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Abstract. Although coalgebras and coalgebraic structures are well-known for
a long time it is only in recent years that they are getting new attention from

people working in algebra and module theory. The purpose of this survey is to

explain the basic notions of the coalgebraic world and to show their ubiquity
in classical algebra. For this we recall the basic categorical notions and then

apply them to linear algebra and module theory. It turns out that a number of
results proven there were already contained in categorical papers from decades

ago.
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Introduction

For an associative ring R we denote the category of left (resp. right) modules
by RM (resp. MR). Given rings R,S, for any (R,S)-bimodule RPS , the definition
of the tensor product implies that there is a bijection, natural in X ∈ SM and
N ∈ RM,

HomR(P ⊗S X,N) ' HomS(X,HomR(P,N)).

In categorical terminolgy one says that

P ⊗S − : SM→ RM, HomR(P,−) : RM→ SM,

form an adjoint pair of functors.
This notion can be defined for any functors between two categories. Such a pair

(F,G) of adjoint functors F : A → B and G : B → A leads (by composition) to
endofunctors, more precisely monads and comonads on A and B, respectively. In
Section 1 we outline this general approach by defining modules for monads and
comodules for comonads. We also study the situation when a monad is adjoint
to a comonad and the resulting relations between the corresponding module and

1



2 R. WISBAUER

comodule categories. Properties of the composition of monads and comonads are
controlled by distributive laws (entwinings) and this is described in Section 2.

In the following sections the general notions are brought back to module cate-
gories and this step provides natural comonads and comodule structures in these
categories.

Adjoint functors between module categories are described by a tensor and a
Hom functor and the properties derived from the categorical setting are explained
in Section 3. Algebras and coalgebras can be understood as monads and comonads
and the results coming out are formulated in Section 4. Hereby we observe in
4.10 that Abrams’ characterisation of Frobenius algebras from 1999 can easily be
seen as a byproduct of the Eilenberg-Moore paper from 1965. A short proof is
given to show that, for a finitely generated module over a commutative ring R, the
endomorphism ring is a Frobenius R-algebra (see 4.13).

Finally, in Section 5, possible definitions of an algebra structure on the tensor
product of two algebras are explained by the entwinings of functors treated in
Section 2. These methods also apply to the tensor product of coalgebras and
bialgebras. In fact, the entwining structures introduced by Brzeziński and Majid in
1998 are obtained as an application of categorical results by van Osdol from 1971.
The section concludes with a remark on the role of the Yang-Baxter equation for
entwinings.

For notions from category theory we refer to Mac Lane [10] and for facts from
module theory the reader may consult [16] or any other introductory texts on these
fields.

1. Categorical setting

For convenience we recall the basic definitions. The observations on the interplay
between adjoint pairs of functors, monads and comonads go back to the Eilenberg-
Moore paper [9] from 1965 but for a long time were hardly exploited by people
working on rings and modules. Parallel to the new appreciation of these techniques
in classical algebra they also turn out to be of considerable interest in universal
algebra and theoretical computer science (programming). In order to facilitate the
understanding for people working in linear algebra, hints from this area are given
along the way.

1.1. Categories. A category A consists of a class of objects, morphism sets
MorA(A,B) for any objects A,B ∈ A, and an associative composition

MorA(A,B)×MorA(B,C)→ MorA(A,C).

Moreover, any object A ∈ A is required to have an identity morphism IA.

Besides of the category of sets with the set maps as morphisms, the reader is certainly

familiar with the category kV of vector spaces over any field k with the k-linear maps as

morphisms.

Similar to homomorphisms between groups, categories can be related by

1.2. Functors. A (covariant) functor F : A→ B between two categories assigns
an object A ∈ A to an object F (A) ∈ B,
a morphism f : A→ A′ to a morphism F (f) : F (A)→ F (A′) of B,

and has to respect the composition of morphisms as well as the identity morphisms
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on objects, that is, F (IA) = IF (A) for any A ∈ A. The identity functor on the
category A is denoted by IA or just I.

By definition, any functor F induces a map

FA,A′ : MorA(A,A′)→ MorB(F (A), F (A′)),

and F is called faithful (resp. full) if FA,A′ is injective (resp. surjective) for any
A,A′ ∈ A.

Any vector space V ∈ kV defines a functor

V ⊗k − : kV→ kV, X 7→ V ⊗k X

X
f−→ X ′ 7→ V ⊗k X

I⊗f−→ V ⊗k X
′,

and this is always faithful; it is full provided V has finite dimension.

Two functors between the same categories can be connected by

1.3. Natural transformations. Given two functors F,G : A → B, a natural
transformation ψ : F → G is defined as a family of morphisms ψA : F (A)→ G(A),
A ∈ A, inducing, for any morphism h : A→ A′ in A, commutativity of the diagram

F (A)
ψA //

F (h)

��

G(A)

G(h)

��
F (A′)

ψA′ // G(A′).

Let V and W be two k-vector spaces. Then for any k-linear map ϕ : V → W ,

ϕ⊗− : V ⊗k − →W ⊗k − is a natural transformation.

Using these basic notions we can already define

1.4. Adjoint functors. Given a functor L : A → B, a functor R : B → A is said
to be right adjoint to L if there are bijections, natural in A ∈ A and B ∈ B,

ϕA,B : MorB(L(A), B)→ MorA(A,R(B)).

In this case (L,R) is said to be an adjoint pair of functors.

The adjointness of functors can also be expressed by

1.5. Unit and counit of an adjunction. Given an adjunction as in 1.4, one may
consider

ηA := ϕA,L(A)(IL(A)) : A→ LR(A), εB := ϕ−1
R(B),B(IR(B)) : LR(A)→ A,

yielding natural transformations, called the unit and the counit,

η : IA → RL, ε : LR→ IB,

which satisfy the triangular identities

L
Lη //

=
!!DD

DD
DD

DD
LRL

εL

��
L,

R
ηR //

=
""EEEEEEEE RLR

Rε

��
R.
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Conversely, with these transformations the map ϕ can be described by

ϕ : L(A)
f // B 7−→ A

ηA // RL(A)
R(f) // R(B),

ϕ−1 : A
h // R(B) 7−→ L(A)

L(h) // LR(B)
εB // B.

Functors which have left or right adjoints also respect limits and colimits, re-
spectively:

1.6. Properties of adjoint functors. If (L,R) be an adjoint pair of functors,
then

(i) L preserves epimorphisms and coproducts,

(ii) R preserves monomorphisms and products.

The functor V ⊗k− has a right adjoint Homk(V,−) provided by the canonical bijection,
where X,Y ∈ kV,

Homk(V ⊗k X,Y )→ Homk(X,Homk(V, Y ),

and counit and unit are given as k-linear maps

εX : V ⊗k Homk(V,X)→ X, v ⊗ f 7→ f(v),
ηY : Y → Homk(V, V ⊗ Y ), y 7→ [v 7→ v ⊗ y].

It follows from 1.6 that Homk(V,−) can only be a right adjoint provided V has finite

dimension, that is, Homk(V,X) ' Homk(V, k)⊗k X.

There are some properties of units and counits which are easily seen to corre-
spond to special properties of the functors R and L.

1.7. Properties of unit and counit. Let (L,R) be an adjoint pair of functors
with unit η and counit ε.

(1) (i) εB is an epimorphism ⇔ R is a faithful functor.

(ii) εB is a coretraction ⇔ R is a full functor.

(iii) εB is an isomorphism ⇔ R is full and faithful.

(2) (i) ηA is a monomorphism ⇔ L is a faithful functor.

(ii) ηA is a retraction ⇔ L is a full functor.

(iii) ηA is an isomorphism ⇔ L is full and faithful.

(3) ε and η are isomorphisms ⇔ L is an equivalence (with inverse R).

Some properties of unit and counit have a weaker impact on the related functors.

1.8. More on unit and counit. Let (L,R) be an adjoint pair as in 1.7.

(1) If εB is a monomorphism for all B ∈ B, then

(i) ηR : R→ RLR is an isomorphism;

(ii) LR : B→ B preserves monomorphisms.

(2) If ηA is an epimorphism for all A ∈ A, then

(i) εL : LRL→ L is an isomorphism;

(ii) RL : A→ A preserves epimorphisms.

Composing adjoint functors yields special endofunctors.
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1.9. Related endofunctors. Let (L,R) be an adjoint pair (as in 1.7).

(1) RL : A → A is an endofunctor with natural transformations (product and
unit)

RεL : RLRL→ RL, η : I → RL.

(2) LR : B → B is an endofunctor with natural transformations (coproduct and
counit)

δ := LηR : LR→ LRLR, ε : LR→ I.

The properties shared by these structures lead to the notions of

1.10. Monads and comonads.

(1) A monad on a category A is a triple (F,m, η) where F : A → A is an endo-
functor, m : FF → F and η : IA → F are natural transformations, called the
product and unit, inducing commutativity of the diagrams

FFF
mF //

Fm

��

FF

m

��
FF m

// F,

F
Fη //

=
!!CC

CC
CC

CC
FF

m

��

F
ηFoo

=
}}{{

{{
{{

{{

F .

(2) A comonad on a category A is a triple (G, δ, ε) where G : A → A is an
endofunctor, δ : G→ GG and ε : G→ IA are natural transformations, called
the coproduct and counit, inducing commutativity of the diagrams

G
δ //

δ

��

GG

Gδ

��
GG

δG
// GGG,

G
=

}}{{
{{

{{
{{

δ

��

=

!!DD
DD

DD
DD

G GG
εG

oo
Gε

// G.

For a k-vector space, the (endo)functor V ⊗k − has a monad structure provided there

are a k-linear map V ⊗kV → V satisfying the associativity condition and a unit morphism

e : R → V , that is, V ia a k-algebra with unit e(1). A comonad structure on V ⊗k − is

obtained by reversing the arrows.

1.11. Modules for monads. Let (F,m, η) be a monad on A. An F -module (A, %A)
is an object A ∈ A with a morphism %A : F (A) → A inducing commutativity of
the diagrams

FF (A)
mA //

F (%A)

��

F (A)

%A

��
F (A)

%A
// A,

A
ηA //

=
!!DD

DD
DD

DD
D F (A)

%A

��
A.

A morphism between two F -modules (A, %A) and (A′, %A′) is a morphisms f :
A→ A′ in A with commutative diagram

F (A)
F (f) //

%A

��

F (A′)

%A′

��
A

f
// A′.
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With these morphisms, the F -modules form a category which we denote by AF
(Eilenberg-Moore category). We write MorF (A,A′) := MorAF

(A,A′) for short.

1.12. Free and forgetful functors. Given any monad (F,m, η) on A, there are
the free functor and the forgetful functor,

φF : A→ AF , A 7→ (F (A),mA : FF (A)→ F (A)),

UF : AF → A, (A, %A) 7→ A,

and (φF , UF ) is an adjoint pair by the bijection, for A ∈ A and B ∈ AF ,

MorF (φF (A), B)→ MorA(A,UF (B)), f 7→ f · ηA.

Reversing the arrows in the constructions considered above we get

1.13. Comodules for comonads. Let (G, δ, ε) be a comonad on A. A G-comodule
(X, %X) is an object X ∈ A with a morphism %X : X → G(X) and commutative
diagrams

X
%X //

%X

��

G(X)

δX

��
G(X)

G(%X)

// GG(X),

X
%X //

=
""EE

EE
EE

EE
E G(X)

εX

��
X.

Morphisms between comodules (X, %X) and (X ′, %X
′
) are defined as morphisms

h : X → X ′ in A with a commutative diagram

X
h //

%X

��

X ′

%X
′

��
G(X)

G(h)
// G(X ′).

These notions yield the (Eilenberg-Moore) category of G-comodules which we

denote by AG. We write MorG(X,X ′) := MorAG(X,X ′) for short.

To prevent misunderstandings we mention that the F -modules and G-comodules
defined in 1.11 and 1.13 are also called F -algebras and G-coalgebras in category
theory (e.g. [10]).

1.14. Cofree and forgetful functors. Given a comonad (G, δ, ε) on A, there are
the cofree functor and the forgetful functor,

φG : A→ AG, X 7→ (G(X), δX : G(X)→ GG(X)),

UG : AG → A, (X, %X) 7→ X,

and (UG, φG) is an adjoint pair by the bijection, for M ∈ AG and X ∈ A,

MorG(M,φG(X))→ MorA(UG(M), X), h 7→ εX · h.

A nice correspondence between monads and comonads comes out for endo-
functors which are adjoint to each other.

1.15. Adjoint endofunctors. Let (F,G) be an adjoint pair of endofunctors on a
category A with bijection

ϕX,Y : MorA(F (X), Y )→ MorA(X,G(Y )),
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and η : IA → GF , ε : FG→ IA as unit and counit.
Assume (F,m, e) to be a monad. Then, for X,Y ∈ A, we have the diagrams

MorA(F (X), Y )
ϕX,Y //

Mor(mX ,Y )

��

MorA(X,G(Y ))

Mor(X,?)

��
MorA(FF (X), Y )

' // MorA(X,GG(Y )),

MorA(F (X), Y )
ϕX,Y //

Mor(eX ,Y )

��

MorA(X,G(Y ))

Mor(X,??)vv
MorA(X,Y ) ,

in which the dotted morphisms exist by composition of the other morphisms. By
the Yoneda Lemma it follows that they are induced by morphisms

δY : G(Y )→ GG(Y ) and ε : G(Y )→ Y ,

and these are explicitly given by the natural transformations

δ : G
ηG−→ GFG

GηFG−→ GGFFG
GGmG−→ GGFG

GGε−→ GG,

ε : G
eG−→ FG

ε−→ IA ,

yielding a comonad (G, δ, ε).

By symmetry of the constructions, we obtain the first part in the next theorem.

1.16. Theorem. Let (F,G) be an adjoint pair of endofunctors on A with unit
η : I → GF and counit ε : FG → I. Then F has a monad structure if and only if
G allows for a comonad structure.

In this case, the category of F -modules is isomorphic to the category of G-
comodules by the functors

AF → AG, F (A)
h // A 7−→ A

ηA // GF (A)
G(h) // G(A) ,

AG → AF , A
ρ // G(A) 7−→ F (A)

F (ρ) // FG(A)
εA // A .

More about these structures may be found, for example, in [4, 17].

For any k-vector space V , (V ⊗k−,Homk(V,−)) forms an adjoint pair of endofunctors.

Thus a monad structure on V ⊗k− (algebra) implies a comonad structure on Homk(V,−).

Then, if V has finite dimension, Homk(V, k) is a k-coalgebra.

Recall that a functor is said to be a Frobenius functor provided it has a right
adjoint which is also a left adjoint. Then a monad (F,m, η) is called a Frobenius
monad if the forgetful functor UF : AF → A is Frobenius. This corresponds to
the condition that F is isomorphic to its right adjoint and, by 1.16, this means
that F allows for a comonad structure and leads to the following characterisation
of Frobenius monads (compare [13]).

1.17. Proposition. For a monad (F,m, η) on A, the following are equivalent:

(a) F is a Frobenius monad;
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(b) F has a comonad structure (F, δ, ε) inducing commutativity of the diagrams

FF
Fδ //

m

��

FFF

mF

��
F

δ // FF,

FF
δF //

m

��

FFF

Fm

��
F

δ // FF ;

(c) F has a comonad structure (F, δ, ε) and (F, F ) is an adjoint pair with counit
and unit

FF
m−→ F

ε−→ I, I
η−→ F

δ−→ FF.

Proof. (a)⇒(b) It follows from 1.16 that the category AF is isomorphic to AF . This
in turn implies that F -module morphisms are F -comodule morphisms, and vice
versa. In particular, δ is an F -module morphism and this just means commutativity
of the left hand diagram in (b), and m is an F -comodule morphisms meaning
commutativity of the right hand diagram of (b).

The remaining implications are obtained by standard verifications. �

2. Lifting of functors

Given two monads (comonads) F and F ′ on a category A, the composition
F ′F is again an endofunctor on A. Now one may ask when F ′F allows for a monad
(comonad) structure. Also, what happens if we compose a monad with a comonad?
This kind of questions can be related with lifting properties of endofunctors to the
category of the corresponding modules or comodules, respectively, which can be
described by distributive laws as considered in [3] (also called entwinings).

For the category of vector spaces these liftings come in to define suitable structures on

the tensor product of algebras or coalgebras. For details we refer to Section 5.

2.1. Lifting of endofunctors. Let (F,m, η) be a monad, (G, δ, ε) a comonad, and
T an endofunctor of the category A. For functors

T : AF → AF and T̂ : AG → AG,

we have the diagrams

AF
T //

UF

��

AF

UF

��
A T // A,

AG
T̂ //

UG

��

AG

UG

��
A T // A,

and we say that T or T̂ are liftings of T provided the corresponding diagrams are
commutative.

2.2. Lifting of monads to monads. With the notation from 2.1,

(1) there exists a lifting T : AF → AF of T if and only if there is a natural
transformation λ : FT → TF with commutative diagrams

FFT
mT //

Fλ

��

FT

λ

��
FTF

λF // TFF
Tm // TF,

T
ηT //

Tη !!CC
CC

CC
CC

FT

λ

��
TF ;
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(2) if (T,m′, η′) is a monad, then a lifting T has a monad structure if and only
if λ induces commutativity of the diagrams

FTT
Fm′ //

λT

��

FT

λ

��
TFT

Tλ // TTF
m′F // TF,

F
Fη′ //

η′F !!CC
CC

CC
CC

FT

λ

��
TF ;

In this case, λ is called a monad entwining (or distributive law in [3]) and
TF has a monad structure with product and unit

TFTF
TλF // TTFF

m′m // TF , I
η′ η // TF.

Similar results for the lifting of comonads are obtained by reversing the arrows
in 2.2 and under the resulting conditions the composition of two comonads again
gives a comonad. In this case λ may be called a comonad entwining (e.g. [17, 4.9]).

The conditions for lifting monads to a comodule category employ the first dia-
grams of the preceding cases (e.g. [17, Section 5]).

2.3. Lifting of monads for comonads. With the notation from 2.1,

(1) there exists a lifting T̂ : AG → AG of T if and only if there is a natural
transformation λ : TG→ GT with commutative diagrams

TG
Tδ //

λ

��

TGG
λ // GTG

Gλ

��
GT

δT // GGT,

TG
Tε //

λ

��

T

GT ;

εT

=={{{{{{{{

(2) if (T,m, η) is a monad, then the lifting T̂ has a monad structure if and only
if λ induces commutativity of the diagrams

TTG
mG //

Tλ

��

TG

λ

��
TGT

λT // GTT
Gm // GT,

G
ηG //

Gη !!CC
CC

CC
CC

TG

λ

��
GT.

In this case, λ is called a mixed entwining.

An endofunctor allowing for a monad and a comonad structure may be a Frobe-
nius monad if the compatibility conditions in Proposition 1.17 are satisfied, or one
may impose other compatibility requirements leading to the definition of (see [11,
Definition 4.1])

2.4. Bimonads. A bimonad on a category A is an endofunctor B : A → A which
has a monad structure (B,m, e) and a comonad structure (B, δ, ε) such that

(i) ε : B → I is a module structure morphism for I;

(ii) e : 1→ B is comodule structure morphism for I;
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(iii) there is a mixed entwining (see 2.3) λ : BB → BB yielding commutativity of
the diagram

BB
m //

Bδ

��

B
δ // BB

BBB
λB

// BBB.

Bm

OO

If the endofunctor B has a bimonad structure and allows for a right adjoint G,
then, by 1.16, G allows for a monad and a comonad structure and it is easy to check
that the compatibility conditions for B are transferred to G, that is G is again a
bimonad (e.g. [11, 4]).

2.5. Hopf monads. Given a bimonad B = (B,m, e, δ, ε), one defines Hopf modules
as objects A in A allowing for module and comodule structure maps, %A : B(A)→ A
and %A : A→ B(A), with commutative diagram (see [11, 4.2])

B(A)
%A //

B(%A)

��

A
%A // B(A)

BB(A)
λA

// BB(A).

B(%A)

OO

Morphisms between Hopf modules A and A′ are to be module as well as comodule
morphisms and the set of all of them is denoted by MorBB(A,A′). They lead to the
category ABB of Hopf modules. By the conditions in 2.4, for any A ∈ A, B(A) has
the structure of a Hopf module and thus B induces the (comparison) functor

KB : A→ ABB , A 7→ (B(A),mA, δA),

which is full and faithful by the isomorphism (see 1.12, 1.14)

MorBB(B(A), B(A′)) ' MorB(B(A), A′) ' MorA(A,A′).

The bimonad B is called a Hopf monad provided it has an antipode and with mild
restrictions on the category A, this is the case if and only if KB is an equivalence
of categories (see [11, Section 5]).

Moreover, if the functor part B of a Hopf monad has a right adjoint G, then G
again allows for the structure of a Hopf monad ([4], [6]).

3. Functors between module categories

In this section we apply our general results to adjoint pairs of functors between
module categories. Here R and S denote any associative rings with units.

3.1. Adjoint pair of functors. Attached to any (R,S)-bimodule RPS , there is
an adjoint pair of functors between SM and RM,

P ⊗S − : SM→ RM, HomR(P,−) : RM→ SM.

The adjunction is given by the canonical bijection, for N ∈ RM, X ∈ SM,

ϕX,N : HomR(P ⊗S X,N) → HomS(X,HomR(P,N)),

f 7→ [x 7→ f(−⊗ x)].
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Counit and unit of this adjunction come out as

εM : P ⊗S HomR(P,M)→M, p⊗ f 7→ f(p),

ηX : X → HomR(P, P ⊗S X), x 7→ [p 7→ p⊗ x].

It follows by the Eilenberg-Watts theorem (e.g. [6, 39.4]) that any covariant func-
tor from RM to SM which preserves epimorphisms and direct sums is isomorphic
to a tensor functor and hence any adjoint pair of functors between these categories
is of the type considered above.

Since the ring S is a generator in SM, the functor P ⊗S − is determined by its
value on S, that is by P ⊗S S ' P . However, in general the functor HomR(P,−)
need not be determined by its value on R, that is P ∗ := HomR(P,R).

We also have a functor −⊗R P : MR →MS and natural transformations

β : P ∗ ⊗R − → HomR(P,−), α : −⊗R P → HomR(P ∗,−),

given by the familiar morphisms for M ∈ RM and N ∈MR,

βM : P ∗ ⊗RM → HomR(P,M), f ⊗m 7→ [p 7→ f(p)m],

αN : N ⊗R P → HomR(P ∗, N), n⊗ p 7→ [g 7→ n · g(p)].

Recall that a dual basis for a projective R-module P consists of families {pλ}Λ
of elements in P and {p∗λ}Λ of elements in P ∗, such that p =

∑
Λ p
∗
λ(p)pλ for any

p ∈ P . P is finitely generated and projective if and only if it has a finite dual basis
(i.e., Λ is a finite set).

3.2. Proposition. For a left R-module P , the following are equivalent:

(a) HomR(P,−) : RM→ ZM has a right adjoint functor;

(b) RP is finitely generated and projective;

(c) βP : P ∗ ⊗R P → HomR(P, P ) is an isomorphism;

(d) βP : P ∗ ⊗R P → HomR(P, P ) is surjective;

(e) β : P ∗ ⊗R − → HomR(P,−) is a natural isomorphism.

Proof. We just note that (d) implies the existence of a finite dual basis for P . The
remaining conclusions are obvious. �

Recall that an R-module P is said to be locally projective provided for any
diagram of left R-modules with exact bottom row

F
i // P

g

��
L

f // N // 0,

where F is finitely generated, there is a homomorphism h : P → L with g ·i = f ·h·i
(e.g. [6, 42.9]). Clearly projective modules are locally projective modules, and the
latter are projective provided they are finitely generated.

3.3. Proposition. Let P be a left R-module.

(1) The following are equivalent:

(a) α : N ⊗R P → HomR(P ∗, N) is injective for all N ∈MR;

(b) P is a locally projective R-module.

(2) The following are equivalent:
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(a) α : −⊗R P → HomR(P ∗,−) is a natural isomorphism;

(b) αP∗ : P ∗ ⊗R P → HomR(P ∗, P ∗) is an isomorphism;

(c) P is finitely generated and projective.

Proof. (1) is shown in [6, 42.10] (with more equivalent characterisations).
(2) is shown similarly to Proposition 3.2 �

Now we investigate the properties of the unit and counit.

3.4. Proposition. We refer to the notations in 3.1.

(1) The following are equivalent:

(a) εM is an epimorphism (isomorphism) for all M ∈ RM;

(b) HomR(P,−) : RM→ SM is faithful;

(c) HomR(P,−) : RM→ SM is full and faithful;

(d) P is a generator in RM.

(2) The following are equivalent:

(a) ηX is an isomorphism for all X ∈ SM;

(b) P ⊗S − is full and faithful (faithfully flat).

(3) The following are equivalent:

(a) η and ε are (natural) isomorphisms;

(b) P ⊗S − is an equivalence (with inverse HomR(P,−));

(c) RP is a finitely generated, projective generator and S ' EndR(P ).

Proof. (1) The equivalence of (a) and (b) follows from 1.7. The equivalence of (b)
and (c) is a particular property of full module (and Grothendieck) categories. The
equivalence of (c) and (d) can be taken as definition of generators in categories. It
is easy to see that in RM this is equivalent to the fact that, for any R-module M ,
there is an epimorphism P (Λ) →M (e.g. [16, 13.6]).

(2) and (3) follow essentially from 1.7. �

According to 1.9, the endofunctors

HomR(P, P ⊗S −) : SM→ SM, P ⊗S HomR(P,−) : RM→ RM,

allow for a monad and comonad structure, respectively, and thus induce the corre-
sponding module and comodule categories.

Recall that a monad (comonad) is said to be idempotent provided the product
(coproduct) is a natural isomorphism. It is clear that the above monad and comonad
are idempotent in case ε and η are isomorphisms (i.e. HomR(P,−) induces an
equivalence).

Elaborating the observations from 1.8 one obtains (see [8, Section 4]):

3.5. Proposition. Let P be a left R-module and S = EndR(P ). Then the following
are equivalent:

(a) εM is a monomorphism for all M ∈ RM and
ηX is an epimorphism for all X ∈ SM;

(b) the monad HomR(P, P ⊗S −) is idempotent;

(c) the comonad P ⊗S HomR(P,−) is idempotent;
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(d) (P ⊗S −,HomR(P,−)) induces an equivalence

P ⊗S − : SMHomR(P,P⊗S−) −→ RMP⊗SHomR(P,−).

These properties characterise P as a ∗-module (in the sense of Menini-Orsatti). A
∗-module P that is in addition a subgenerator in RM (generates all injectives) is
known as a tilting module. The equivalence noticed above implies the Brenner-
Butler equivalence (see [8]).

4. Module and comodule categories

In the following we apply our general results to describe algebras and coalgebras
and their (co-) module categories and this will throw new light on familiar notions
from this part of algebra.

To avoid some technicalities, in this section R will always denote a commutative
ring with unit and we sometimes write M for RM (but see Remark 4.11). This also
ensures that, for any R-modules M , N , we have the canonical twist map,

twM,N : M ⊗R N → N ⊗RM, m⊗ n 7→ n⊗m.

4.1. Algebras and module categories. An R-algebra is a triple (A,m, e) with an
R-module A, an associative multiplication m : A⊗R A→ A, and a unit morphism
e : R→ A (where e(1R) = 1A). Then

A⊗R − : RM→ RM, X 7→ A⊗R X,

is an endofunctor and the triple (A⊗R −,m⊗ I, e⊗ I) is a monad on RM.
Now (left) A-modules are defined as R-modules M with an R-linear map

ρM : A⊗RM →M,

satisfying the associativity and unitality conditions (see 1.11).
Morphisms f : M → N between A-modules are defined as R-linear maps subject

to the compatibility conditions from 1.11 which here simply read as

f(am) = af(m), for a ∈ A and m ∈M .

These notions define the category of (left) A-modules AM (=MA⊗R−).
The free module functor is by definition

A⊗R − : RM→ AM, X 7→ (A⊗R X,m⊗ IX),

and is left adjoint to the functor UA : AM→ RM, forgetting theA-module structure,
by the bijection, for M ∈ AM, X ∈ RM,

HomA(A⊗R X,M)→ HomR(X,M), f 7→ f · (e⊗ IX).

4.2. Coalgebras and comodule categories. An R-coalgebra is a triple (C,∆, ε)
with an R-module C, a coassociative coproduct ∆ : C → C ⊗R C, and a counit
ε : C → R. Then

C ⊗R − : RM→ RM, X 7→ C ⊗R X,
is an endofunctor and (C ⊗R −,∆⊗ I, ε⊗ I) forms a comonad on RM.

Now (left) C-comodules are defined as R-modules M with R-linear maps

%M : M → C ⊗RM,

satisfying the coassociativity and counitality conditions from 1.13.
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Morphisms g : M → N of C-comodules are defined as R-linear maps subject to
the compatibility condition formulated in 1.13. These notions define the category
of (left) C-comodules denoted by CM (=MC⊗R−).

The free comodule functor is defined as

C ⊗R − : RM→ CM, X 7→ (C ⊗R X, δ ⊗ IX),

and is right adjoint to the forgetful functor UC : CM→ RM by the bijection

HomC(M,C ⊗R X)→ HomR(M,X), f 7→ εX · f,

for X ∈ RM, M ∈ CM.

Notice that coalgebras in module categories are (usually) defined for a tensor
functor whereas comonads may be defined for any endofunctor as will be the case
in our next topic.

4.3. Adjoint endofunctors. By 3.1, for any R-module A, the two endofunctors
A ⊗R − and HomR(A,−) form an adjoint pair by the canonical isomorphism, for
any X,Y ∈ RM,

ϕX,Y : HomR(A⊗R X,Y ) −→ HomR(X,HomR(A, Y )).

As pointed out in 1.16, the following are equivalent for A ∈ RM :

(a) A⊗R − : RM→ RM is a monad (A is an R-algebra);

(b) HomR(A,−) : RM→ RM is a comonad (with coproduct Hom(m,−)).

Moreover, there is an isomorphism between the corresponding module and co-
module categories

T : AM −→MHomR(A,−)

given by the assignments

A⊗R N
ρN−→ N 7−→ N

νN−→ HomR(A,A⊗R N)
[A,ρN ]−→ HomR(A,N);

N
ρN−→ HomR(A,N) 7−→ A⊗R N

I⊗ρN−→ A⊗R HomR(A,N)
εN−→ N.

This equivalence shows that the theory of A-modules over an R-algebra A could
be build up completely as a theory of comodules over the comonad HomR(A,−).
In general, the latter need not be representable as a tensor product unless A is
finitely generated and projective (see Proposition 3.2). In the latter case 4.3 takes
the following form.

4.4. HomR(A,−) as tensor functor. Let A be an R-algebra with finite dual R-
module basis {aλ}Λ, {a∗λ}Λ. Then HomR(A,−) ' A∗ ⊗R − and as a consequence
(A⊗R −, A∗ ⊗R −) is an adjoint pair of endofunctors with

counit ε : A⊗R A∗ → R, a⊗ f 7→ f(a),

unit η : R→ A∗ ⊗R A, 1 7→
∑

Λ a
∗
λ ⊗ aλ.

By the observations in 1.16 the following are equivalent:

(a) A⊗R − : RM→ RM is a monad (A is an R-algebra);

(b) A∗ ⊗R − : RM → RM is a comonad (A∗ is an R-coalgebra, with counit
A∗ → R, f 7→ f(1A)).
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Moreover, the categories AM and A∗M are equivalent by the assignments

A⊗R N
ρN−→ N 7−→ N

ηN−→ A∗ ⊗R A⊗R N
A∗⊗ρN−→ A∗ ⊗R N ;

N
ρN−→ A∗ ⊗R N 7−→ A⊗R N

I⊗ρN−→ A⊗R A∗ ⊗R N
εN−→ N.

We now look at adjoints of the comonads induced by coalgebras. By our general
knowledge about adjoint endofunctors we have (see 1.16):

4.5. Proposition. For any R-module C, the following are equivalent:

(a) C ⊗R − : RM→ RM has a comonad structure (C is an R-coalgebra);

(b) HomR(C,−) : RM→ RM has a monad structure.

The corresponding module and comodule categories have distinct properties.

4.6. Proposition. Let (C,∆, ε) be an R-coalgebra, put [C,−] := HomR(C,−).

(1) Consider the category CM of left C-comodules.

(i) CM has colimits, coproducts and cokernels;

(ii) CM is abelian provided CR is flat;

(iii) in CM monomorphisms need not be injective maps.

(2) Consider the category M[C,−] of HomR(C,−)-modules.

(i) M[C,−] has limits, products and kernels;

(ii) M[C,−] is abelian provided CR is projective;

(iii) in M[C,−] epimorphisms need not be surjective maps.

From this it is clear that the two categories need not be isomorphic. There is
however a functor between them which allows for a left adjoint.

4.7. Correspondence of categories. With the notations above, there is a functor

HomC(C,−) : CM→M[C,−], M 7→ HomC(C,M).

This has a left adjoint C ⊗[C,−] − (contratensor product) and, for X ∈ RM,

C ⊗R X 7→ HomC(C,C ⊗R X) ' HomR(C,X),

HomR(C,X) 7→ C ⊗[C,−] HomR(C,X) ' C ⊗R X.

The Kleisli category of a monad F (comonad G) on any category A (see [10])

may be characterised as full subcategory ÃF ⊂ AF (resp. ÃG ⊂ AG) whose objects
are of the form F (A) (resp. G(A)) for some A ∈ A.

With these notions, 4.7 says that the Kleisli category of the monad HomR(C,−)
is equivalent to the Kleisli category of the comonad C ⊗R − on MR (see [4]).

Given an R-algebra A, the dual module A∗ allows for a coalgebra structure
provided A is finitely generated and projective as an R-module. The situation for
coalgebras is different.

4.8. Algebra structure on C∗. Let (C,∆, ε) be an R-coalgebra. Then the dual
module C∗ = HomR(C,R) has an R-algebra structure with convolution product,
for f, g ∈ C∗, f ∗ g = (g⊗f)◦∆, and unit ε. (The reader should be aware that this
may also be defined as (f ⊗ g) ◦∆ leading to the opposite ring structure on C∗).
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4.9. Monads and comonads for coalgebras. Let (C,∆, ε) be an R-coalgebra.
By the algebra structure of C∗, C∗ ⊗R − is a monad on MR and so is [C,−] :=
HomR(C,−). By 3.1, these are related by a natural transformation, for M ∈ RM,

βM : C∗ ⊗RM → HomR(C,M), f ⊗m 7→ [c 7→ f(c)m].

It turns out that this is a monad morphism thus yielding a functor

M[C,−] −→ C∗M,

HomR(C,M)
h−→M 7−→ C∗ ⊗RM

βM−→ HomR(C,M)
h−→M,

which is an equivalence if and only if RC is finitely generated and projective (see
Proposition 3.2).

On the other hand, the R-algebra C∗ induces a comonad HomR(C∗,−) on RM
that is related with C ⊗R − by a natural transformation (see 3.1)

αM : C ⊗RM → HomR(C∗,M), c⊗m 7→ [f 7→ f(c)m].

It is straightforward to see that this is a comonad morphism and with the functor
T from 4.3 we get a functor

CM −→ M(C∗,−) T−1

−→ C∗M,

M
%M−→ C ⊗RM 7−→ M

%M−→ C ⊗RM
αM−→ HomR(C∗,M)

7−→ C∗ ⊗RM
I⊗%M−→ C∗ ⊗R C ⊗RM

ev⊗I−→ M,

where ev : C∗ ⊗R C → R denotes the evaluation map.
This functor is full and faithful if and only if αM is injective for any M ∈ RM. In

this context, the injectivity condition for α is known as α-condition and just means
that C is locally projective as an R-module (see 3.3). Since C is a subgenerator
in CM (every C-comodule is a subcomodule of a C-generated comodule), the α-
condition implies that

CM ' σ[C∗C] ⊆ C∗M,

where the right hand side denotes the full subcategory whose objects are subgen-
erated by the C∗-module C and these are precisely the rational C∗-modules (e.g.
[6], [16]). Of course, equality holds on the right side if and only if RC is finitely
generated and projective.

Clearly, if R is a field, C satisfies the α-condition and - as pointed out by
Abrams and Weibel in [2] - C∗ can be seen as a pro-object in the category of
finite-dimensional algebras. In this case the isomorphism given coincides with [2,
Theorem 4.3].

The constructions of this section can also be formulated in a general categorical
context and are investigated in [12].

Recall that a Frobenius algebra over a field k is defined as a finite dimensional k-
algebra A for which A ' A∗ = Homk(A, k) as (left) A-modules. This notion can be
readily extended to algebras over rings and from Proposition 1.17 we immediately
obtain:

4.10. Proposition. For an R-algebra (A,m, e), the following are equivalent:

(a) A⊗R − is a Frobenius monad on RM;
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(b) A is finitely generated and projective as R-module and allows for a coalgebra
structure (A, δ, ε) inducing commutativity of the diagrams

A⊗R A
IA⊗δ //

m

��

A⊗R A⊗R A

m⊗IA
��

A
δ // A⊗R A,

A⊗R A
δ⊗IA //

m

��

A⊗R A⊗R A

IA⊗m
��

A
δ // A⊗R A;

(c) A has a comonad structure (A, δ, ε) and (A⊗R −, A⊗R −) is an adjoint pair
of functors with counit and unit

A⊗R A
m−→ A

ε−→ R, R
e−→ A

δ−→ A⊗R A.
For algebras over fields, the equivalence of (a) and (b) was shown in 1999 by

Abrams (see [1, Theorem 2.1]). He understood the two diagrams in (b) as conditions
which make δ a left and right A-module morphism. This interpretation is not
possible in general, since for a monad F on an arbitrary category A, one can not
distinguish between left and right F -modules. From the categorical setting, the
left hand diagram should be seen as condition to make δ an A-module morphism
whereas the right hand diagram makes m an A-comodule morphism.

We note that the proof of the general situation only uses elementary notions from
category theory and is completely contained (although not formulated in this way)
in Eilenberg-Moore [9]. Thus Abrams theorem from 1999 was implicitly already
around in more generality in 1965.

4.11. Remark. For most of the results of this section commutativity of the ring
R is not essential. In case R is not commutative, some obvious adaptions have to
be made; in particular, R-algebras are to be replaced by R-rings (monads on RM)
and R-coalgebras by R-corings (comonads on RM) (see [6]).

With the knowledge gained in this section let us come back to the monad and
comonad on SM and RM, respectively, considered in Proposition 3.5. In the next
proposition R need not necessarily be commutative.

4.12. HomR(P,−) as tensor functor. Let RPS be an (R,S)-bimodule with finite
dual R-module basis {p∗λ}Λ, {pλ}Λ. Then P ∗ ⊗R − ' HomR(P,−) and thus, by
3.1, (P ⊗R −, P ∗ ⊗R −) is an adjoint pair of functors with

counit ε : P ⊗R P ∗ → R, p⊗ f 7→ f(p),

unit η : R→ P ∗ ⊗R P , 1 7→
∑

Λ p
∗
λ ⊗ pλ.

(1) P ∗ ⊗R P ⊗S − is a monad on SM (S-ring) and there is an isomorphism

P ∗ ⊗R P
'−→ EndR(P ), f ⊗ p 7→ [x 7→ f(x)p].

This induces a product m on P ∗ ⊗R P , for f, g ∈ P ∗, p, q ∈ P ,

m : (g ⊗ q)⊗ (f ⊗ p) 7→ g ⊗ f(q)p.

(2) P ⊗S P ∗ ⊗R − is a comonad on RM (R-coring) with coproduct

δ : P ⊗S P ∗ → P ⊗S P ∗ ⊗R P ⊗S P ∗, p⊗ f 7→
∑

Λ
p⊗ p∗λ ⊗ pλ ⊗ f.

For a commutative ringR, anyR-module P can be considered as (R,R)-bimodule
and the canonical isomorphism twP,P∗ : P ⊗R P ∗ → P ∗⊗R P allows to transfer the
comonad structure defined on P ⊗R P ∗ to P ∗ ⊗R P ' EndR(P ) (keeping the same
symbol).
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4.13. EndR(P ) as Frobenius algebra. Let P be a finitely generated and projective
module over a commutative ring R. Then EndR(P ) is a Frobenius R-algebra.

Proof. We refer to the notation from 4.12. The left hand diagram in 4.10 comes
out as (writing ⊗ for ⊗R)

P ∗ ⊗ P ⊗ P ∗ ⊗ P
I⊗δ //

m

��

P ∗ ⊗ P ⊗ P ∗ ⊗ P ⊗ P ∗ ⊗ P

m⊗I
��

P ∗ ⊗ P
δ // P ∗ ⊗ P ⊗ P ∗ ⊗ P

and this is commutative, since for g, f ∈ P ∗ and p, q ∈ P ,

(m⊗ I) · (I ⊗ δ)[g ⊗ q ⊗ f ⊗ p] =
∑

Λ g ⊗ f(q)pλ ⊗ p∗λ ⊗ p,
(δ ·m)[g ⊗ q ⊗ f ⊗ p] =

∑
Λ g ⊗ pλ ⊗ p∗λ ⊗ f(q)p,

and since f(q) ∈ R, the two expressions are equal.
Similarly one can see that the right hand diagram in 4.10 is commutative. �

Putting P = Rn in 4.13, for any n ∈ N, EndR(P ) is just the n × n-matrix ring
over R and we retrieve the (known) fact that finite matrix rings over commutative
rings are Frobenius algebras. In this case the counit ε : P ∗ ⊗R P → R is just the
trace of the matrix.

A further application of 4.12 for not necessarily commutative rings yields

4.14. Sweedler’s coring [14]. Let (A,m, 1A) be any ring and h : R → A a ring
homomorphism. Then the (A,R)-bimodule A is finitely generated and projective
as left A-module and A⊗R A becomes an A-coring with coproduct and counit

δ : A⊗R A → A⊗R A⊗R A, a⊗ b 7→ a⊗ 1A ⊗ b ,
ε = m : A⊗R A → A, a⊗ b 7→ ab ,

where we have identified A⊗A A ' A.

For more details on (Sweedler’s) corings the reader is referred to [6].

5. Tensor product of algebras and coalgebras

In this section R denotes again a commutative ring and hence we will have the
canonical twist map tw for R-modules (see Section 4).

5.1. Tensor product of algebras. Consider two R-algebras (A,mA, eA) and
(B,mB , eB). Given any R-linear map

τ : B ⊗R A→ A⊗R B,

the tensor product A⊗R B allows for a product

mAB : A⊗R B ⊗R A⊗R B
I⊗τ⊗I// A⊗R A⊗R B ⊗R B

mA⊗mB // A⊗R B.

Taking τ = twB,A, the resulting product is associative and A ⊗R B becomes an
R-algebra with unit eA ⊗ eB .

The question arises if there are other such linear maps τ making A ⊗R B an
R-algebra. This was intensively studied for algebras and led to various notions of
smash products. The reader is referred to [7] (and the references given there) for
investigations in this direction.
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Considering the related functors A⊗R− and B⊗R−, the lifting conditions from
2.1 are concerned with the diagram

BM
A⊗R− //

UB

��

BM

UB

��
RM

A⊗R− //
RM,

and the conditions on τ ⊗ − : B ⊗R A ⊗R − → A ⊗R B ⊗R − to be a monad
entwining (given in 2.2) are precisely the conditions on τ to provide A ⊗R B with
an R-algebra structure.

For a long time this was hardly realised by algebraists and the conditions needed
had to be rediscovered in the particular cases.

5.2. Tensor product of coalgebras. Consider two R-coalgebras (C, δC , ε) and
(D, δD, εD). Dual to the algebra case, to obtain a coproduct on the tensor product
C ⊗R D (smash coproduct, e.g. [7]), an R-linear map (in the opposite direction)

τ : C ⊗R D → D ⊗R C
is needed to define a coproduct

δCD : C ⊗R D
δC⊗δD// C ⊗R D ⊗R D ⊗R D

I⊗τ⊗I// C ⊗R D ⊗R C ⊗R D.

Again the twist map twC,D has the necessary properties to make C ⊗RD a coasso-
ciative R-coalgebra with counit εC ⊗ εD.

In functorial language, the problem is to find a comonad structure for the com-
position C ⊗R D ⊗R − of the comonads C ⊗R − and D ⊗R −. This defines the
comonad entwinings which were mentioned in a remark after 2.2.

5.3. Tensor product of algebras and coalgebras. While for algebras and
coalgebras it is clear which structures are to be expected from the corresponding
tensor products (see 5.1, 5.2), a new structure is needed to describe the product
of an algebra and a coalgebra. This was worked out by Breziński and Majid by
introducing entwining structures in the paper [5] appearing 1998, a notion which
turned out to be closely related to comonads (corings). In categorical language
this is described by lifting monads to comodule categories as outlined in 2.3 (mixed
entwinings) and this goes back to van Osdol’s paper [15] from 1971.

Consider an R-algebra (A,m, e) and an R-coalgebra (C, δ, ε). An R-linear map

λ : A⊗R C → C ⊗R A
is called a mixed entwining provided all the diagrams in 2.3 are commutative for
T = A ⊗R − and G = C ⊗R −. Again λ := twAC provides an example for such a
map.

If this holds, then λ leads to a left A-module structure on C ⊗R A,

A⊗R C ⊗R A
λ⊗I−→ C ⊗R A⊗R A

I⊗m−→ C ⊗R A,
and the coproduct and counit

δ : C ⊗R A
δ⊗I−→ C ⊗R C ⊗R A

'−→ C ⊗R A⊗A C ⊗R A, ε : C ⊗R A
ε⊗I−→ A,

induce a comonad structure on the endofunctor (A-coring)

C ⊗R A⊗A − : AM→ AM.
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The comodules for this comonad are also known as (C,A)λ-entwined modules (see
[6, Section 32]).

Similar to the case of R-algebras (see 4.9), the comodules for C ⊗R A ⊗A −
may also be seen as modules over some ring, which is obtained by endowing the
(A,A)-bimodule HomA(C ⊗R A,A) with a suitable ring structure (see [6, 32.9]).

5.4. Bialgebras and Hopf algebras. Let B = (B,m, e, δ, ε) be a quintuple where
B is an R-module, (B,m, e) an R-algebra, and (B, δ, ε) an R-coalgebra.

Following 2.4, B is called a bimonad provided ε : B → R is an algebra morphism,
e : R→ B is a coalgebra morphism, and there is a mixed entwining

λ : B ⊗R B → B ⊗R B,
that is, the diagrams in 2.3 are commutative for T = G = B ⊗R −, and λ yields
commutativity of the diagram in 2.4(iii).

As mentioned in 5.1 and 5.2, B ⊗R B allows for an algebra and a coalgebra
structure induced by the twist map tw, and in this case the compatibility condition
for product and coproduct usually is to require that m is an R-coalgebra morphism
(equivalently δ is an R-algebra morphism).

The two conditions are brought together in the diagram (writing ⊗ for ⊗R)

B ⊗B m //

I⊗δ
��

B
δ // B ⊗B

B ⊗B ⊗B
λ⊗B //

δ⊗I⊗I
��

B ⊗B ⊗B

I⊗m

OO

B ⊗B ⊗B ⊗B
I⊗tw⊗I // B ⊗B ⊗B ⊗B,

m⊗I⊗I

OO

where commutativity of the upper rectangle is the condition from 2.4(iii), while
commutativity of the outer diagram means that m is a coalgebra morphism (or δ
is an algebra morphism).

Thus the two compatibility conditions coincide if we choose a specific λ which
makes the bottom rectangle commutative,

λ : B ⊗R B
δ⊗IB−→ B ⊗R B ⊗R B

IB⊗tw−→ B ⊗R B ⊗R B
m⊗IB−→ B ⊗R B,

and it can be shown that this λ is a mixed entwining (see [11, Proposition 6.3]). Of
course, not every mixed entwining has to be of this form.

It follows from 5.3 that for a bialgebra B, a mixed entwining induces a comonad
B⊗RB⊗B− : BM→ BM (B-coring) and the comodules for this (entwined modules)
coincide with the Hopf modules for the bimonad B as defined in 2.5 (see [6, 33.1]).

B is a Hopf algebra if (and only if) the comparison functor

KB : RM→MB
B , X 7→ (B ⊗R X,m⊗ IX , δ ⊗ IX),

induces an equivalence. As pointed out in 2.5, KB is full and faithful and hence to
get an equivalence one has to find a (right) adjoint functor which is also full and

faithful. This is, for example, the case when the functor HomB
B(B,−) : MB

B → RM
is full and faithful. More characterisations of these conditions are given in [6, 15.5].

It follows from 2.5 that an R-module B is a Hopf algebra if and only if B ⊗R −,
or equivalently the adjoint functor HomR(B,−), is a Hopf monad. Thus for an
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infinite dimensional Hopf algebra B over a field k, the dual space Homk(B, k) need
not be a Hopf algebra but the (adjoint) functor Homk(B,−) is a Hopf monad on
the category of k-vector spaces.

We have seen how the tensor product of two (co-) algebras can be made to (co-)
algebras. Given three algebras A, B and C with mutual entwinings, that is A⊗RB,
A ⊗R C and B ⊗R C have algebra structures, the question arises if A ⊗R B ⊗R C
also allows for an algebra structure. To achieve this the entwinings involved have
to satisfy a kind of compatibility condition.

5.5. Yang-Baxter equation. Let A, B, C be R-modules with R-linear maps

ϕBC : B⊗RC → C⊗RB, ϕAB : A⊗RB → B⊗RA, ϕAC : A⊗RC → C⊗RA.
The triple (ϕBC , ϕAB , ϕAC) is said to satisfy the Yang-Baxter equation if it yields
commutativity of the diagram (writing ⊗ for ⊗R)

A⊗B ⊗ C

A⊗ϕBC

��

ϕAB⊗C // B ⊗A⊗ C
B⊗ϕAC // B ⊗ C ⊗A

ϕBC⊗A
��

A⊗ C ⊗B
ϕAC⊗B // C ⊗A⊗B

C⊗ϕAB // C ⊗B ⊗A.
It is well-known that the twist map tw satisfies the Yang-Baxter equations for any
R-modules A, B, C.

If A, B and C are R-algebras and the ϕ’s are algebra entwinings, then a canonical
R-algebra structure is induced on A⊗RB⊗RC if and only if the entwinings satisfy
the Yang-Baxter equation.

Similar conditions are needed to make the tensor product of three coalgebras
or bialgebras again a coalgebra or a bialgebra, respectively. They also have to be
satisfied if one requires the 3-fold (or n-fold) tensor product A ⊗R A ⊗R A of an
algebra (coalgebra, bialgebra) A to be of the same type again.

We mention that the conditions considered can also be formulated for tensor
products over non-commutative rings and the related functors. For more details
the reader is referred to [18].
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