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ABSTRACT

Using torsion theoretic techniques we define strongly and properly semiprime
modules. Strongly semiprime modules M are characterized by the fact that in
the M-injective hull 3 , every fully invariant submodule is a direct summand.
They extend Handelman’s left strongly semiprime rings.

For properly semiprime modules M, fully invariant submodules of A , Which
are finitely generated by elements of M, are direct summands.

Any (non-associative) ring A is called SSP or PSP ring, if A is strongly (resp.
properly) semiprime as module over its multiplication ring. A is S§P if and
only if ite central closure is a direct sum of simple ideals. The structure of the
central closure of PSP rings ie close to biregular ringe.

l.Introduction. 2.Trace and torsion submodules. 3.Polyform modules. 4.Strongly
semiprime modules. 5.Properly semiprime modules. 6.Pseudo regular modules. 7.Poly-
form PSP and SSP modules. 8.Left SSP and PSP rings. 9.Bimodule structure of
rings.

1 Introduction .

Throughout the paper R will be an associative ring with unit and R-Mod the category
of unital left R-modules. For unexplained notions we refer to (15}

For any left R-module M, the full subcategory of R-Mod, whose objects are submod-
ules of M-generated modules, is denoted by o[M)].

The M-injective hull of N € o[M] is written as N or Ing(NV).
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By K C M we usually mean that K is {isomorphic to) a submodule of M, and
K < M indicates that K i3 an essential submodule of M.

For X C Mandbe M, weput (X:b)z={r€ R|rbe X}.

Tk (M) is defined in section 2. Polyform modules are described in section 3.

Consider the following properties of an R-module M:

(i) R/Ang(M) is cogenerated by every essential submodule of M;
(it} for every N 4 M, M € o[N];

(iii) for every N 9 M, M C N, for some set A;

(iv) for every N 9 M, R/Ang(M) C N7, for some r € IV;

(v) M is cogenerated by every essential submodule of M;

(vi) M is polyform;

{vii) for every submodule K C M, M/T (M) € o[K];

(viii) for every cyclic submodule K C M, M/T k(M) € ¢[K];

The conditions (§}-{{) stated for every submodule were considered in [13] transferring
primeness conditions from rings t0 modules. In particular, modules satisfying (if) for
every submodule N C M, were called strongly prime modules. From the arguments
given there it follows that all these conditions are in fact distinci.

Here we have for any module M the implications (i) = (v) = (3), ({#i) = (3¢) = (1),
(iv) = (i)} and (vii) = (#).

Tt is eagy to prove that for M projective in o{M], (#) and (#if) are equivalent. With
a little more effort we will see that in this case also (vif) is equivalent to M satisfying
both (4) and (vf) (cf. 7.9, 7.10). .

For M = xR, the conditions (i), (¢#), (fv) and (vii) are equivalent and nwwﬂvﬁoﬂam
the left strongly semiprime rings introduced by Handelman [6] and further studied by
Kutami-Oshiro {9] {cf. 8.2).

For R commutative and M = R, any of the properties (f), {(v), {vi) and (viii)
determine precisely R to be a semiprime ring (hence the complete quotient nbm of Ris
regular). Properties (i1), (i#i) (iv) and (vii) imply that the complete quotient ring of R
is a finite product of fields.

Basic definitions and technical preparations are provided in Section 2.

General observations on polyform modules are given in Section 3. Hereby their
bimodule properties turn out to be of special interest. Using the central idempotents of
the self-injective hull, the idempotent closure of a polyform module is introduced.
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We take (vii) to define strongly semiprime modules in Section 4. They are character-
ized by the fact that their self-injective hull is semisimple as a bimodule.

Modules satisfying (viii) we call properly semiprime. They are treated in Section 5.

Extending the notion of left fully idempotent rings pseudo regular modules are defined
in Section 6.

The structure of modules which are both polyform and SSP (resp. PSP) is investi-
gated in Section 7. For modules M which are projective in o[M] the PSP property in fact

implies polyformity. Applying our results to rings we obtain further characterizations of
left SSP rings defined in [6] (Section 8).

Section 9 is devoted to the bimodule structure of rings. We consider any ring A as
a module over its multiplication ring M(A). As shown in [13], A is a strongly prime
M(A)-module if and only if the central closure A is & simple ring. Here we observe that
A is strongly semiprime as an M(A)-module if and only if A is & direct sum of simple
ideals. We are also concerned with A being properly semiprime as an-M. {A)-module. In
particular we consider the case when the central closure 4 is an Azumaya ring,

2 Trace and torsion submodules

We begin with some technical preparations. M always denotes an R-module. For our
purpose we need an extended version of the trace Tr(K, L) of 3 module X in [, namely
the trace of the category o[K] in L.

2%.1 Trace submodules.
For K, L € o[M], let T*(L) denote the trace of o[K] in L, i.c.
TX(L) = Y {U C L|U € o|K]}.
For cyclic submodules Ra C L, put 7°(L) = TH(L).
Notice the following properties:
(1) TX(L) is a fully invariant submodule of L, T¥(L)Endp(L) ¢ TX(L).
(8) TX(L) = Tr(K,L) = K Homg(K, L) is a K-injective module.
(8) T%(L) = Ln T*(L).
(4) I K = K\ + Ky, then TE(L) = T5() + TH().
(5) If K c L, T¥(L) = K Endp(L) and T¥(L) = L N K Endg(L).
For any injective object @ € o[M], the modules X € o[M] with Homg(X,Q) =0,

form a torsion class in o[M] (cf. {12]). A module is called torsionfree with respect to
this torsion theory, if its torsion submodule is zero.
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With the notation above, the M-injective hull of 7% (M) may be regarded as submod-
ule of M. Denoting T = Endg(M), we have In(T5(M)) = In(TX(M)) = Inu(KT).
We fix the following notation. For the definition of reject Re(—, ) see [15], 14.4.

2.2 Torsion submodules. .

For K,L € o[M], let Tx (L) denote the torsion submodule of L, with respect to
the torsion theory (in o[M]) determined by I (7% (M), ie.

Tiae(L) =S{U € L) Homa(U, Le(T¥ (M) = 0} }
=N {Kef|f € Homg({L, I(T*(M))} = Re (L, Lu(T* (M)).

The index *M’ refers to the category ¢[M] we are working in. In case this category is
fixed, we simply write T x(L) instead of T g ae(L).

In particular, for cyclic modules K = Ra, we put 74(L) = Tra(L).

Tx(~) 18 a left exact radical in o{M] and so T (L) is fully invariant in L (see [12]).

et us list some properties in the form we will mostly use them:

2.3 Properties. _
Let M be an R-module, K C M o submodule and T = Endp(M).
(1) TR(H) = KT is a K-injective module.
(2) TE(M) =T*¥(M)n M.
(8) TE(MYNTx(M) =0.
(4) For submodules L, N C E\f§.§ K=L+N,
TX(M) = TE(M) + TN(M) and Tx(M) = T{M)N Tn(M).
(5) If K is generated by a,,...,04 € K, Tx(M) = (i, To,(M).

Proof. (1),{2) are special cases of the preceding observations.

(3) For X ¢ T¥(M)NTx(M), X C KT and Homp(X, In{KT)) = 0. This implies
X=0

(4) For K == L + N, KT = LT + NT. Hence without restriction assume K = KT,
L= LT and N = NT. Clearly Tx(M) ¢ Tr(M)N Tx(M). Consider an additive
complement &V, C N of L in K. Then L & N, is an essential submodule of K and

—— -~

E=IaNcIiaN.

From this we conclude Tx{M) 2 Tr{M) N T n(M).
{5). This is derived from (4) by induction. C




62

3 Polyform modules

A module N € o[M] is called singular in o[M] or M-singular if N ~ L/K for some
L€ o[M]and K 9 L (see [12]). For M = R, instead of R-singular we just say singular.

A submodule U C M is called rational in M if Hom(M/U, M) = 0. Every rational
submodule is in particular essential in M.

M i called polyform if every essential submodule is rational. The following charac-
terizations of these modules are easy to verify (e.g. [16], (12]).

3.1 Polyform modules. ngnﬂ.mumum&oum,.
For a module M with .mk.n.a.q.mn&em.aaa.mw the following are equivalent:
{a) M is polyform;
(¥} for any submodules K 9 L C M, Homg(L/K, M) = 0;

(c) for every N C M, the canonical map Homp(N, M) — BHomg(N, M) is an isomor-
phiam;

{(d) M is polyform;
(¢} Endp(M) is regular.
For such modules M, Endp(M) iz o subring of Endp(3M).
Every monic f € Bndp(M) with Im f 9 M is invertible in Endg(M).

I the M-singular submodule of M is zero, then M is polyform. A ring R is left
polyform if and only if it is left non-singular.

3.2 Properties of polyform modules,

h&bhamnhognoﬂa.w-ﬁom&nwb\wmﬁ .,.&.ﬂ.e.mn&amaa:b\waamm._ﬂ .m.u&mg\w Vﬁ__m:
for any submodule K ¢ M: .

(1) Tx(M) is M-injective.

(28) T, oy(M) = Le(KT).
(3) M = Tx(M) ® Iy(KT).
(4) Te(M)+T*(M) 9 M.

(5) for eny m ¢ M, Anz{m) is generated by an idempotent and M fs a non-singular
right T-module.

Proof. Put L = T(M).

(1) Since M is polyform, Homg(In(L), In(KT)} = 0 and hence Iy(L) C L, ie.
In(L) = L is M-injective.

(2) Consider g € Homg(X, L). Since Keg is not essentialin K, there exdsts 0 £ X ¢
K with X N Keg = 0 and X =~ (X)g C L, a contradiction. Hence K C Tr(M) and
KT cC u‘hﬁmu since qﬁ.ﬁmv is fully invariant.

Now we show that KT'9 T(M). Assume there is a non-zero submodule U C 7, (M )
with UNKT = 0. If Homp(U, I (KT)) = 0, then U ¢ Land U € T2(M)NT (M) = 0,
a contradiction.

Hence there is a non-zero g : U — Iy(KT). Since Keg is not essential in U, there
exists a non-zero submodule V C U witk V' N Keg = 0. Because of KT < Ing(KT), we
may assume V = (V)g C KT. Nowforsomet € T, wehave V= (V)gt CUNKT =0,
a contradiction.

(3) By (1), L and Tr(M) are M-injective. Since L N Ty(M) = 0 by definiton,
M=L0T(M)®W for some W C M.

Assume there is a non-zero b € Homg(W, L) and Q N Keh = 0 for some non-zero
Q C W. Then Q 2 (Q)h C L and there is some ¢ € T with Q = (Q)&t C WN L = 0.
This implies Homg(W,L) = 0 and W ¢ T 1{M).

Hence W = 0 and by (2), M = L& To(M) = L @ In(KT). -

(4) is an immediate consequence of (3).

(5) For m € M consider t € T with (m)t = 0. Then (Rm)t = 0 and - M being
polyform - Ine(Rm)t = 0: We have M = Iy(Rm) @ U for some R-submodule U C M.
For the related projection (idempotent) g : M —~ Ing(Rm), Mgt = 0. This means gf = 0
and t = (1 — g}t € (1 — g)T. Therefore Any(m) = (1 — ¢)T implying that M is a
non-singular T-module. m

As already shown above, the condition on an R-module to be polyform has a strong
influence on the structure of its ?:.u‘ invariant submodules. We collect information about
this in our next lemma:

3.3 Bimodule properties of polyform modules.
Let M be a polyform R-module, M its M-injective hull and T = Endp(M). Denote
by C the center of T (i.e., the endomorphism ring of M as an (R, T)-bimodule). Then:

{1} Bvery essential (R, T}-submodule of M is essential as an R-submodule.

(2 m\w is self-injective and polyform as an (R, T)-bimodule.
C is o regular self-injective ring.
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(3) For every submodule (subset) K C M, there exists an idempotent e(K) € C, such
that Anc(K) = (1 - e(K))C.

(4) TK QL CM, then o(K) = e(L).
(5) Buery finitely generated C-submodule of M is C-injective.
(6) If M is a finitely generated (R, T)-module, M is a generator in C-Mod.

Proof. ﬁ: Let N C M be an essential (R, T)-submodule. Then N N T y(M) =0
implies \N.ZCK.V =0and M = H.EAZ.HH-V H.E.Q/Q by 3.2.

So N <9 M 23 an R-submodule, -

(2) Again let N C M be an essential (R.T)-submodule and & : N — M an (R, T)-
EoBEmE Since M is a self-injective R-module, there is an f € T which extends A from
Nto M.

Foranyt € Tandn € N, (nt)f—(n)ft = ?&w ~(n)ht = 0. Hence-N C Ke(tf— ft).
By (1}, N is an essential R-submodule and since M is polyform, tf — ft =0, implying
that f is an (R, T)-morphism and M is a self-injective {R, T)-module.

The endomorphism ring of the mon.Eumnsaa (R, T)-module M is the center of the
regular ring T and hence is also regular. So 3 is a polyform (R,T")-module by 3.1. This
in turn implies that C is self-injective.

(3) By 3.2, there is a bimodule decomposition M = 7 x(# )& Iny(K Hv Then the
projection (X): M — Iu(KT) is an idempotent in C and

Ang(K) = Ang(In(KT)) = (1 — e(K))C.

(4) This property is obvious since M is polyform.

{5) As shown in 3.2, every cyclic C-submodule of M is isomorphic to a &32 sum-
mand of C and hence is C-injective. Since M is a non-gingular C-module, any finite sum
of C-injective submodules is again C-injective.

(6) Let M be generated as (R, T)-module by my,...,ms. Then the map C — ¥,

c—+ (my,.. .SLD is @ monomorphism. Since C i Euooﬂ:d it is a direct summand of -

M* and so M is a generator in C-Mod, . =

For later use we state some Hnear movmﬂ%aom properties of elements in M with
respect to Endr(AM).

3.4 Independence over the endomorphism ring.
Let M be o self-injective R-module, T = Endp(M) and my,...,m, € M.

(1) Assume miT NTT ,mT = 0. Then Ang(mg,...,m,)m; < Rm,.

(2) If M is polyform and Ang(ms,...,m,)m; 9 Rm,, then m;T N r.mT =0

€5

Proof. Put U = Ang{m,,...,m.).

(1) Assume there exists a non-zero submodule V' C Rm, satisfying V NUm, = 0.
Consider the canonical projection o : V @ Um; — V. M being self-injective a extends
to an endomorphism ¢ of M. From Ryt D (V + Umy)t =V # 0 we conclude m;t # 0.

We also have U(myt) = (Um, )t = (Um;)a = 6. By Corollary 2.2 in [8}, this implies
mit € 3.0, T, a contradiction.

(2) Assume 0 # myt € X0, T for some t € T. Then Umyt C UL, mT = 0.
Since M is polyform and U/m; <4 Rm; we have Rm,t = 0, a contradiction. |

There is an extension of a module M contained in the M-injective hull M which
turns out to be of some interest.

Definition. Let M be an R-module, T = Endg(M) and B the Boolean ring of all
central idempotents of T. Then we call M = MB the idempotent closure of M.

This notion is closely related to the w-injective hull of M defined in Goel-Jain [3],
which can be written as MU, with U the subring generated by all idempotents in T'.
Hence if all idempotents in T are central, M is just the m-injective hull of M.

3.5 Idempotent closure of polyform modules. .

We use the above notation. Let M be an R-module with idempotent closure M. Then
for every a € M, there exist my,...,m; € M ond pairwise orthogonalcy,...,cx € B
such that a = Mu.uu TG,

If M is polyform module, there exist pairwise orthogonal ey,...,ex € B such that

(1) &= Ty mies;
(2) e; =e{m)e; fori=1,...,k;
(3) e(a) =Tk e

m:.oom.ﬂw:mnﬂuuuﬁu@&ﬂ;dp.,F.mgwbavr:. ,Pm.m. .
The Boolean subring of B generated by &y,..., b, is finite and hence isomorphic to
(Z2)* for some k € IN. So it contains a subset of pairwise orthogonal idempotents

¢1,. .., ¢ such that, for all j = 1,...,7, b; = Tieg(y) & with S(f) C {1,...k}. Therefore

mHMrus.r.o.. with mg =" {w|i € 5(1)}.

i=1

Assume M is polyform. Put e; = e(my)cie(a). Since nm?v = ¢ and me{my) =

M.,Ua..m_ Mua.m?rupm?v M::pm?v AM mse;)e(a) = a.

iwt i i=1
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(2) follows from the definition of the idempotents e; above.
(3) Clearly e{a)e; = e; for all i = 1,...,k and hence e(a) T, &; = T | e,
Since ae; = mie;, @ = TE, mie; = a(Xh, €;). Therefore id — T e, € Ang(a) =

=1

(id — (a))T (see 3.3). So e(a) L, & = e(a) and ¢(a) = L%, €. w

4 Strongly semiprime modules
The two following technical lermas will be crucial for our investigations.

4.1 Lemma. ;
Let M be an R-module with submodules K, L C M. Then the following are equivalent:

(a) M/L € o{K];
(b) for any b € M, there ezists a finite subset X C K, with Ang(X)b C L.

Proof. (a) = (b) Assume M/L € o[K] and b € M. Then Rb+ L/L ¢ M/L is
a cyclic module in o{K] and hence a factor module of a cyclic submodule of K. So

there exist 2;,...,%3 € K and a morphism
.wﬁ.\hp._....aru - g\h. AHH,..JHL -t Am.*.hv\h
This implies Ang{z;,...,ze}d C L.

() = (a) Consider b € M and chose zy,...,7; € K with Ang(z1,..., )b C L.
Then we can define a map as given above and so (Rb+L}/L € o[K]. Hence M/L € o[K].
[m}

4,2 Lemma.

Let M be o left R-module, X ¢ M a submodule and T = m.nmmﬁmv. Then the
Jollowing conditions are eguivalent:

(a) M/Tx(M) € o[K];

(b) for any b € M, there exists a finite subset X C K, with Ang(X)b C Tx{M).

Y

(¢} every K -injective, T h...\..ﬂo%n.oawaa module in o[M] is M-injective and K -generated;
(d) Dy{T*(M)) € o[K] and TK(M) + Tx{M) <2 M;
(e) M=KT® DT x(M)).
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Notice that the decomposition of M given in (€) is in R-Mod. Though K H obviously
is a fully invariant submodule, in general this need not be true for I, (T (M)).

Proof. (a) « (b) follows from 4.1.

(a) = () Assume Q € o[M] is K-injective and Tg-torsionfree. For any submodule
L ¢ M, consider a morphism f : I — Q. Since Tx(Q) = 0, f factorizes through
{1 L/T k(L) — Q. We have the commutative diagram (with canonical mappings)

0 — L — M
l i
0 — L/Tg(l) — M/Tx(M)
o e
7R
Since Q is K-injective and M/T x(M) € o{K], there exists some M/Tx(M) — Q
yielding a commutative diagram. Hence ) is M-injective and
Q =Tr(M,Q) = Tr(M/T x(M),Q) = Tr(K, Q).
(¢) = (a) Since In(M/T x(M)) is M-injective and T g-torsionfree, it is K -generated
by (c) and so M/Tx(M) € o[K].

(a) = (d) As shown above, Tn{M/T k(M) € o[K]. For a complement U of Te(M)
in M, U® Txg(M) 4 M and U is isomorphic to a submodule of M/Tg(M). Hence
UcTX(M)and T¥(M)+ Tx(M)2 M.

(d) = (a) Since 75 (M) + Tx(M) A M and T*(M)NTx(M} =0,
TH(M) = [T*(M) + Tx(M))/Te(M) S M/Tr(M) .

Hence M/T (M) is isomorphic to a submodule of In(T*(M)) € o[K].

{d) = () The assumptions imply M = Iy(TX(M)) ® In(T x(M)). As an injective
object, Ins(T¥(M)) € 0{K] is K-generated and w«unm\wtﬁ.&ﬁgvv =KT.
Since TX (M) @ TX (M), In(T¥(M)) = Iy {T*(M)).

{e) = (d) As a direct summand of M, KT is M-injective. Hence
TH(M) 9 Ju(TX(M)) = D(T¥(M)) = KT.
Since Tx(M) 4 Tx(M) < Ina(T (1)), we conciude TH(M) + Tx(M)} I M. O

The above relations are used for our next definition:
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4.3 Strongly semiprime modules.
; Let M be o left R-module and T = Endp(M). We call M strongly semiprime (SSP)
it satisfies the following equivalent conditions for every submodule K C M:
(&) M/Tx(M) € o[K}; _
(b) for any b € M, there ezists a finite subset X ¢ K, with Ang(X)b C Ty (M);
(c) every K -injective T i -torsionfree module in o[M] is M-injective and K -generated;
(d) Iu(T*(M)) € o[K] and T*(M) + Tx(M) 9 M;
(¢) M = KT & Iy(T x(3)). _

For the relationship with strongly prin
y prime modules see 5.4. We state some i
properties for these modules. e Tportant

4.4 Basic Uﬂovmlmnm of SSP modules, B
Let M be an R-module and § = Endg(M).

(1) Assume M is.SSP. Then for every NA M, M € e[N].

\&» ;&.hﬁﬂ-:ﬂ E 18 hﬂQIﬂ.uaw.ﬁaneﬁ. Huvm._u Mx ] QMNU ) a:& Oqz 1, H.h hﬂiu.:.hsqwﬁmwhn
M-A. . .

Proof. (1) For N 9 M, T%(M) N Tx(M) = 0 impli M
. . aM,T = plies TH(M)=10 =
in particular M € o[N]. et meNT=A
\HQ@ Let M be self-injective and U C M an essential (R, S)-submodule. Then U =
(M), and TY(M) N Ty(M) = 0 implies Ty(M) = 0. We see from 4.3 that T = M.
So M has no vuowan.mmmauam_ (R, §)-submodule. Hence it is a semisimple (R, §)-module.
o Now assume M is a semisimple (R, §)-module and K C M an R-submodule. Then
> = K5 & L for some fully invariant L ¢ M. This implies Homp(L,KS) = 0 and so
C Tx(M). Hence M/T k(M) € o[M/L] = o[K) showing that M is SSP. !
4.5 More characterizations of SSP.
Let M be an R-module and T' = Endp(M). Then the following are equivalent:

(a) =M is SSP;

(8) for any essential submodule N C )M, M € a[N] and
for every submodule K C oM, TX(M) + Tx(M) 95 M;
{c) M is SSP;

(4) M is a semisimple (R, T)-bimodule.
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Proof. {a) = (b) This follows from 4.3 and 4.4.

(b) = (a) Let K C M be any submodule. Since Tx(M) +TE(MYQ M, M ¢
o[Tx(M)+ T5(M)] = o[M] by assumption. So Tx(M) + K is a subgenerator in
o{M] and hence it generates the M-injective module Iy(T K(M)). However, since
Homa(T x(M), Lu(TX(M))) = 0 we conclude that Iy(T%(M)) is K-generated and
M is an §SP module.

(a) = (¢) For any submodule N C M, put K = NTnM. Then KT 9 NT and
T (M) = Ty(M). Consider any N-injective and T x-torsionfree module @ € o[M].
Then @ is K-injective mbm T g-torsionfree, and hence M-injective E\-m K -generated since
M is SSP (cf. 4.3). As easily seen, Q is also N-generated and so M is SSP by 4.3.

(¢) = () Essential submodules of §5P modules are SSP (cf. 4.4).

{¢) <+ (d) This is shown in 4.4. O

4.6 SSP and semisimple modules.
Let M be an R-module.

(1) Assume M has essential socle and for every NI M, M € o[Nl. Then M is
semisimple.

(2) M is semisimple if and only if every module in oM} is SSP.

Proof. (1) By assumption, M € o{So{M)] and every module in o[Soc(M)) is
semisimple.

(2) We see from (1) that every finitely cogenerated module in o[M) is semisimple and
hence every simple module in o[M] is M-injective, i.e. M is co-semisimple.

Let N be the sum of all non-isomorphic simple modules in ¢[M) and consider L =
M ® N. Then Tn(L) C Rad (L) = 0 {cf. [15], 23.1). Since L is SSP, this implies
L/T y(L) € o|N). Hence L and M are semisimple modules. !

5 Properly semiprime modules
Weakening the conditions for strongly semiprime modules we define:

5.1 Properly semiprime modules.
Let M be a left R-module and T = .m..&.aaw ). We call M propetly semiprime {PSP)
if it satisfies the following equivalent conditions:

(a) For every element a € M, M/T (M) € o[Ra];



70

(8] for any a,b € M, there ezist 11,...,r, € R such that
Ang(ria,798,...,100)b C To(MY;

(c) for every finitely generated submodule K C M , M{Tg(M) € o[K);

(d) for any cyclic K C M, every K -injective T k-torsionfree module in o[M] is
M-injective and K-generated;

(¢) for any cyclic K C M, In(T* (M) € 0[K] and T¥(M) + Tx(M) < M;
() for any cyclic K ¢ M, M = KT & L/(T«(})).

Conditions (d)-(f) also hold for finitely generated submodules.

munoom.ewmopﬁﬁmmnooo:ay@;&dA&wuaﬁ:o:oﬂ,mm.oﬂﬁm.
() < (c) One direction is trivial. )
Let ay,...,a; be a generating subset of K. By 2.3, Te(M) = NE, T, (M). Hence
M/T k(M) C @y M/T.,(M). But M/T.(M) € o[Ral] C o[K].

Thus M/T (M) € o[K]. |

5.2 Properties of PSP-modules.
Let M be an R-module and T = Endp(#).

{1) Assume M is a PSP-module and U C M an (R, T)-submodule of finite uniform
dimension. Then U is a semisimple (R, T)-bimodule.

(2} Assume M has finite uniform dimension as (R, T)-bimodule. Then M is an SSP-.
module if and only if M is a PSP-module.

Proof. (1) First assume U is & uniform (R, T)-bimodule. Let V' C U be an (R, T)-
submodule, and N ¢ M NV a finitely generated R-submodule. Then NT is an essential
(R, T)-submodule of U. T¥(U} N Ty(U) = 0 implies Tn(U)=0.

From this we deduce NT 9 V < U as R-modules. Since NT is M-injective, we
conclude NT' =V = U and U is a simple (R, T)-bimodule.

Now assume U has finite uniform dimension as (R, T)-bimodule. Hence there exist
uniform submodules V; C U, i = 1,...,n, such that ©Di, Vi 9 U as (R, T)-submodule.

Let N; be finitely generated submodule of the left R-module VinM and N = @2, Ni.
As shown above, all V; = N,T are simple (R, T)-bimodules. Hence NT = T2, NT =

i1 Vi 9 U as R-submodule. Therefore I = NT = @, Vi is a finitely generated

semisimple (R, T')-bimodule.

{2} If M is SSP then obviously M is PSP.
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If M is PSP and M has finite uniform dimension as (R, T)-bimodule, M is a semisim-
ple (R, T)-bimodule by (1) and hence M is SSP by 4.5. . |

5.3 Corollary. . .
Let M be o finitely generated left R-module and T = Endg{M). Then the following

are equivalent:
{a} M is an 55 P-module;
(b) M is (finitely generated and) semisimple as an (R, T)-bimodule;
{¢) M is PSP and M has finite uniform dimension as an (R, T)-bimodule.

Proof. Since M is a finitely generated R-module, M = MT is a finitely generated
(R,T)-bimodule. Hence the assertions follow from 4.5 and 5.2. a

Recall that an R-module M is cailed strongly prime if for every submodule N C M,
M € o|N} (see [13]). With similar arguments as used above we can show:

5.4 Strongly prime modules. _ . .
For an R-module M with T = Endg(M) the following are equivalent:

{a) M is strongly prime;
{b) M is PSP (or S5P) and M is o uniform (R, T)-bimodule.
(c}) Misa simple (R, T)-bimodule.

In particular, for a uniform R-module M, the conditions strongly prime, SSP, and PSP
are equivalent.

Proof. {a) = (b) For every submodule K C M, KT = M and hence the assertion
is clear.

(8) = (o) Assume M is PSP and K C M is a finitely .m.mﬂmwpﬂ& mﬁm,nﬁhaﬁm. By the
uniformity condition, T (M) N 7 k(M) = 0 implies Tx(M) = 0 and M = KT. So M
is stron rime.

i mﬂgu MMM This follows with the same arguments applied in the proof of 4.4. It .Hm.m._Mo
shown in [13], Proposition 2.1.

Both the definitions of SSP and PSP modules M refer to the category o{M]. Nev-
ertheless we can show that submodules of such modules are of the same type.
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5.5 Submodules of SSF and PSP modules,
Let M be an R-module and L C M o submodule. Then:
If M is SSP (resp. PSP), then L is also SSP (resp. PSP).

Proof. Refer to the notation in 2.2. Let I C M be a submodule and X € o{M].
Then T%(L) C T(M) and I(T¥(L)) C D TH(L)) C In(T(M)). Therefore

Txm(L) = Re(L, In(T*(M)) C Re(L, IL(T¥(L)) = T 1(L).
Now assume M is PSP and K C L is a submodule. By the above relation, L/ T g (L)
i3 a homomorphic image of L/7 xa(L). Since Txar(~) is a left exact functor,
Trae(L) = Ticae M) N L, and L/Txpe(E) C M/ T xae(M) € oK].
Therefore L/T 1 (L) € o[K] and L is PSP. . o

6 Pseudo regular modules

The class of modules we define now is related to regularity properties of modules and
includes left fully idempotent rings.

6.1 Pseudo regular modules,

Let M be a left R-module, § = Endp(M), T = Endg(M) and D = Endp(¥). Then
the following conditions are equivalent:

(a) for every m € M, there ezists h € D such that AM C RmS and hm H‘a.r.

(8) for any (R, S)-submodule N C M and my,...,m; € N, there ezists h € D such
that AM C N andhmy=m; foralli=1,.. k. .

A module satisfying these conditions is called pseudo regular.

Proof. (a) = (b) We can follow an induction argument in the proof of [4], Proposition
11.27. Let N C M be an (R, §)-submodule of M and m,,...,m; € N. For k = 1 there
is nothing to show. )

Assume the assertion holds for any k — 1 elements in N. Choose f € D such that
frg = my and fM C RmpS C N. :

Cleatly m; — fm; € Nforalli=1,...,k — 1, and by hypothesis, there exists g € D
with gM C N and g{m; ~ fmu) = my— fm;fori = 1,..., k—1. Put h=1—(1-g){1- f).
Then hm=gm —gfm+ fmeNforalme M, ie. AM C N,andfori=1,...,k&,

hmi = ma - (1= g}(1 = fym: =m; — (1 - g)(m: — fmi) = m.
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(5) = (a) is obvious. . a
Let us check what pseudo regularity means for rings:

_8.2 Left fully idempotent rings. ‘
A ring R is left fully idempotent if and only if the left B-module R is pseudo regular.

Proof. Recall Endg(R) = R. Assume R is left fully idempotent. Let N be an ideal

- of R and m € N. Since (Bm)* = Rm, there exist k € RmR such that km = m. Clearly
AR C N and h € R C Biendg(R). Hence pR is pseudo regular. .

Now assume gR to be pseudo regular and m € R. Then there exists k € Biendg(R)

guch that Am = m and AR C RmR. Bence r = k1 € RmRand rm = (hl)m = hm = m.
So m = rm € (Rm)?, (Rm)? = Rm and the ring R is left fully idempotent. ]

It follows from the above observation that a commutative ring R is von Neumann
regular if and only if gR is pseudo regular. . .
Of particular interest for our investigations is the following relationship:

6.3 Pseudo regular and PSP modules. . . .
Let M be a left R-module, S = Endg(M) and T = Endz(M). The following condi-
tions are eguivalent:

{a) for every m € M, there is a central idempotent ¢ € T with RmS = Me;
(b) for everym € M, M = RmS ® Toa(M) ond M = RmT & Tm(M);
(¢} for every finitely generated submodule N C M, there is a central idempotente € T

with NS = Me;

(d) for every finitely generated submodule N C M, M = NS & Tn(M) and M=
NT & Tn(M);

{e) M is a pseudo regular PSP-module over R.

Proof. Denote D = Endp(M).

(2) = (b) For m € M choose & central idempotent ¢ € T with RmS = Me. Since
M = MT we bave

M = MTe@ MT(1—e)=MeT® MT(1—¢)

EmST & MT(1 ~ &) = RmT & MT(1 - ¢).

Hence RmT is M-injective and MTe = RmT = T (M) = In(T (M) (see 2.3). Since
M is M-injective,

Homp(MT(1 — €), In{(T (H)))

{te T|MT(i- % C LT (M)}
= {te T|MT(1-e}tC MTe} =0
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So MT(1 ~ &) C Tr(M). But MTe = RmT, M = MTe ® MT(1 — ¢) and
MTenN T (M) = T™M)N T (M) =0.
Hence Too(M) = MT(1~¢) and M = RmT @ T n(M). Clearly RmS = Me = MNMTe
and
To(M)=MNTu(M)=MNMT(1~¢) = M(1~é).
So M = RmT & T.(M).

(8) = () Let ¢ be the projection of M onto RmT along Tm(M). Since both
submodules are \me invariant, e is a central idempotent of T. From RmS C RmT and
Trn(M) C Tu(M) we conclude Me = RmS.

(¢) « (d) can also be shown with the above proof.

(¢) = {a) is obvious.

{a) = (&) Since M/T (M) = RmS € o{Rm], M is PSP.

Let 7 be the projection of M onto RmT along Tm(M ). owﬁonaw., x € D. Since
RmS ¢ RmT and T (M) C T(M ), M = RmS. Hence M is pseudo regular.

(e) = (¢) Let NC Mbea finitely generated submodule. Since M is PSP, M =
NT @ In(T n(51)).

Suppose In(Tn{(M)) # Tw(M) and consider z & Iy(Tn(M)) \ Tn(M). Then
Homg(Rz, NT) # 0 and - by M-injectivity of M - there exists t € T with 0 3 7t € NT.
So zt = T, mys; for some m; € N, 8; € T. M being pseudo reguiar, there exists h € D
such that AM C NS and hn; = m; fori = 1,...,n. Clearly

bﬁ.ﬁ.& = M mwﬁqz....w..v = Mﬁ?smvmm = MUS..m.. = zti.
=1 i=1 s
Since a.w MT, hM = (hM)T C NT and hz € NT. Let = be the projection of M onto
In(T n(M)) along NT. Then ¢ = (hz)r = h(zn) = khz and ot = h(zt) = (hz)t = 0,
contradicting #¢ # 0. Hence In(T n(M) = T (M) and M = NT © Tx(HM).

Now consider @« = 1~x : M ~+ NT and y € M. Then ya = LTI, n:; for some
m; € N, t; € T. Since M is pseudo regular, there exists & € D such that AM C NS and
hn; = n; for i =1,...,n. Clearly v@lnv =ya and hy € NS C NT. So yo = h(ye) =
(hy)a=hy e Z.m.mpwm y—ye € Tn(M)NM = Tn{(M). Therefore M = NS&Tx(M).

’ ]

7 Polyform PSP and SSP modules

In this section we are concerned with the interplay between polyform and 5SP properties.
Oune of the crucial observations is that projective PSP modules ate polyform. We begin
with general modules enjoying both properties.
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7.1 Polyform SSP modules.
Let M be 6 polyform R-module and T = .m.:mmﬁa ). Then the following are equivalent:

|
-

(a) M is an SSP-module;

(b) for every N4 M, M € o[N};

{¢) In(KT) € alK};

(@) for any submodule K C M, M = KT © Tx(M).

Proof, The statements follow from 3.2, 4.3 and 4.5. ]

In [12], Theorem 3.7 it is shown, that any polyform module M is SSP if M has finite
uniform dimension, Homg(M, N) # 0 for non-zero N C M, and Endg(M) is semiprime.
We can extend this result to a more general class of modules considered in Zelmanowitz
[17]. There an R-module M is called weakly semisimple if

(i) M is polyform,
(ii) every finitely generated submodule has finite uniform dimension, and

nEumone.wa.nouumBmchon_Em?ngﬂranamun.mem Mmmoanﬁgzvﬁnr .m_ zﬁo
(weakly compressible). .

7.2 Weakly semisimple modules.
Every weakly semisimple module is SSP.

Proof. We have to show that for every N 9 M, M € o{N].
For any m € M, Rm has finite uniform dimension and N N Bm < Rm. Hence by
Proposition 1.1 in [17}, there exists a monomorphism Rm — NN Rm and so Rm € a{N].

This implies M € o[N]. =

We know that a module M is SSP if and only if M is SSP. In general, for a PSP
medule M, M need not be PSP. For polyform modules the PSP property extends at
least to the idempotent closure:

7.3 Polyform PSP modules.
Let M be a .8@633 R-module, T' = .m.:mw@&? B the Boolean ring o‘w central idem-
potents of T and M the idempotent closure of M. Then the following are equivalent:

{a) M is a PSP module;
(b) for everym € M, RmT = Me(m);
(c) for every finitely generated submodule K c M, KT = Me(K);
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(d) M is o PSP module.
Under the given conditions, T,(M) = M(id - e(m)).
Proof. (a) = (b) By 5.1, (f) and 3.2, (1), i = RmT & To(#). Now (b) follows
from the definition of the idempotent £(m). .
(5) = (a) Since Me(m) is M-injective,

Du(T™(M)) = In(T™(M)) = I{RmT) = RmT € o|Rm).
M being polyform, we have T (M) + T™(M)Q M and the assertion follows by 5.1.
{8) & (c) This is obvious by 5.1 and 3.3.

(8) = (d) Any ¢ € M can be written as ¢ = S%_, mye;, with my,...,ms € M and
pairwise orthogonal ey,..., e, € B, satisfying

P
ga) =Y e and ¢; =e(m)e; fori=1,...,k.

=1
By (b), Rm;T = m\wm?ﬁ fori=1,...,k and
& 5 )
RaT = R(3 mei)T = Y (RmT)e; = W Me(mi)e; = mAMwU &) = Me(a).

iml i=1 (L i=1

{d) = (a) By 5.5, submodules of PSP modules are again PSP. o

By 4.5, any self-injective 5P module is semisimple as a bimodule. For self-injective
polyform PSP modules we get a weaker structure theorem:

7.4 Self-injective PSP modules.

Let M be-a self-injective polyform R-module and T = Endg(M). Denote A = R@zT°
and C = Endy{M). Then the following conditions are equivalent:

{8) rM is a PSP R-module;

(b} every cyclic A-submodule of M is a direct summand;

(¢} every finitely generated A-submodule of M is a direct summand;
{d} as a A-module, M is o selfgenerator;

(¢) for any m € M and f € Endc(M), there ezists b € A with f(m) = hm.
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Proof. Notice that the A-submodules of M are just the fully invariant submodules

and that C can be identified with the center of T. Hence € is a commutative regular
~ ring,

(a) € (b) = (c) is clear by 7.3, (c) = (d) is obvious.

(d) = (e) This follows from the proof of the Density Theorem {e.g. [15], 15.7).

{€) = (b) Choose any m € M and &(m) € C as defined in 3.3. Since mC = ¢(m)C
is a direct summand, for any n € M, there exists f € Endg(M) with f(m) = ne(m).

By (e), f(mm) = hm for some & € A and hence Me(m) C Am.

On the other hand, m = me{m) and Am C (AM)e(m) C Me(m). So Am = Me(m)
is a direct summand and the assertion is proved. 0

Modules M, whose finitely generated submodules are direct summands, are closely
related to M being regular in o{M]. In fact, if M is finitely presented in o[M], these
two notions coincide (e.g. [15], 37.3, 37.4). As a special case we derive from the above
theorem:

7.5 Self-injective finitely presented PSP modules.

Let M be a self-injective polyform R-medule andT = m.:nm@\m ). Denote A = RQzT*
and C = Endy(M). Assume M is finitely generated as a A-module. Then the following
conditions are equivalent:

(a) M is a PSP R-module and finitely presented in o[y M);
(b) AM is reqular and projective in a[sM];
(¢) aM is a (projective) generator in o[, M];

(8} for any my,...,my, € M and f € Endo(M), there esists h € A with f(m;} = hmy
fori=1,...,n (density praperiy).

Proof. Since 4 M is finitely generated, Mg is a generator in C-Mod by 3.3. So M¢
is & faithfully fiat C-module.

(a) « (b) By 7.4, every finitely generated A-submodule of M is a direct summand.
Now the assertion follows from [15], 37.4.

(8) = (¢) = (d) are obvious {Density Theorem, [15], 15.7).

(d) = (a) Since My is a generator in C-Mod, M is (finitely generated and) projective
as an Ende(M )-module (e.g. [L5], 18.8). ‘

By the Density Property, the categoties ojaM] and o{gnq 0™ ] coincide (see [15],
15.8). So M is projective (hence finitely presented) in (s M].

By 7.4, M is a PSP R-module. , o
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We have seen in 7.4 and 7.5 that self-injective polyform PSP modules have nice
structural properties. Hence we may ask for which modules M, the M-injective hull 7
is a PSP module. For this we need some properties of self-injective polyform modules.

7.6 Self-injective polyform modules.
Let M be a self-injective polyform R-module, T = Bndg(M) and A = R®zT°. Then:
(1) For any submodule N C M and m € M, (Tn(M) : m)g = Ang(me(N)).
(8) Formy,....my,meM andU = Ang(mg,...,m,) the following are equivalent:
(a) There exists h € A with kmy = me(Um,) and hm; =0 fori=2,3,... n;
(b) there ezist ry,..., 7, € R such-that for any s,...,8, € R the relations
Mm___.__-..-.a_ = %aﬂu. = H-....&.
=1
imply sy € Ty, (M).
Proof. (1) By definition of the idempotent £(N) (see 3.3), Me(N) = Iy(NT) and

M(1 - &(N)) = Ty(M). Hence for v € R, rm € Tn(M) if and only if (rm)e(N) = 0.
Now our assertion follows from (rm)e(N) = r(me(N)).

(2} (a) = (b) Put e = e(Um,). By (1), (Tym, (M) : m)g = Ang(me).
Choose an element h = 5}, r; ® t; in A with

hmy =me and hr; =0 forall i = 2,...,n.

Assume for 8y,...,8, € R, X7 erymy =0 for j = 1,...,k Then

n n k k n
saime = s1hmy =) shmy = M o M rymt; = 3 (3 arymt; = 0.
i=1 =] j=1 F=l I=1

Hence 31 € Angp(me) = (Tym, (M) : m)p.
(¥) = (o) Put N = T2, R(rimy, ..., _...rarv C M* and consider the assignement
Y:N =M, 3 si(rmi,... rmg) o sime.
=1

To show that ¢ is well-defined assume Y7, si(ryma, ..., ramy) = 0.
Then $2, sirymi =0, forall j=1,..., k. ,
By assumption, 8 € (Tym, (M) : m)g = Ang(me). Hence s;me = 0 proving that ¥

‘is a well-defined morphism.
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M being M-injective, ¢ can be extended to a morphism M* — M, also denoted by
¥ Since Homp(M*, M) = T* there exist ¢;,...,f € T such that

k
o {en. )= Yoot forall (21,...,20) € M~
=1

Puth=3¥ ,7; ®t;. Then

kmy = TY, rimut; = (rimy, romy, ..., T )Y = me, and

hmy = vauH ryyt; = (rymy, remy, )Y =0 forl=2,...,n.

g

For modules M with Endg(M) commutative we are now able to characterize the
density property of M as bimodule.

7.7 Density property of the self-injective hull.
Let M be a polyform R-module, assume T = Endg(M) to be commutative and put
A=R@gzT. Then the following are equivalent:

{a) For any a3,...,6, € M and f € Endrp(M), there exists h € A with ha; = fa; for
i=1,...,n .

(b) For any my,... ,u,m € M there ezistry,...,r € R such that for s1,..., 8, € R
the relations

SMarym=0 forj=1,...,k,
=1

imply sym € Tym, (M) for U = Ang(ma,..., ma).
(¢) M is a PSP module and for any my,...,mq, € M there exist r,..., 1% € R such
that for 81,..., 8, € R the relations
S smmy=0 forj=1,...,k,
I=1
imply 81m1 € Tumy (M) for U = Ang(ms, ..., M)
If M is finitely presented in o{, M) the above are eguivalent to:
(d) M is ¢ PSP R-module.
Proof. Put U = Ang(ma,...,ma).

{a) = (b)) Put N = ¥}, mT. By 3.3, M is a non-singular and N is an injective
T-module. Since in a non-singular module the intersection of injective submodules is
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again injective, K = m;T N N is T-injective. Hence myT = K & L for some submodule
L CmT. By 3.3, Any(m,;) = (1 — e(my))T. This means that the map
mT — e(m)T, mytrr e{my)t,

is an isomorphism. So there exist idempotents u,» € T' with the properties

(*) w=0, u+v=z(m), K=mul ~uTl and L = moT ~ oT.

Since myuT = K ¢ N and UN = 0, Umyu = 0 and

Umy = Ulmie(my)] = Ulmy(u + 2)] = Umyo.

By 3.4, Umjv 9 Rmyv and by 3.3, e(Um,v) = e(Rmyv) = e(myv).
The isomorphism m;vT o +T implies e(mm;v) = v and hence we have

()  eUmy)=wv.
Since m € M and Ty, (M) = M N Ty, (M), by 7.6,
(Tum (M) : m)g = (Tym (M) : m)p = Ang(mo).

As an injective submodule, m, 9T @ N is a direct summand in M. Hence there exists a
T-endomorphism v of M satisfying YN = 0 and ymyv = mv (recall myoT o vT'). Since
miu € N, we have ¢¥myu = 0 and pm; = ¢im(u + 2)] = me.

By assumption, there exists b € A satisfying

hmy = ¢¥m; = mv, and hm; = ym; fori=2,...,n.
Now the assertion follows from 7.6.

(b) = (c} Putting m; = -+ = my, = 0 we see that M is & PSP module. The second
part of the conditions in (c) follows from (b) for m = m;.

(¢) = (a) Since M = MT it suffices-to show that for any mi,...,M, € M and
fe m.amq.m@v there exista £ € A such that fm; = hm; foralli=1,...,n.

We prove this by induction on the cardinality |I] of minimal subsets I C {1,...,n}
satisfying 3., mT = T, m:T.

Consider the case [I| = 1, i.e., ] = {1}. By 7.3, Me(m;) = Am,. Since

fmy = flmie(mi)] = (fm)e(mi) € Me(my) = Amy |

Jfmy = hm, for some k € A. By assumption 1%, mT = m,T, implying fm; = hm; for
ali=1,...,n
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Now assume |I{ = n and consider N = T, m;T. As shown above there exist
idempotents u,v € T satisfying () and (). By 7.6, there exists #; € A with

hymy =myv and hym; =0fori=2,...,n.

Notice that hymae = (hymy)u = (mqv)u = my(vu) = 0.
By induction hypothesis, there exists hy € A with

ham; = fm; fori=2,...,n.

Obviously, sz = fz for any x € N. From (*) we obtain  hsmiu = fmu.
Consider the element m = fmv — hymyv. Clearly m = mv and so m € Mv. By (%),
ve(my) = v. Now it follows from 7.3 that

Amyv = (Amy)v = Me(ms)v = Mo .
Hence there exists bz € A with
hamyv = m = fov — hamyv .
Putting k = hghy + hy we have

hmy = Rg(hymqu) + ky(himio) + homge + hamyo
= hgmyv + fmiu + hamav
= {fmyv — harnav) + frgu + hamyv
= frmuv+ frqu = fmy

hm; = hy(himy) + homy = fmyfori=2,...,n.
(a) « (d) This is clear by 7.5. m)
Now we turn to the question which additional conditons on an 5P or PSP module
M imply that M is polyform. It is interesting to observe that this is achieved by
commutativity conditions on the endomorphism rings as well as by projectivity of the

modules. Recall that a ring is said to be (left and right) duo if all its one-sided ideals
are two-sided.

7.8 Duo endomorphism rings.
Let M be an R-module, T = m..:mhawv and assume for every N 9 M, M € o[N].

(1) Jac(T) N center(T) = 0.
(2) Suppose T is a duo ring. Then M is polyform and SSP.
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Proof. (2) Assume for f €T, N = Kef q M. Then M € o[N} which is equivalent
to NT = M. This implies Mf = (NT)f = (Nf)T = 0 and hence f = 0. So the
Jacobson radical of T is zero, Le. M is polyform. By 7.1, M is SSP.

(1) A similar argument also implies this assertion. O

Projectivity makes any PSP module polyform. This applies in particular for the left
module structure of the ring itself. .

7.9 Projective PSP modules.
Let M be o PSP module which is projective in o[M). Then

(1) For any submodules K,N ¢ M, T*{(K)+ Tn(K)< K.
{2) M is polyform.

Proof. M is projective in o[M] if and ouly if MA) is self-projective for any set
A. From this it is obvious that M/X is projective in o[M/X] for every fully invariant
submodule X C M.

(1) First we show TV(K) # 0 for any finitely generated submodules K, N C M with
Hom{K,N) # 0. For this we may assume that there is an epimorphism f : K -+ N.
Then N C 7%(M) and

T(M)ON =0=Tx(M)NK.

Put L = Tx(M) and M = M/L. There are canonical inclusions N ¢ M and K C M.
Since M is PSP, M € o[K] and so o[M] = o[K).

As outlined above, M is projective in o{K] and hence is a direct summand of K&,
for some set A. Therefore the compostion of the inclusion N C M with a suitable map
H — K yields a non-zero morphism N — K. This means TV(K) # 0.

Now we prove TV(K) + Tn(K) < K for any submodules K, N C M.

Consider some z € K \ Tn(K). Then there exists & non-zero g : Rz — Iy(N) and
0+ (y)g € N for some y € Rz. From the’above we know T n{Ry) # 0 implying

Txn{Ry) C T¥(K)YNRz # 0 and T¥(K)+ Th(K) QK.

(2) Assume M is not polyform. Then there exist a cyclic submodule X C M and a
pon-zero morphism f: K — M with Kef <9 K. Put N = (K)f and M = M/Tx(M).
Then T¥(K) N Ke f 9 TY(K).

The map K 5 M — M factorizes through f: K/Tw(K) — M. Since

Ty(K)N Kef QTY(K) and TY(K) 9 K/Tn(K),
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we conclude Ke f 9 K/7T x(K). This means that N is an M-singular module.

By assumption, M € o[N] = ¢[M]. So, in particular, M is M-singular.

However, as noted above, M is projective in ¢[M) and hence cannot be M-singular.
Therefore M is polyform. . ) n|

7.10 Projective SSP modaules. ~
Let M be projective in o[M| and T = Endg(M). Then the following are equivalent:
(a) M is an SSP-module;
(%) for every submodule K C M, M= KT o Tx(M).
{c) M is polyform and for any N 9 M, M € o[N].

Proof. (a) = (b) By 7.9, M is polyform and the decomposition was given in 7.1,

{b) = (a) This decomposition implies in particular that every fully invariant sub-
module is a direct summand in M as (R, T)-submodule. Hence M is a semisimple
(R, T)-bimodule and M is S5P by 4.5.

(¢) + (¢) By 7.9, M is polyform and the assertion follows from 7.1. o

8 Left SSP and PSP rings

We call a ring R left PSP, if gR is a PSP module and R is called left SSP, if R is an
SSP module. :

Notice that these definitions also apply to rings without units, considering such rings
as modules over rings with units in & canonical way.

Before characterizing PSP and SSP rings we want to describe the torsion modules
related to semiprime rings:

8.1 Semiprime rings and torsion modules.
Let R be o semiprime ring and N C R o left ideal. Then:

{1) Tn{R) = Ang(N).

(2) R/T x(R) € o(N] if and only if there ezists o finite subset X C N with Ang(X) =
Lﬁﬂwhmzu.

Proof. (1) The relation Tn{R} C Ang(N) always holds. Clearly NAng(N) is a
nilpotent left ideal and hence is zero.
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Consider f € Homp(Anp(N), Ir(N))and put K = (N)f'. Then (KfP C N(Kf) =
(NK}f € (NAng{N)}f = 0. Since R is semiprime, K f =0 and so N..S%DZ. 0, im-
plying f = 0. Hence T x(R) > Ang(N).

(2) Assume R/T x(R) € o[N]. By 4.1, there existe a finite subset X C N with
hﬁwﬁkﬁ. C .M-.Zﬁhwv = ._Pﬁmwﬁnz.v C \PB..NAN.V

Now assume Angp(X) = Ang(N) for some finite X C N. Then 4ngp{X) = Tx(R) by
(1), and for any b € R, Ang(X)b C Tn(R). Now apply 4.1. (]

8,2 Left SSP rings.

For a ring R let @ = Q(R) mnaoﬁm &K mazimal (complete) left ring of quotients.
Then the following are equivalent:

(a} R is left SSP;

(b) for every essential left ideal N C R, R € o[N];

(¢) every essential left ideal N C R contains o finite subset X with Ang(X) = 0;

{d) for every leftideal IC R, @ = IQ © T1{Q);

(e} R is semiprime and every left ideal I C R contains a finite subset X C I with
Ang(X) = Ang(I};

{f} Q is a semisimple (R, Q)-module.

If R satisfies these conditions, then Q is left self-injective, von Neumann regulor, and
a finite product of simple rings.

Left ideals with property (¢) above are also called insulated. So the rings described
here are exactly the left strongly semiprime rings of Handelman [6], Theorem 1. They
generalize left strongly prime rings as considered in Handelman-Lawrence [7) and Viola-

- Prioki [11]. .

Proof. (a) =+ {b) is shown in 4.4.

{(b) = (a) Assume for every essential left ideal N C R, R€ a[N]. Anysuch Nisa
faithful R-module.

First we show that R is semiprime. For this consider an ideal I ¢ R with I* = 0.
Let J be the right annihilator of I and L C R any non-zero left ideal. Obviously, I C J.
Assume LN J = 0. Then IL # 0. However, IL C L. nJ = 0, a contradiction. This
implies that J is an essential left ideal in R. By our assumption, J is a faithful left
module and IJ = 0 means J = 0.
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In view of 4.5 and 3.2 it remains to show that R is left non-singular (compare [9],
Lemma 2.4 and [6], Proposition 6).

If the left singular ideal Z(R) C R is non-zero, Z(R) @ Ang(Z{R)) is an essential left
ideal in R. Hence there are ay,...,a; with Ang{ay,...,a;) = 0. From this we see that
there is 2 monomorphism Z(R) — Z(R)(by,...,b,) with by,...,b, € Z(R).

The kernel of this map is Z(R) N Ang(b:)N... N Ang(b.). Since all the Angz(b;) are
essential left ideals in R, this intersection could not be zero, a contradiction. Hence R is
left non-singular.

() 4 (¢) This is obvious by 4.1.

(e) = (d) By 7.9, R is semiprime and left non-singular. Therefore Q@ = R and
Endp(Q) = Q (see Lambek [10}, §4.3). Now the assertion follows from 7.1.

(d) = (a) We show that R is left non-singular.

Assume for a € R, Ang(a) is an essential left ideal in R. Since @ = RaQa@7T.(Q), we
have RaQ = eQ for some idempotent ¢ € Q. Write e = Y%, miaq;, with s € R, qs € Q.

Obviously, L = (\;(Ang(e) : r;)g is an essential left ideal in R and Le = 0.
Therefore L N Qe = 0 and also LN (Qen R) = 0. However, L C R is an essential left
ideal and Qe N R # 0, a contradiction. Hence R is left non-singular and 8o @ = R and
Endgr(Q) = Q. Now apply 7.1.

() & (e} & (f) follow from 7.10, 4.3 and 4.5. a

8.3 Semiprime and left PSP rings.

For a ring R the following conditions are equivalent:
(a) R is o left PSP-ring;
(5) R is semiprime and for every finitely generated left ideal N C R, Angp(N)} =
Anp(X) for some finite subset X C N.
In this case R is left non-singular.

Proof. (&) = (b) First we show that R is semiprime. Consider a cyclic left ideal
N € R with N? = 0. By assumption, R/Tx(R) € o[N]. Since NK = 0 for any
K € oiN], in particular N(RfTn{R)) = O and hence NR C Tx(R). This implies
NRC T¥(R)nTx(R) = 0 and N = 0. Now the assertion is clear by 8.1.

{b) = (a) also follows from 8.1.

By 7.9, R is left non-singular. o

As mentioned in the introduction, a commutative ring is PSP if and oanly if it is
semiprime, i.e. if it has no nilpotent elements. It is interesting to observe that the latter
property suffices to make non-commutative rings PSP.

Recall that a ring without non-zero nilpotent elements is said to be reduced
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8.4 Reduced rings.
Any reduced ring R is left PSP.

Proof. Assume R isreduced. It is shown in Lemma 1 of chapter 4, §2 in Andrunakie-
vic-Rjabuhin {1] that for any subset U C R, the left annihilator Ang(U) of U coincides
with the right annibilator of IV in R. This implies Ang(U) = Angp(RU). Now it is
obvious from 8.3 that R is PSP. O

9 Bimodule structure of rings
Let A be a not necessarily associative ring. Left and right multiplication by any ¢ € A,

L,:A— A z—az, R,:A— A z—za forze A,

define Z-endomorphisms of 4, i.e. L., B, € End(gzA).

The subring of End(zA) generated by all lefi multiplications in 4 and the identity
map id, is called the leff multiplication ring L(A) of A. Similarly the right multiplication
ring R(A) is defined.

The subring of End{zA) generated by all left and right multiplications and #d, is
called the multiplication ring M{A) of 4, ie.
M(A) =< {L; R.la € AU {ids} > C End(zA).

Obviously, L(A), R(A) and M(A) are associative rings with units and we consider A as
a left module over these rings.

In particular we form the subcategory o[ar()A] of M{A )-BMod and denote it by ojA].
¢(A) = Endya)(A) is the centroid of A. From [2] or [12], Theorem 4.2 we recall for
semiprime rings:

8.1 Central closure of semiprime rings.
Let A be o semiprime ring, A the injective-hull of A in o{A] and T = Endpa)(4).
Then

(1) A is a polyform M(A)-module.
{2} T is 6 commutative, regular and self-injective ring.
(8) A = AT is a semiprime ring with respect to the multiplication
o ais) (Do bit;) =Y (a:b;)sit;) for any finite a;,b; € A, a;,t; €T

and its centroid is T.
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T is called the extended centroid of A, and the ring A the central closure of A.

Definition. A ring A is said to be left PSP if Ais PSP a an L{A)-module. A is
called a PSP ringif it is PSP a an M(A)-module.
Similarly we define SSP and left (right) SSP rings.

Obviously, every SSP ring is PSP.

Rings A which are strongly prime as M{A)-modules are exactly those prime rings
whose central closures are simple tings (cf. [13], Theorem 3.2). In particular they are
S§SP rings.

Now let us see which PSP rings are semiprime. For this recall the definition of the

associator  (e,b,c) = (ab)e — a(be) for a,b,c € A and the

right nucleus n{A)= {e€ A{(z,y,c) =0for all 2,y € A}

Clearly, R. € Endp4y(A) for all ¢ € n(4).

9.2 PSP and semiprime rings.
Let A be any ring.

(1) Assume A is PSP and no non-zero ideal of A annihilates A. Then A is o
semiprime ring.

(2) Assume A is left PSP and no non-zero left ideal of A annihilates the right nucleus
n{A). Then A is a semiprime ring.

(3) Assume A is {left) sirongly prime and no ideal of A annihilates A. Then A is a
prime ring.

Proof. (1) Assume K C A is a non-zero finitely generated ideal with K* = Q.
Consider U = {L,|a € K}. By assumption, A/T x{A) € o[K]. Now UK = 0 implies
U{A/Tg(A)) = 0and KA C Tg(4). So KA C Tx(A}NK = 0, contradicting the given
condition. _

(2) In the proof above, let K be a left ideal. Then Kn(4) C Tx(4)NT5(4) =0,
contradicting the assumption in (2).

(3) Consider non-zero ideals J,J € A with IJ = 0. Put U = {L,|e € I}. By
assumption, A € o[J] and hence 74 = UA = 0, a contradiction. ]

In general, a strongly prime ring need not be prime. For this consider the cyclic
group Z,, of prime order p with the trivial multiplication &b = 0, for all a,b € Z,. This
is a strongly prime (simple) ring which is not prime.

For associative rings we notice a relationship between the one-sided and two-sided
versions of the notions above:
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9.3 Associative PSP rings.
Let A be an associgtive semiprime ring with unit.

(1) In olA], Ty(A) = Any(U) for any ideal U C A.
(2} If A is a PSP ring, then A is left PSP.
(8} If A is an SSP ring, then A iz left SSP.
{4) If A is a strongly prime ring, then A is left strongly prime.
Proof. (1) Ty(A) is an ideal in 4 and Ty(A) N U = 0, hence Ty(A) C Any(U).
Consider f € Homuuay(Ana(U), L4(U)) and put K = (U)f~!. Then (Kf)® C
UKf)=(UK)f C (UAn(U))f = 0. Since A is semiprime, K f = 0 and so Im fnU =
0, implying f = 0. Hence Ty{A) D An(U) (compare 8.1).
(2) Consider a,b € A. Since A is PSP, there exist z;,...,x, € M(A) such that
\wﬁz?cﬁ.ﬁuﬁ. ey Zea)b \N...:ﬁhvnﬁ}.u = Ana(M(A)e) C Any(L{A)a).
In particular,
Anpay(ia,...,z:0)b C Ang(L(A)a).

Now assume z; = £.7% L, R.,;. Then
Anpy({wie]1 <5 < mi1 < i < kDb C Ana(L(A)a).

By 8.1, Trua(A4) = Ana{L{A)a). Hence by 5.1, the above relation implies that A
is left PSP.

{(3) and (4) are shown in a similar way. O

9.4 Strongly semiprime rings.
Let A be a ring which ie not annihilated by any non-zero ideal and T = Endp4)(A).
Then the following conditions are equivalent:

{8) A is an SSP ring;

{b) A is semiprime and for every essentiol ideal U C A, A € o[U);

{c) for every ideal ] C A, A = IT & T;(A).

(d} A is semiprime and the central closure A iz a direct sum of simple ideals.
If A is associative, then (a)-(d) are equivalent to:

{e) A is semiprime and for every ideal I C A, AfAnu(I) € o[I];
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Proof. By 9.2, A being SSP implies that A is semiprime.

{a) « (b) Since A is semiprime, A is a polyform M(A)-module by 9.1. Hence the
assertion follows from 7.1.

(g) < (¢) This is also obtained from 7.1.

(a) & (d) The central closure A is a direct sum of simple ideals if and only if it is
semisimple as an (M( A4}, T')-bimodule. Now apply 4.5.

{a) & {(e) By 9.2, R is a semiprime ring. Hence by 9.3, Ty(A) = Any(U). Now the
equivalence is clear by 4.3. |

9.5 Idempotent closure of semiprime rings.
Let A be a semiprime ring, T = Endu(ay(A), B the Boolean ring of idempotents of
T and A = AB the idempotent closure of A as an M{A)-module. Then

(1) For every a € A, there exist a1,...,a; € A and pairwise orthogonal ey,... e, € B
such that
(i) 6 = T, ases,
(ii) e; = e(e;)e;  fori=1,...,k and
(iii) e(a) = T, e
(2) For every prime ideal K C A, P = K N A is a prime ideal in A and

AJK = (A+ K)/K ~ A[P.

The set z = {e € BiAe C K} is a magimal ideal in B and K = PB + Az.
(8) For any prime ideal P C A, there ezists a prime ideal K C A with KN A= P.

Proof. (1) Since a semiprime ring 4 is polyform as an M{A)-module, the assertion
follows immediately from 3.5.

(2) Consider two ideals I, J ¢ A with IJ ¢ P. Then IB and JB are ideals in A
and (IB)(JB) C K. Hence IBC K or JB C K. Assume IBC K. Then I CIB C
KnAcCP. So Pisa prime ideal in 4.

Consider @ € A and e € B. Since (Ae)[A(1 - )] = 0, Ae € K or A(1-¢) C K.
Hence ae € K or a(l — e) € K which means ae+ K =K oree+ K =a+ K.

Therefore for any d € A, there exists z € A, with d + K = z + K. This implies
A/K = (A+K)JK ~ A[P.

A straightforward argument shows that z is a maximal ideal in the Boolean ring B.

Put U = PB + Az. Clearly U C K. For any ¢ € K, choose a1,...,as € 4 and
orthogonal idempotents e;,...,e; € B satisfying the conditions (if) and (##) of (1). In
caseall e;,...,e, €%, thena € Az C U.
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Assume, without restriction, e; ¢ z. Since e;e; = 0 for § # 1, we have e,

aeg e K,
Also 1 — e, € 7. Therefore

ﬂnnn.*.awnu.lﬂﬂvmhﬂj_uumﬂ”.mﬂ

and g; € P, Consequently, a;e; € PB and

%
e=aie;+ Y a;¢; € PB+ Az,

=2

So in any case ¢ € U, implying K = U/.

(3) Put S = 4\ P. Obviously, for any a,b € 5,

0 # (M(A)a)(M(A)) N S ¢ (M(A)a)(M(A)) N 5.

Using this relationship we can show (as in the associative case) that an ideal K ¢ A,
which is maximal with respect to KNS = @, is a prime ideal.

Clearly I = KN A C P. As shown above, A/K = (A+ K)/K ~ A[I. Obviously,
P/Ii8 a prime ideal in A/I. Hence there exists a prime ideal J D K of 4, for which

J/K = (P + K)/K. Thismeans J = P+ K, JNA=P+KNA=P+]=Pand
J NS ={. By the choice of X we conclude K = J. o

8.6 Properly semiprime rings.
Let 4 be a semiprime ring, T = Endyy b?@. B the Boolean ring of idempotents of
T and A = AB the idempotent closure of A. Then the Jollowing are equivalent:
(a} A is ¢ PSP ring;
(b} for every o € A, M(A)aT = Ae(a);
(¢) for every finitely generated ideal K C A, KT = Ae(K);
(d) A is o PSP ring.

[

Under the given conditions, for every a € A, To(4) = A(id — e(a)).

Proof. Since semiprime rings are polyform as bimodules, these equivalences essen-
tially are obtained from 7.3.

We only have to show that (d), i.e. Ais PSPasan M (A)-module, is equivalent to
A being PSP as an M(A)-module. This follows readily from M(A) = M(A)B. o

A ring A is said to be fully idempotent if, for any ideal I C A, I = M(A)P.
Cleatly such rings are semiprime. We show a module property of them:

N

8.7 Fully idempotent rings.
Let A be o fully idempotent ring. Then A is pseudo regular as M(A)-module.

Proef. Put § = BEndyy(A) and T = .m_amiéﬁMv. For any subset U n. A,
define L,(U) = {L,|u € U}. Consider a € 4 and I = M(A)e. By Po.meS.oP
I = M(AM? = M{A)L.(I)] and hence a € M{A)L,(I)M{A)a. Therefore there exists
a € M(A)L,(I)M(A) with ae = a. Obviously, & € M(4) and ad C I C M(A)eT. So
A is a pseudo regular M(A)-module (see 6.1). a

A ring A is called biregular if every principal ideal of A is a direct summand (as an
M(A)-module). o .

Tf A has a unit, then it is biregular if and only if every principal ideal is mauonmammw by
an idempotent in the center of A. For simplicity here we only consider biregular rings
with units, though our methods also apply to the general case. .

The next result reveils the connection between biregular and PSP rings.

9.8 Biregular and PSP rings. _ . .
Let A be o semiprime ring with unit, T = Enduay(A), B the .mo&mwa ring of amn:ﬂ?
tents of T and A = AB the idempotent closure of A. Then the following are eguivalent:

(a) A is biregular;
(b) A is a fully idempotent PSP ring;
{c) A is semiprime and for every a € A, M{A)a = As(a);

(3) A is semiprime and A is biregular.

Proof. (a) =+ (b) Assume A is biregular. Then A is fully idempotent. .

For any 6 € A, M(A)e = Ae for some idempotent e € C. € extends to w.:Enc.m
idempotent & € T and M(A)aT = AT = AE. As easily checked, & = e(a). S0 Ais PSP
by 9.6.

(8) = (a) By 9.7, fully idempotent rings are pseudo regular M(A)-modules. Hence
the assertion follows from 6.3.

(b) © (c) Since A is polyform, these assertions follow from @.w... .

(b) = {d) Since A is polyform, A is PSP by 7.3. We show that A is fully idempotent.
Any element in A can be written as 4 = % aiei, for some a; € m» and pairwise
orthogonal e; € B. Put K = M(A)a and K; = M(A)a;. Clearly K = T}, K;e;B. Since
A is fully idempotent, K; = M({A)K?. Hence

k k
M(A)K? =5 M(A)Kle.B = M KB =K,

=1
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and A4 is fully idempotent. So A is biregular by (a) & (b).

(d) = (a) Consider a € A. By assumption, M (A)a = Ac(a). Obviously, M (A) =
M(A)B and M(A)e = M(A)eB. Put c = £(a). Clearly £{c) = ¢ and ¢ € M(A)eB. By
9.5, there exist ay,...,a, € M(A)e and pairwise orthogonal ey,..., e, € B such that

k &
c=3 ae; and e=g(e) =Y e
i=l i=1
Therefore ce; = a;e;, ce; = ¢; and (1 —a;)e; =0 foralli=1,... k. Put

b= (. (((1 = &)1 — a2))(1 — ag)..)(1 ~ o).

Cleatly be; = 0 for all é = 1,..., k. Hence b¢ = 0. Since a; € M(A)a, b = 1+ d where
d € M(A)a. Further since ac = ac(e) = c and d € M{A)a, de = d. So 0 = be =
(1+d)e=c¢4dc=c+dande(a) = c = —d € M(A)a. Hence M(A)a C Ae(a) C M(A)a
and M(A)e = Aefa). . ]

Combining our results 7.5, 7.7 and 3.2 in [14] we have:

9.9 Central closure as Azumaya ring.

Let A be a semiprime ring with unit, T = Endyay(A) and A the central closure of
A. Then the following are equivalent:

(a) A is an Azumaya ring;

{b) A is a PSP ring and the module E‘Cd.m. is finitely presented in o{A];

{¢) A is a biregular ring and the module E?\&M is projective in o[A);

{d) the module EMVM is a generator in ¢[A);

(e) M(A) is a dense subring of Endp(A);

{f) for any my, ..., mu,m € A there ezistTv,...,7s € M(A) such that for
81,- .-, 80 € M(A) the relations

Sargmi=0 forj=1,...,k,
I=1
imply s1m € Tym, (A) for U = Anpgea)(ma, ... ,ma).
(g} A is a PSP ring and for any my,...,m, € A there exist r1,...,7y € M(A) such
that for 51,..., 8, € M(A) the relations

MUE*.._S‘«__ =0 an.u. =1.... ,.F
i=1

imply sym; € T torm ﬁkﬂv for U = .&.ﬁ.ﬂnhuﬂﬂa? ceey ._ﬂ:v.
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9.10 Example
We construct a biregular PI-ring A with unit, whose central closure is not biregular.
So A is PSP as an M(A)-module but A iz not PSP,

Let F be field of non-zero characteristic p, K = F(X) the field of the rational
functions and G = F(X?) a subfield of K. Consider the embedding

a: K = My{(G) = Endg(K), aw L,.

Denote by @ = M,(G)* a countable product of copies of M,(G), and I = M,(G)“), We
have an embedding

P K= MGy CQ, v(a) ={a(a)}. € M (G} fore € K.

Clearly [ is an ideal in Q. Put A = I 4+ ¢(K). Obviously, A is a biregular ring with
unit, whose maximal right ring of quotients is @, and the center T of @ is the extended’
centroid of A.

Hence R = AT is the central closure of A. Iis anidealin R and R/J is a commutative
ring. Let ¥y € @ denote an element all whose coeflicients are equal to X and put
z = P(X). Then y* = z*. Therefore y — 2z + I is 2 non-zero nilpotent element in the
commutative ring R/J. Hence R cannot be biregular. m]
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ENVELOPING ALGEBRAS OF INFINITE DIMENSIONAL
LIE ALGEBRAS AND LIE SUPERALGEBRAS

. JEFFREY BERGEN
Department of Mathematics, DePaul University
Chicago, IL 60614, USA

ABSTR&CT. In this expository paper we examine the enveloping algebras of infinite
dimensional Lie algebras and Lie superalgebras. Qur goal is to reduce certain natural
ring-theoretic questions from the arbitrary infinite dimensional situation to the more
familiar finite-dimensional one. This is done by applying techniques analogous to the
A-methods previously used to solve questions on group algebras.

1. Introduction

In this expository paper we examine the enveloping algebras of infinite dimen-
sional Lie algebras and Lie superalgebras. Our goal is to reduce certain natural
ring-theoretic questions from the arbitrary infinite dimensional situation to the more
familiar finite-dimensional one. The proofs of the results in this paper appear in a
series of fairly technical papers [3], [4], [5], and [6].

Throughout Sections 1,2, and 3 of this paper L will be either a Lie algebra
or a Lie superalgebra over a field K of characteristic 0 and U (L) will denote its
enveloping algebra. When L is a Lie algebra /(L) is a Hopf algebra, whereas when
L is a Lie superalgebra, there is a group G of order 2 such that the skew group
ring U(L)#G is a Hopf algebra. Group algebras are a well known example of Hopf
algebras and many questions on group algebras have been solved used A-methods
[9]. Therefore, it was reasonable to try to find similar techniques in the Lie context,
To this end, we considered

A=A(L)={leL|dimgll,L] < o0},

which was first introduced in [1]. A can be viewed as the Lie analog of the finite-
conjugate center of a group.

If we let Ap denote the join of all the finite-dimensional Lie ideals of L, then Ap
is a characteristic ideal of L which is appreciably smaller than A. In [3] and [4],
we reduce questions from L down to A and in [5] and [6] we sharpen these results
by further reducing from A to Ay. Unfortunately, there does not appear to be any
way to directly reduce from L to Ay without using A.

The reduction from L to A takes place by examining linear and derivation
identities. Given any ring R, a linear identity for R is an equation of the form

a1zb1 +oszfe+ - F @n2fn =0




