8 in

Oberst [12]. Studying the proof carefully we obtain in particular the following

corollary for (not necessarily flat) comodule algebras:

3.4 A relatively coflat.

Let H be a Hopf algebra projective over R with bijective antipode. Let A be

a right H-comodule algebra. Then the following are equivalent:

(a) A is relatively projective in MH
A , i.e. the functor BimH

A (A,−) is exact

on R-split, exact sequences in MH
A ;
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(b) A is relatively coflat, i.e. the functor A2H− is (left and right) exact with

respect to R-split, exact sequences in MH .

Proof. Of course the functor − ⊗R A is always relative exact (even for non-

flat A) and the functor −2H
S̄A is always left exact with respect to R-split

sequences. Starting with split sequences, we can imitate the proof of (a)⇔ (e)

from the previous result. 2

Recall that a right H-comodule N is called relative injective (inMH), if the

functor Com(−, N) is exact with respect to R-split, exact sequences in MH

(see [6, 1.4]). Now we are able to state the main result. It is a supplement

to 2.6 for the special case of a bijective antipode and an H-generated right

H-comodule algebra A.

3.5 A as a projective generator in MH
A .

Let H be a Hopf algebra over R with RH projective. Assume that the

antipode of H is bijective. Let A be a right H-comodule algebra which is H-

generated as a right H-comodule. Then the following are equivalent:

(a) A is a projective generator in MH
A ;

(b) the functor BimH
A (A,−) :MH

A → Mod-AcoH is an equivalence;

(c) the functor BimH
A (A,−) : AMH → AcoH-Mod is an equivalence;

(d) the functor BimH
A (A,−) :MH

A → Mod-AcoH is exact and the map

ΨA⊗RH : BimH
A (A,A⊗R H)⊗AcoH A→ A⊗R H,

is surjective.

(e) A is relative injective as right H-comodule and the canonical map

βA : A⊗AcoH A→ A⊗R H, a⊗ b 7→ (b⊗ x)%A(a)

is surjective.

Proof. (a) ⇔ (b) This is a well known fact for abelian categories (see for

example [20, 46.2]).

(a) ⇒ (d) Since A is projective in MH
A , the functor BimH

A (A.−) is ex-

act. The surjectivity of ΨA⊗RH stems from the fact, that A is a generator by

assumption.

(d) ⇒ (a) Under the hypotheses A is H-generated as right H-comodule.

Now by 3.1 we obtain that the module A ⊗R H is a generator in MH
A . The
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surjectivity of ΨA⊗H shows that A generates A⊗RH inMH
A and therefore A is

a generator. Since A is always finitely generated inMH
A we have by exactness

of BimH
A (A,−) that A is a progenerator in MH

A .

(a) ⇒ (e) As mentioned above A ⊗R H is a generator in MH
A . But this

module is always relative injective as a right H-comodule since H has this prop-

erty. A is always finitely generated in MH
A and by assumption A is projective

inMH
A so it is a direct summand of (A⊗RH)k inMH

A for some k. Forgetting

the A-module-structure, A is an H-colinear direct summand of (A⊗RH)k. Of

course (A ⊗R H)k is relative injective, since A ⊗R H is. Hence A as a direct

summand is relative injective inMH . The surjectivity of β is clear by 2.5 since

A is a generator in MH
A .

(e) ⇒ (a) The surjectivity of β shows by 2.5 that A generates A ⊗R H
in MH

A . By assumption and 3.1 A ⊗R H is a generator in MH
A and so is A.

Moreover relative injectivity of A in MH implies projectivity of A in MH
A .

(e) ⇔ (c) Since S is bijective, it is easy to show that the canonical map

βA
op

is surjective too. So the assertion follows from (e) ⇔ (b) applied to Aop

as a right Hop-comodule algebra. 2

Note that (e) ⇒ (a) corresponds to Schneiders theorem [14, 3.5] and our

techniques provide a fairly simple proof of this fact. The proof in [14] shows the

isomorphism of the adjunction M 'M coH ⊗B A for M ∈MH
A and B = AcoH .

However, under the assumptions in (e) this isomorphism follows from the fact,

that A is a generator in MH
A .

It is an interesting problem whether (relative) coflatness of A is sufficient to

make A H-generated as a right H-comodule, which would make it possible to

weaken the hypotheses of our previous result. Nevertheless the result applies

in many cases:

3.6 Applications.

Let A be a right H-comodule algebra. Then A is H-generated as right

H-comodule provided one of the following holds:

(1) A is weakly H-injective in MH ;

(2) A is relative injective in MH ;

(3) H is finitely generated over the ring R;

(4) R is a QF -ring and H is co-Frobenius.

Proof. (1) is proved in [20], 16.11.
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(2) is equivalent to the fact that A is an H-colinear direct summand in

A⊗R H, and the last module is H-generated as a trivial right H-comodule.

Under the assumptions in (3) and (4), H is a generator inMH by [9, 3.9].

In both cases the antipode S is always bijective. 2

Note that the main result could be compared with other Hopf algebraic

proofs of the theorem on affine quotients. In particular we obtain a pure

module theoretic proof of Schneider’s Theorem I in [14] for the case of QF -

rings.

3.7 Schneiders theorem over QF-rings.

Let H be a Hopf algebra over a QF-ring R with RH projective. Assume

that the antipode of H is bijective. Let A be a right H-comodule algebra which

is flat over R. Then the following are equivalent:

(a) A is a projective generator in MH
A ;

(b) the functor BimH
A (A,−) :MH

A → Mod-AcoH is an equivalence;

(c) the functor BimH
A (A,−) : AMH → AcoH-Mod is an equivalence;

(d) A is injective in MH and we have a surjective map

βA : A⊗AcoH A→ A⊗R H, a⊗ b 7→ (b⊗ 1)%A(a).

Moreover, if one of these conditions is satisfied, A is H-generated as a right

H-comodule.

Proof. (a)⇔ (b) is well known for abelian categories.

(a) ⇒ (d) Since A is projective the functor BimH
A (A,−) is exact on MH

A .

By 3.3 this is equivalent to A being coflat in MH . Now A is flat and R is a

QF -ring, so A is an injective object in MH (see [21]). The surjectivity of βA

stems again from the fact that A generates A⊗R H.

(d) ⇒ (a) By [21] injectivity of A is equivalent to A being coflat over

H. By the previous result 3.3 this is the same as exactness of the functor

BimH
A (A,−), which means A is a projective object in MH

A . But injectivity

of A in MH implies that A is H-generated as a right H-comodule (by [20,

16.11]). Hence our previous result 3.5 applies.

(b) ⇒ (c) Since (b) is equivalent to (d), A is H-generated under the as-

sumption (b) and we can use our previous result 3.5.

(c) ⇒ (b) By applying the equivalence of (b) and (d) to Aop and Hop we

get that A is H-generated as right H-comodule, so 3.5 applies. 2
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