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Abstract

In [6, Theorem 2.2] Doi gave a Hopf-algebraic proof of a general-
ization of Oberst’s theorem on affine quotients of affine schemes. He
considered a commutative Hopf algebra H over a field, coacting on a
commutative H-comodule algebra A. If A°H denotes the subalgebra of
coinvariant elements of A and 8 : A ® geor A — A ® H the canonical
map, he proved that the following are equivalent:

(a) A C A is a faithfully flat Hopf Galois extension;
(b) the functor (—)°H : M — A®H_Mod is an equivalence;
(c) A is coflat as a right H-comodule and £ is surjective.

Schneider generalized this result in [14, Theorem 1] to the non-
commutative situation imposing as a condition the bijectivity of the
antipode of the underlying Hopf algebra. Interpreting the functor of
coinvariants as a Hom-functor, Menini and Zuccoli gave in [10] a module-
theoretic presentation of parts of the theory. Refining the techniques
involved we are able to generalize Schneiders result to H-comodule-

algebras A for a Hopf algebra H (with bijective antipode) over a com-
mutative ring R under fairly weak assumptions.

Introduction

Let H denote a Hopf algebra over a commutative ring R with zH projective,
and A a right H-comodule algebra. This setup generalizes such different sit-
uations as group scheme actions on affine schemes or R-algebras graded by
a group. Using this setup with commutativity-conditions for the algebras in-
volved, Doi gave in [6, Theorem 2.2] a Hopf algebraic proof of Oberst’s theorem



on affine quotients of affine schemes (conf. [12]). Schneider generalized this
result to the non-commutative situation, i.e., he showed in [14, Theorem 1]
that for a Hopf algebra H with bijective antipode over a field £ and an H-
comodule-Algebra A, the functor of coinvariants (=)« : M — AcH_Mod is
an equivalence of categories if and only if A is injective as a right H-comodule
and the canonical map 5 : A ® eor A — A ® H is surjective.

It was observed by Menini and Zuccoli in [10] that parts of the theory can
be described by general module-theoretic methods. Refining these techniques
we are able to generalize the main part of Schneiders paper to H-comodule-
algebras A for a Hopf algebra H over a ground ring R.

In Section 1 we study general properties of (A-H)-bimodules for a Hopf
algebra H over an arbitrary commutative ring R, provided pH is projective.
In particular we show in 1.6 that M is subgenerated by A ®p H and hence
can be identified with caerpp+ [A ®g H| where A?#H* is a suitable smash-
product.

Using results from [10] it is shown in 1.10 that for H a semiperfect Hopf
algebra over a QF-ring R the category M can be identified with A?#T-Mod,
where T is the left rational part of H*.

The second section is devoted to the question when A is a (projective)
generator in M¥. This part presents the module-theoretic background which
makes it possible to describe (faithfully) flat Hopf-Galois extensions A7 C A
as (projective) generators in the category of (A-H)-bimodules (conf. 2.5 and
2.6).

In Section 3 we assume that the antipode of the Hopf algebra H is bijective.
We proof in 3.1 that A®p H is a generator in the category M4 if and only if A
is H-generated as a right H-comodule. In 3.3 we give a refinement of Corollary
3.2 in [14]: For rA flat over R we characterise coflatness of A as an object in
MH as projectivity of A as an object in M. The main result in Section 3 is a
generalisation of Schneiders theorem on faithfully flat Hopf-Galois extensions
([14]. Theorem 1) under fairly weak assumptions from ground-fields to ground-
rings (see 3.5). The same theorem is extended to Hopf-Galois extensions over
ground-QF-rings in 3.7.

1 Right (A-H)-bimodules

Let H be a Hopf R-algebra with multiplication p : H ® g H — H, unit 1,
comultiplication A : H — H ®r H and counit ¢ : H — R. We will always
assume H to be projective as an R-module.



The dual module H* = Homg(H, R) endowed with the convolution product
is an R-algebra. For the canonical structures on A and H* we use the notation
(for h,x € H, f € H*)

f—=h=010® f)A(h) for H as left H*-module and
h— f =[xz~ f(zh)] for H* as left H-module.

Let A be a right H-comodule algebra, i.e., an R-algebra uq: AQr A — A
with unit 14 and a right H-comodule structure p4 : A — A ®r H which is an
algebra morphism.

For any two right H-comodules op; : M — M ®rH and oy : N - N®r H
the tensor product M ®r N can be either endowed with the trivial comodule
structure (e.g. id® oy ) or with the twisted one - intertwining the two comodule
structures involved - i.e.

orepy = (id ®id @ py) o (id @ T ®id) o (o @ on).

The resulting comodule with this crossed comodule strucure we denote by
M ®% N.

For any right A-module N, we consider N ®r H as a right A ®r H-module
and a right A-module by

m®@c)la®h):=na®ch, and (n®c)-a:=(n®c)oala).

1.1 (A-H)-bimodules. An R-module M is called a right (A-H)-bimodule
if M is a right A-module ¢y, : M ®r A — M, and a right H-comodule
orv : M — M ®pr H, such that gy is A-linear, i.e., for m € M, a € A,

om(ma) = o (m) - a (= em(m)ea(a)),
or - equivalently - ¢y is a right comodule morphism, where M ®% A has the

right comodule structure defined above, i.e.,

(Yy ®id) o ppra(lm @ a) = opr(Var(m @ a)) = opr(ma).

We denote by M4 the category which has as objects all (A-H)-bimodules
and as set of morphisms between (A-H)-bimodules M and N the mappings
which are both A-module and H-comodule maps (denoted by Bim’! (M, N)).
This is obviously an additive category which is closed under infinite direct
sums and has kernels and cokernels.



1.2 Basic properties of (A-H)-bimodules.
(1) For every right A-module N, N @r H is an (A-H)-bimodule by

onepg © N®rH — (N®@pH)®rH, n®c—n® Ac,
Unopn @ (N@rH)®rA— N®rH, n®c®ar— (n®c)oa(a).

For any (A-H)-bimodule M, the structure map op : M — M ®g H is
an (A-H)-bimodule map.

(2) If a: Ny — Ny is an (epi) morphism in Mod-A, then
a®idy : Ny ®@r H — Ny @r H

is an (epi) morphism of (A-H)-bimodules.
(3) For every right H-comodule L, L ®% A is an (A-H)-bimodule by

Vrgea @ (LO®RA)@prA—LRRA [®a®b—Il®ab, )
orgea @ L@RA— (LeRA)@rH, I®a—Y,;;l;®a ;0.

For any (A-H)-bimodule M, the structure map ¥y : M @4 A — M s
an (A-H)-bimodule map.

(4) If B : Ly — Ly is an (epi) morphism of H-comodules, then
B®idy: L ®% A — Ly ®% A
is an (epi) morphism of (A-H)-bimodules.

Proof. This can be immediately verified from the definitions (see [5, Example
1.1, 1.2)). O

As a first interesting application we observe:

1.3 Corollary. Assume the right H-comodule G is a generator in M. Then
(with the structure from (3)) G ®@% A is a generator in M.

Proof. Let M be any (A-H)-bimodule. Then there exists an H-comodule
epimorphism G — M which yields the (A-H)-epimorphisms

GMN @A — M®“A— M.



1.4 Remark. By 1.2, the tensor products H @4 A and A @ H both are
(A-H)-bimodules. If the antipode S has a composition inverse S, then the two
bimodules are isomorphic by the maps

H®p A — A®pH, h®@a —  >,;a; ® ha;,
AerH — H®%A, a®@h — ,hS(@)® a;

where o(a) =Y, a0, ®a; € AR H.

The (A-H)-bimodules may be considered as modules over an algebra which
is defined by a suitable multiplication on A? ®pr H*.

1.5 The smash product A”#H*. Any module M € M is a left H*-
module and we have in fact a left action

(AP@prH)Qr M — M, (a®k)®@m— (a® k)oy(m).

Notice that this does not make M an A°? ® p H*-module with respect to the
usual ring structure on A?® g H*. We define a new multiplication on A?®r H*

by
(a@ k) (0@ h) =3 bja® (b; — k)xh,
where a,b € A, k,h € H* and 04(b) = >,;b; ® l~)j.

The resulting algebra is called the (left) smash product of A and H*. We
denote it by AP#H* and for a ® f we write a#f. 1a#cpy is the unit of
AP#H* and it is an exercise in handling the definitions to show that every
(A-H)-bimodule is a left A?# H*-module and (A-H)-bimodules morphisms
are precisely the A°?# H*-module morphisms.

The maps A? — APH#H* a — a#ecy, and H* — APHH* k — 1,4k,
are algebra embeddings. In particular every left A°’# H*-module is a right
A-module and a left H*-module.

1.6 The category M. Let A be a right H-comodule algebra.

(1) The category MY is equal to o poryr+ [A @r H] = 0 gorpr- [H @% A], the
subcategory of left A°P#H*-modules subgenerated by A®r H or H®% A.

(2) For any M € MY and N € Mod-A,
Bim#% (M, N @ H) — Homa(M,N), f+ (id®¢)o f,

is an R-module isomorphism with inverse map h — (h ®id) o g.



(3) For N € M and M € MY,
Bimf{ (N ®5, A, M) — Com™ (N, M), g — g(— @ 1),

is an R-isomomorphism (functorial in M ) with inverse map

frvmo(f®idy).

Proof. (1) By 1.2, A®g H is an (A-H)-bimodule hence an A?# H*-module
and so are all objects in 0 4epzp+ [A @ H].
Let M € MY and o : A®) — M an epimorphism in Mod-A. Then the
maps
a®id: AV @rH— M@z H and oy : M — M @ H
are morphisms in M# | proving that M is subgenerated by A ®p H.
To show that H ®% A is also a subgenerator recall that for every (A-H)-

bimodule M, M ®gr H is an H-generated right H-comodule. A comodule
epimorphism H™ — M ®p H yields a bimodule epimorphism

(He® AW~ N 9 A — (M @ H) @% A.

Since gy : M — M ®p H splits in R-Mod, we have M @3 A C (M @rH)®%A
in M. But pp : M ®% A — M is an epimorphism in M# and we are done.

(2) This fact comes from the adjunction of the functors Uy : M — Mod-A
(forgetting the H-comodule structure) and — @z H : Mod-A — MH (][22,
3.12]).

(3) This is dual two (2). The relation stems from the adjunction of the
functors Uy : M% — MH (the functor forgetting the A-module structure)
and — ®@% A MH — MI. 0

Remark: It is worth noting that properties which can be characterised via
morphism functors like generation or projectivity are closley related through
the adjunctions. For example - if N is a projective object (a generator) in
MH than N ®% A becomes projective (a generator) in M# using (3) of 1.6 -
thus giving an alternative proof of 1.3.

We denote by T# : H*-Mod — M the rational functor, assigning to any
left H*-module M the largest right H-subcomodule of M, i.e. the trace of M
in M (the rational part of M). Similarly for any left A°?# H*-module M the
trace of M# in M (as a bimodule) is the largest R-submodule of M belonging
to MH . which we denote by T4 (M).

For a left A°# H*-module M the trace 7 (M) is an H-subcomodule and
the trace 741 (M) is a subbimodule of M. The next proposition connects these
two concepts.



1.7 Proposition. Let M € A’#H*-Mod. Then
(1) TH(M) e MY,
(2) M € M if and only if M = TH(M).
Proof. (1) First of all note that the H*-module structure of 7 (M) coincides

with the one inherited from M so that for every m € T (M) and for f € H*
we have

fom=Q1#[f)m = (1® f)o(m),

where ¢ : TH(M) — TH(M) ® H is the structure map. Moreover for every
m € TH(M) and a € A, putting ga(a) = 3;a; ® a; and o(m) = ¥, m; @ m;
we have:

frma = (1#[)(agte)m = ((13£f)(agte))m
>j(aj#t(a; — f))m
Yiglagte)mi(a; — f)(mi)
i j(ajgte)m; f (M)
= Zi,j miajf(midj)-
The map
0:THM)R°A— TH(M)A, m® ar— ma (= (aFte)m),
is an H*-morphism, since
frm®a)=(1#f)), (mi @ a;) @ maa; — >, mia; f(id;) = f - ma,

and therefore the image of the right H-comodule 7% (M) ®° A under ¢ is also
an H-comodule, i.e. TH(M)A c TH(M).
(2) (=) clear by definition. (<) follows by (1). O

As a consequence of the last proposition we get

1.8 Corollary. If M is closed under extensions in H*-Mod, then M is
closed under extensions in A’#H*-Mod.

Proof. Consider an exact sequence in A°?# H*-Mod,
0 — K —L— M —0,
where K, M € M¥. Then L =TH#(L) € M" andso L € M% by 1.7. O

The following observations are inspired by ideas from Cai-Chen [4].
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1.9 Dense subalgebras of AP#H*. LetT C H* be a subalgebra and assume
rA to be flat.

(1) If T is dense in H*, then A’#T is an A ®g H-dense subalgebra of
A°PHH* and we have

UAO;D#T[A ®R H] = Mg

(2) If T is a ring with enough idempotents then APH#T also has enough
idempotents.

(3) Now let T be TH(yH*). If T C H* is H-dense, then we have
APHT = TH(APH#H") = TJ' (APHH").
Moreover for any M € M we have (AP#T)M = M.

Proof. (1) Consider any (A-H)-bimodule M. Let a#f € AP#T and take
any my,...,m, € M. Putting oy (m;) = >, my; ® my;, we have for each [ < n,

(a#f) (ml) = sz(ﬁlll)mha

By assumption there exists ¢t € T such that ¢(my;) = f(my;), for all (finitely
many) ¢ and [ < n. So (a#f)(my) = (a#t)(my) for all [ < n, showing that
A°P#T is M-dense in A’#H* (modulo the annihilator of M).

In particular AP#7T is A ® g H-dense in A°?# H* and this implies

O’Aop#T[A Xr H] = UAop#H*[A Xpr H] = Mg

(e.g., [1, Proposition 3.1], [20, 15.7]).

(2) Assume {ey}a is a set of enough orthogonal idempotents of 7. Then
{1a#ter}a is a set of enough orthogonal idempotents of AP#T.

(3) Since T is dense in H*, we know that 7#(N) = TN for any N €
H*-Mod(see [22, 2.6] for details). Now by 1.7,(1)

TH(APHE") = T(APHH*) = (14T)(APHH*) = APHT € MY,

Using (1) above we get density of AP#T in A?#H*. Applying the formalism
of [22, 2.6] to oamwur[A ®r H] we get T (M) = (AP#T)M, for any M €
A°P#H*-Mod. O

As a special case of the situation described above we recall the properties
of semiperfect coalgebras.



1.10 Proposition. Let H be a (left) semiperfect Hopf algebra over a QF ring
R with trace ideal T := Rat(y«H*). Then

O'Aop#T[A QR H] = MZ = AOp#T — MOd,

and T ®% A and H @% A are generators in M4
Moreover AP#T is an algebra with enough idempotents and A @z H and
H ®% A are isomorphic as AP#H*-modules.

Proof. By [9, 3.9] and [22, 6.4] H and T are generators in M and T is dense
in H*. So the first assertions follow from 1.9 and 1.3.

Since the antipode of H is bijective (by [9, 3.8]) A®r H and H ®% A are
isomorphic bimodules (by 1.4). O

2 A as an A-H-bimodule

In this section we study the structure of A as an A-H-bimodule. It turns out,
that this leads to the equivalence-theorems for bimodule-categories studied in
[14] or [10].

2.1 Coinvariants. For any M € M put

Me" = {me M| oy(m)=m® 1y}, in particular
A = Jae A| oala) =a®1y}.

(1) There is an R-module isomorphism
v s Bimi (A, M) — M“® ) f— f(1,),
with inverse map wyr : m — [a— (a ® eg)m).

(2) In particular we have a ring isomorphism
va: End¥(A) = Bimf{ (A, A) — A®H
Mt s q right A" -module and vy is an A®H -module morphism.
Proof. The proof of [10, 3.15] also applies for coalgebras over rings. O

2.2 A®°H-modules and (A-H)-bimodules. Let V € Mod-A®". Then
V ® pgeorr A is a right A-module and has a right H-comodule structure induced
by the right comodule structure of A,

V ®peon A=V Qpeon AQr H, v®ar— v® pala).
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For any M € M, there are (A-H)-bimodule morphisms

Uy BimA (A, M) @peon A — M, f®a— f(a),
Dy M @4eon A — M, m® ar— ma,
which are connected by the commutative diagram
Bim# (4, M) @ qeorr A 24 M foa —  f()
lnwid I l I
Mo @uon A 2% M f()®a — f(la)a,

where vy id is an isomorphism (by 2.1) and hence Wy is injective (surjective)
if and only if @y is.

The next proposition provides some more technical relationships between
coinvariants and constructions related to A-modules.

2.3 A-modules and coinvariants. For every N € Mod-A,
Ay: N — (N@g H)*" n—n®ly,

is an isomorphism of right A" -modules with inverse map
>2imi @ hi e 3 niep (hy).

Combined with the isomorphism vngg : Bim% (A, N@g H) — (N®@g H)*!
(see 2.1) this yields an isomorphism

Oy : Bimf{ (A, N@r H) = N, fr— (1®¢)f(1a).
We have the commutative diagram
Bim{(A,N @ H) —% N

lVN(X)RH ||

(NerpH)*H 5 N@R,
From this we derive an isomorphism

@N@Zd BimE(A,N(X)RH)@AwHA — N®AcoHA,
[ ®a — (1@a)f(la)®a.

Moreover we obtain a map

PN pH
—

/6N : N®ACOH A A@éd (N ®R H)COH ®A60H A N®R PI7
n®a -~ (n®1ola),
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which yields the commutative diagram

v
Bim# (A, N @p H) @ qeon A —8" N H
lenwid [
N
N @ geonr A 5, NopH.

Proof. All these assertions are straightforward to verify (e.g., [10, Lemma
3.18, ff]). O

We will use the mappings introduced above to characterize A as a generator
in M. Hereby it is helpful to observe that an isomorphism for some single
module implies isomorphisms for a whole class of modules. Such a situation is
considered in our next proposition.

2.4 V,g,m as isomorphism. With the previous notation assume that scom A
15 flat and

Upgpr : Bimf (A AQp H) @peon A — AQr H, f®a— f(a),
18 an isomorphism. Then
(1) A is a subgenerator in M4 ;
(2) for each M € MM, Uy, is a monomorphism;
(3) for every A-generated M € MY, Wy, is an isomorphism.
Proof. (1) Since U4,y is an isomorphism, A ®r H is A-generated as a

bimodule and hence A is a subgenerator in oaomypn- [A @r H|=MH.

(2) With slight modifications the proof of [10, Lemma 3.22] applies.
(3) If M is A-generated as an (A-H)-bimodule, then W, is surjective. O

We are now prepared to give a number of interesting properties which
make A a generator in oaomyns [A ®r H=MH. This essentially extends [10,
Theorem 3.27] from base fields to base rings.

2.5 A as generator in M. Let A be a right H-comodule algebra. The
following are equivalent:

(a) A is a generator in MY ;

b) the functor Bimf% (A, =) : M — Mod-A®H is faithful;
A A
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(c) for every M € M we have an (A-H)-bimodule isomorphism
Pry: M @ peon A — M, m® a — ma;
(d) seomr A is flat and for every A @r H-generated (A-H)-bimodule M,
Uy Bimf (A, M) @ geon A — M, f@a— f(a),
s an isomorphism;
(e) acomA is flat and we have an isomorphism
VUagpm : BImA (A, A®Qr H) @peon A — ARr H, f®a— f(a);

(f) acom A is flat and we have an isomorphism

B A@ueon A = AQpH, a®@b— (b®@ 1y)oa(a).

Proof. (a) < (b) This holds for any category (e.g., [20, 13.2]).

(a) < (c¢) < (d) are proved in [10, Theorems 2.2, 2.3].

(d) < (e) This is shown in 2.4.
)< (

(e

In any Grothendieck category, a finitely generated projective generator

f) follows from the diagrams in 2.3. O

determines a category equivalence and we have this if we impose on A slightly
stronger conditions than in 2.5. Our result extends [10, Theorem 3.29] (for the
case D = H) from base fields to base rings.

2.6 A as projective generator in M. Let A be a right H-comodule algebra.
Then the follwing are equivalent:

(a) A is a projective generator in M4 ;
(b) we have a category equivalence
Bimf (A, —) : MH — Mod-AH,
( ( )coH . Mg — Mod — AcoH’ M — MCOH )’

(¢) acomA is faithfully flat and we have isomorphisms

\IJA®RH . Blmg(A,A@RH)Q@AwHA—)A@RH,
(B4 @ AQuen A— ARrH, a®br (b®x)o4(a));
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(d) for any M € M and N € Mod-A°Y | we have isomorphisms

Uy Bim¥ (A, M) @peon A — M, f&aw— f(a),
Qv : N —=Bimf (A N®jwn A), n—la—n®a .

Proof. Since A is finitely generated as an (A-H)-bimodule the assertions
follow from characterizations of progenerators in o[M] (see [20, 18.5 and 46.2])
and 2.5. O

2.7 Remarks. (1) For A= H, H*! = R- 1y and the map
f: H3p H—> H®R®rH, h®g+— (h®1x)A(g),

is an isomorphism. So H is a generator in Bimod-H and we obtain the Fun-
damental Theorem of Hopf modules.

(2) Let A be a right H-comodule algebra. If
B A@ueon A — AQp H, a®@b— (a® 1g)oalb),

is an isomorphism then A" C A is called a right Hopf-Galois extension (see
[10, 3.23]). 2.5 and 2.6 characterize such extensions.

Combining our observations we obtain an extension of Beattie-Dascélescu-
Raianu [2, Theorem 3.1] to Hopf algebras over QF rings. Recall that a left
modules M over any ring S is said to be a weak generator if for any right
S-module L, L ®¢ M = 0 implies L = 0.

2.8 Comodule algebras over semiperfect Hopf algebras. Let H be a
semiperfect Hopf algebra over a QF ring R and A be a right H-comodule alge-
bra.

(1) The following are equivalent:

(a) A is a generator in M4 ;

(b) A generates H®% A (or T ®% A) as bimodules;

c) the map Vgge 4 : Bimfl (A, H ®% A) @ peon A — H ®% A is surjective
®% A R R

(bijective);

d) the map Urge 4 : Bimi (A, T @% A) @ geon A — T @% A is surjective.

R A R R
(2) The following are equivalent:

(a) A is a projective generator in M ;
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(b) the map Wage - Bim{ (A, H®% A) @ geon A — H ®% A is surjective and
Acon A s a weak generator;

(c) A is injective in MH and the map
Uage i Bim}§ (A, H ®% A) @ peon A — H @% A is surjective.

Proof. (1) By [9, 3.9], H and T are (projective) generators in M and hence
H®% A and T ®% A are generators in M# (see 1.3). Now the assertions follow
from 2.5.

(2) (a) = (b) follows from 2.6.

(b) = (a) As in the proof of (1), H ®° A is a generator in M. The
surjectivity of Wage i implies, that A is a generator in M as well. So by 2.5
A is flat over A, Now the weak generator property makes A faithfully flat
over A°H and we are done using 2.6.

(a) < (c) will be proved in the next section 3.6,(4). Note that under the
assumptions on H the antipode is bijective. O

3 Schneiders theorem revisited

From now on we assume, that the antipode S of the Hopf algebra H is bijec-

tive with composition inverse S. In [14] Schneider generalizes Oberst’s result

on affine quotients [12] to the non-commutative situation. His proof is a Hopf

algebraic one. But the result is module theoretic in nature - relating equiv-

alences between categories of modules to the exactness of functors between

them - so we will give a module theoretic proof of the theorem in this section.
The key observation is the following :

3.1 A®p H as generator in M.
Let H be a Hopf algebra with bijective antipode, A a right H-comodule
algebra. Then the following are equivalent:
(a) A®r H is a generator in M ;
(b) A®gr H generates A in MY ;

(c) A is H-generated as right H-comodule.

Proof. (a) = (b) is trivial.

(b) = (c) By assumption A®pg H generates A in M and therefore in M.
Recall that A ® g H has trivial right comodule structure and therefore is H-
generated in M. Combining this two facts we see that A is H-generated as
right H-comodule.
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(c) = (a) Let ¢ : H™ — A be an epimorphism in M* and M € M with
right A-module structure given by py : M ®3 A — M. Since M is a right H-
comodule the module M ®¢, H with the structure given 1.2(2) becomes a Hopf
module (i.e. an object in M#). By the Fundamental theorem of Hopf modules
M ®% H is H-generated as a Hopf module and therefore it is [-generated as
right H-comodule, say by ¢ : H®) — M ®% H in M. This gives rise to a
surjective map in M

A
(BN — (1 @ )Y ~ M @y HO,

Combining this map with the surjection
M @5 H® 28 e, 4 £ 3

yields that each (A-H)-bimodule is H-generated as right H-comodule.
Given now an epimorphism 6 : H®) — M in M# for M € M we get by
1.2 (4) an epimorphism

(H@% AW ~ H® g6 A% M g A 25 M

in M. Now using the bijectivity of the antipode, which gives the isomorphism
H®% A~ A®g H by 1.4 we see that A @r H is a generator in M1 O

Before formulating the main result we need some technical machinery.

Recall that for an R-coalgebra C', the cotensor product of a right C-
comodule o)y : M — M ®g C and a left C-comodule oy : N — C ®g N
(denoted by MOsN) is defined by the exact sequence of R-modules

0— MOsN - M@rN - M®rC®gN,

where a = o) ® tdy — idy ® on-.
Clearly for a right C'-comodule M the cotensor product gives rise to a
functor
MOg—:“M — R — Mod.

In general this is neither left nor right exact. If M is flat over R the cotensor
functor is left exact. If it is right exact and g M is flat we call M coflat. If R
is a QF-ring and M € MY is flat over R, the properties of M being coflat as
right C-comodule and being injective in M coincide ([21]).

Recall that for an H-comodule M there exist two different comodule struc-
tures on the tensor product of M with H.
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The module M ®rH is endowed with comodule structure oyg,r = tdy @A
(trivial right comodule structure) and the module H ®% M with structure map
OH®eM = [34 © Tag O (A ® opr) (crossed comodule sructure). In general these
two structures are different, but under the hypothesis that the antipode of H
is bijective with inverse S we can state some canonical isomorphisms between
these comodule structures. In this case there exists an H-colinear isomorphism

HegM — M®rH,  h@m — 3;m;®hmn;
M@rH — H®3M, m®h — Y,hS(m;)om,.

There is a close relation between the cotensor functor Ay — and the func-
tor of coinvariants. In order to state the next result we give another natural
isomorphism.

Recall that the antipode of H gives rise to a functor S : "M — M which
assigns to a left H-comodule gy : U — H ®g U the right H-comodule

oys = (id® S)oT ooy : U® — U® @g H,

leaving the morphisms unchanged.
If the antipode S of H is bijective, S is a categorical equivalence with
inverse functor given by S : M — A,

oy:V—=-VRrH +r— QSV:(g®id)OTOQSV3§V—>H®RSV-

3.2 Canonical isomorphism.
Let H be a Hopf algebra over R with bijective antipode S and U and V
be right H-comodules. Then there exists a canonical R-linear isomorphism

(functorial in U and V')
UO4V — (U @5 V)~!.

Proof. Recall that the module U ®% V' becomes a right H-comodule with
right crossed comodule structure gygey. Now consider the following diagram
of R-modules, where the horizontal lines are the defining sequences for the
cotensor product and coinvariants, respectively:

ou ®idy —idy ®e3,,

0 — UOV — U®p5V — U®r H®R3V
S’y lidU®V lidU®1/J
0 — (ULV)! — U4V e (U®% V) ®g H,

where ¢ : H ®p SV >V @r H, h®@vw— > ,v; ®hv; is an R-isomorphism and
L:URRV - U®rV®r H, u®v+— u®v® ly is the canonical embedding.
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Then the right rectangle commutes with downward R-isomorphisms idy gy
and idy ® 1, since the elements are mapped via

! ]
URUV iU QU QUL —uRVR 1y

By the kernel property of (U®z V)" there exists an R-linear isomorphism
v : UDgV — (U @ V)" which makes the diagram commute. O

The next result will be needed in the proof of 3.7 but it is interesting in its
own right. It relates coflatness of A as an object in M to projectivity of A
as an object in M. Tt refines Corollary 3.2 in [14].

3.3 A coflat in MY,

Let H be a Hopf algebra over R with rH projective. Assume that the
antipode of H is bijective. Let A be a right H-comodule algebra which is flat
over R. Then the following are equivalent:

(a) A is a projective in M ;

(b) the functor Com™ (R, —) : MH — R-Mod is ezact;

(c) the functor (—OgR) : M — R-Mod is exact;

(d) the functor (ROpg—) oS : M — R-Mod is exact;

(e) SA is coflat as left H-comodule;

(f) A is coflat as right H-comodule;

(9) A is coflat as right HP-comodule;

(h) A is projective in 4 M.
Proof. Recall that projectivity of A in M is equivalent to the exactness of
the functor Bim# (A, —) : MY — Mod — A®H which is the same as exactness
of the functor (—)°# : MH — Mod — A®H by 2.3.

(a) < (b) follows from the Bim-Com relations Bimf{ (A, —) ~ Com™ (R, —)

in 1.6.

(a) < (c¢) By 3.2, the functor (—OyR) is canonically isomorphic to the
functor (—)<H.

(¢) & (d) is clear since S is bijective.

(a) = (e) By the canonical isomorphism for A and a right H-comodule

M from 3.2 we know that MOy%A ~ (M ®p A)°H. But this isomorphism is
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functorial in M and by assumption the composition of functors (— @z A)®H
is exact (A flat over R). So is —Oy5A which means that SA is coflat as left
H-comodule.

(e) = (a) Note that for each M € M¥ the A-multiplication map pys :
M ®% A — M is H-colinear and splits in M by vy : M — M ®@% A, m —
m ® 14. We have to show that under the assumption on 54 being coflat the

coH : : : H
preserves epimorphisms in MJ.

left exact functor (—)
Let f: M — N be an epimorphism in M and consider the commutative

diagram with the vertical arrows epimorphisms.
MecA 2 Ne<A

lﬂM l#N
M LN

Since (—)®H is left exact and py; and py split in M we have the com-
muting diagram with vertical arrows still epimorphic.

(f®id)COH

(M ®° A)coH it (N ®° A)coH‘
LuggH LugeH
coH
MCOH f_} NcoH

We know that f< is surjective if (f ® id)®H is. But by the functorial
isomorphism (—®% A)®? ~ —0Oy5A from 3.2, we have (f ®id)" = (f)O45A.

By assumption —0O 1A is exact so it preserves epimorphisms and the proof
is complete.

(e) < (f) is clear since S is bijective.

(f) < (g) is trivial since H has the same coalgebra structure as H and
A° has the same right comodule structure as A.

(g9) < (h) follows from (a) < (e) applied to the H°’-right comodule algebra
A°P. O

Note that the proof given here for (a) < (e) follows the proof of Satz 5.8 in
Oberst [12]. Studying the proof carefully we obtain in particular the following
corollary for (not necessarily flat) comodule algebras:

3.4 A relatively coflat.
Let H be a Hopf algebra projective over R with bijective antipode. Let A be
a right H-comodule algebra. Then the following are equivalent:

(a) A is relatively projective in MH, i.e. the functor Bimf (A, —) is ezact
on R-split, exact sequences in MH ;
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1s relatively coflat, i.e. the functor AQg— is (left and right) exact wi
b) A is relatively coflat, i.e. the functor AO s (left and right t with
respect to R-split, exact sequences in MH.

Proof. Of course the functor — ®p A is always relative exact (even for non-
flat A) and the functor —0O gOA s always left exact with respect to R-split
sequences. Starting with split sequences, we can imitate the proof of (a) < (e)
from the previous result. o

Recall that a right H-comodule N is called relative injective (in M) if the
functor Com(—, N) is exact with respect to R-split, exact sequences in MH
(see [6, 1.4]). Now we are able to state the main result. It is a supplement
to 2.6 for the special case of a bijective antipode and an H-generated right
H-comodule algebra A.

3.5 A as a projective generator in M%.

Let H be a Hopf algebra over R with rH projective. Assume that the
antipode of H is bijective. Let A be a right H-comodule algebra which is H -
generated as a right H-comodule. Then the following are equivalent:

(a) A is a projective generator in M ;
(b) the functor Bimf (A, —): MH — Mod-A®" is an equivalence;
(c) the functor Bimf (A, —): aMT — A“H_Mod is an equivalence;

(d) the functor Bimf (A, =) : MY — Mod-A“" is exact and the map
\I/A®RH . Blmg(A,A@R H) ®AcoH A — A@R H,

18 surjective.

(e) A is relative injective as right H-comodule and the canonical map
B AR peon A— AR H, a@b— (b®x)oa(a)
18 surjective.

Proof. (a) < (b) This is a well known fact for abelian categories (see for
example [20, 46.2]).

(a) = (d) Since A is projective in M¥, the functor Bimf{(A.—) is ex-
act. The surjectivity of Vg, stems from the fact, that A is a generator by
assumption.

(d) = (a) Under the hypotheses A is H-generated as right H-comodule.
Now by 3.1 we obtain that the module A @ H is a generator in M#. The
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surjectivity of U 445 shows that A generates A®@g H in M4 and therefore A is
a generator. Since A is always finitely generated in M# we have by exactness
of Bimf (A4, —) that A is a progenerator in M%.

(a) = (e) As mentioned above A ®x H is a generator in M. But this
module is always relative injective as a right H-comodule since H has this prop-
erty. A is always finitely generated in M# and by assumption A is projective
in M so it is a direct summand of (A®p H)* in M for some k. Forgetting
the A-module-structure, A is an H-colinear direct summand of (A ®x H)*. Of
course (A ®p H)F is relative injective, since A ®p H is. Hence A as a direct
summand is relative injective in M¥ . The surjectivity of 3 is clear by 2.5 since
A is a generator in MH,

(e) = (a) The surjectivity of 3 shows by 2.5 that A generates A ®p H
in M. By assumption and 3.1 A ®g H is a generator in MY and so is A.
Moreover relative injectivity of A in M implies projectivity of A in M.

(e) < (c) Since S is bijective, it is easy to show that the canonical map
A7 is surjective too. So the assertion follows from (e) < (b) applied to A%
as a right H°’-comodule algebra. O

Note that (e) = (a) corresponds to Schneiders theorem [14, 3.5] and our
techniques provide a fairly simple proof of this fact. The proof in [14] shows the
isomorphism of the adjunction M ~ M*“H @5 A for M € M and B = A«H,
However, under the assumptions in (e) this isomorphism follows from the fact,
that A is a generator in M.

It is an interesting problem whether (relative) coflatness of A is sufficient to
make A H-generated as a right H-comodule, which would make it possible to
weaken the hypotheses of our previous result. Nevertheless the result applies
in many cases:

3.6 Applications.
Let A be a right H-comodule algebra. Then A is H-generated as right
H-comodule provided one of the following holds:

(1) A is weakly H-injective in MH;

(2) A is relative injective in M ;

(3) H is finitely generated over the ring R;
(4) R is a QF-ring and H is co-Frobenius.

Proof. (1) is proved in [20], 16.11.
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(2) is equivalent to the fact that A is an H-colinear direct summand in
A ®pgr H, and the last module is H-generated as a trivial right H-comodule.

Under the assumptions in (3) and (4), H is a generator in M# by [9, 3.9].
In both cases the antipode S is always bijective. O

Note that the main result could be compared with other Hopf algebraic
proofs of the theorem on affine quotients. In particular we obtain a pure
module theoretic proof of Schneider’s Theorem I in [14] for the case of QF-
rings.

3.7 Schneiders theorem over QF-rings.

Let H be a Hopf algebra over a QF-ring R with gH projective. Assume
that the antipode of H is bijective. Let A be a right H-comodule algebra which
1s flat over R. Then the following are equivalent:

(a) A is a projective generator in MY ;
(b) the functor Bimf (A, —): M% — Mod-A“" is an equivalence;
(c) the functor Bimf(A,—): aMHT — A“H_Mod is an equivalence;

(d) A is injective in M and we have a surjective map
BA 0 ARpeon A— ARr H, a®@b— (b® 1)oa(a).

Moreover, if one of these conditions is satisfied, A is H-generated as a right
H-comodule.

Proof. (a) < (b) is well known for abelian categories.

(a) = (d) Since A is projective the functor Bim% (A, —) is exact on M%.
By 3.3 this is equivalent to A being coflat in M. Now A is flat and R is a
QF-ring, so A is an injective object in M* (see [21]). The surjectivity of 34
stems again from the fact that A generates A @z H.

(d) = (a) By [21] injectivity of A is equivalent to A being coflat over
H. By the previous result 3.3 this is the same as exactness of the functor
Bim# (A, —), which means A is a projective object in M. But injectivity
of A in M# implies that A is H-generated as a right H-comodule (by [20,
16.11]). Hence our previous result 3.5 applies.

(b) = (c) Since (b) is equivalent to (d), A is H-generated under the as-
sumption (b) and we can use our previous result 3.5.

(¢) = (b) By applying the equivalence of (b) and (d) to A and H we
get that A is H-generated as right H-comodule, so 3.5 applies. O
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