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Abstract. Algebras A and coalgebras C over a commutative ring R are defined
by properties of the (endo)functors A ⊗R − and C ⊗R − on the category of R-modules
R�. Generalising these notions, monads and comonads were introduced on arbitrary
categories, and it turned out that some of their basic relations do not depend on the
specific properties of the tensor product. In particular, the adjoint of any comonad
is a monad (and vice versa), and hence, for any coalgebra C, HomR(C,−), the right
adjoint of C ⊗R −, is a monad on R�. The modules for the monad HomR(C,−) were
called contramodules by Eilenberg–Moore and the purpose of this talk is to outline
the related constructions and explain the relationship between C-comodules and C-
contramodules. The results presented grew out from cooperation with G. Böhm, T.
Brzeziński and B. Mesablishvili.
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1. Preliminaries. In this section we recall some formalisms for module categories
and their transfer to arbitrary categories. Throughout R will denote a commutative
ring with unit and R� the category of (left) R-modules. We recall (once again) the basic
definitions explicitly since they provide the prototype of the constructions to follow.

For any R-modules N, X , N ⊗R X is again an R-module and thus we have a functor
(endofunctor)

N ⊗R − : R� → R�, X �→ N ⊗R X,

f : X → Y �→ IN ⊗ f : N ⊗R X → N ⊗R Y.

1.1. Algebras. An R-module A is called an R-algebra provided there is an
associative R-bilinear form m̃ : A × A → A, (a, b) �→ ab, and there exists a unit
element 1A. Forming the tensor product, the map m̃ can be replaced by an R-
linear map m : A ⊗R A → A, a ⊗ b �→ ab, and the unit leads to an R-linear map
e : R → A, r �→ r · 1A. Thus, an R-algebra A is characterised by two morphisms in
R�—multiplication and unit

m : A ⊗R A → A, e : R → A,

and associativity and unitality are expressed by the commutative diagrams

A ⊗R A ⊗R A
m⊗I ��

I⊗m
��

A ⊗R A

m
��

A ⊗R A m �� A,

A ⊗R R
I⊗e ��

=
������������ A ⊗R A

m

��

R ⊗R A
e⊗I��

=
�������������

A.
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1.2. Category of A-modules. Let (A, m, e) be an R-algebra. An R-module M is said
to be an A-module if there is an R-linear map

ρM : A ⊗R M → M, a ⊗ m �→ am,

inducing commutative diagrams

A ⊗R A ⊗R M
m⊗I ��

I⊗ρM

��

A ⊗R M

ρM

��
A ⊗R M

ρM �� M,

R ⊗R M
e⊗I ��

�
������������� A ⊗R M

ρM

��
M.

A-module morphisms f : M → N are R-linear maps inducing commutative
diagrams

A ⊗R M
I⊗f ��

ρM

��

A ⊗R N

ρN

��
M

f �� N.

The category of left A-modules is denoted by A�. For any R-module X , A ⊗R X
is an A-module with multiplication induced by the algebra product m. This yields a
functor (denoted by the same symbol as the endofunctor)

A ⊗R − : R� → A�, X �→ (A ⊗R X, m ⊗ IX ),

which is left adjoint to the forgetful functor UA : A� → R�, that is, there is a functorial
isomorphism

HomA(A ⊗R M, X) → HomR(M, X), f �→ f (1A ⊗ −).

1.3. Coalgebras. An R-module C is called an R-coalgebra provided there are R-
linear maps—comultiplication and counit

� : C → C ⊗R C, ε : C → R,

with coassociativity and counitality conditions expressed by inverting the arrows in
the diagrams in 1.1.

1.4. Category of comodules. Let (C,�, ε) be an R-coalgebra. A left C-comodule is
an R-module M with an R-linear map

�M : M → C ⊗R M,

with compatibility conditions obtained from those in 1.2 by reversing arrows.
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C-comodule morphisms f : M → N are R-linear maps inducing commutative
diagrams

M
f ��

�M

��

N

�N

��
C ⊗R M

I⊗f �� C ⊗R N.

The category of left C-comodules is denoted by C�. For any R-module X , C ⊗R X
is a left C-comodule with coaction induced by �. This yields a functor

C ⊗R − : R� → C�, X �→ (C ⊗R X,�X ),

which is right adjoint to the forgetful functor UC : C� → R�, that is, there is an
isomorphism

HomC(M, C ⊗R X) → HomR(M, X), f �→ (ε ⊗ IX ) ◦ f.

Transferring the construction just revisited to arbitrary categories leads to the
following notions. By � we denote any category.

First we express the properties of an algebra in functor terms. Note that A ⊗R A
may be seen as composition of the functor A ⊗R − with A ⊗R −.

1.5. Monad on �. An endofunctor F : � → � is called a monad on � provided
there are natural transformations

m : FF → F , e : I� → F ,

satisfying associativity and unitality conditions (as for algebras, see 1.1).

1.6. F-modules. Let (F, m, e) be a monad on �. An object A in � is an F-module
provided there is a morphism

�A : F(A) → A in �,

satisfying associativity and unitality conditions (as for A-modules, see 1.2).
An F-module morphism f : A → B between F-modules is a morphism in � subject

to commutativity of the diagram

F(A)
F(f ) ��

�A

��

F(B)

�B

��
A

f �� B.

The category of F-modules, also called the Eilenberg–Moore category of F , is
denoted by �F . For any object X in �, F(X) is an F-module with multiplication
induced by m. This leads to a functor

φF : � → �F , X �→ (F(X), mX ),
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which is left adjoint to the forgetful functor UF : �F → �, by the functorial
isomorphism, for X ∈ �, N ∈ �F ,

MorF (F(X), N) → Mor�(X, N), h �→ h ◦ eX .

Similar to algebras, the notion of a coalgebra also transfers to general categories.
Again � denotes any category.

1.7. Comonad on �. An endofunctor G : � → � is called a comonad if there are
natural transformations

δ : G → GG, ε : G → I�,

satisfying coassociativity and counitality conditions (as in 1.3).

1.8. G-comodules. Let (G, δ, ε) be a comonad on �. An object A in � is a G-
comodule provided there exists a morphism

�A : A → G(A) in �,

subject to coassociativity and counitality conditions (as in 1.4).
G-comodule morphisms g : A → B between G-comodules are morphisms in �

inducing commutative diagrams

A
g ��

�A

��

B

�B

��
G(A)

G(g) �� G(B).

The category of G-comodules, also called the Eilenberg–Moore category of G, is
denoted by �G. For any X in �, G(X) is a G-comodule with coaction induced by δ.
This yields a functor

φG : � → �G, X �→ (G(X), δX ),

which is right adjoint to the forgetful functor UG : �G → � by the functorial
isomorphism

MorG(M, G(X)) → Mor�(M, X), f �→ εX ◦ f.

Note that for modules of a monad (1.6) as well as for comodules of a comonad
(1.7), we have obtained the same basic relations as for A-modules (1.2) and for C-
comodules (1.4), respectively. While the latter are derived from the tensor functor
(hence a functor with specific properties), we did not impose any condition on the
monads or comonads. Bringing these abstract notions back to module categories, the
question arises if there are other endofunctors on R� which allow for a monad or
comonad structure. Some answers to this will be given in the next section.

2. Adjoint endofunctors. We first consider the general case. So let � be any
category. Recall that an endofunctor F : � → � is left adjoint to an endofunctor
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G : � → � provided there is a functorial isomorphism

ϕX,Y : Mor�(F(X), Y ) �� Mor�(X, G(Y )).

2.1. Adjoints of monads. Let (F, G) be an adjoint pair of endofunctors on �.
Assume F to be a monad with m : FF → F , e : I� → F . Then we obtain the diagram

Mor�(F(X), Y )
ϕX,Y ��

m∗
Y

��

Mor�(X, G(Y ))

?
��

Mor�(FF(X), Y )
ϕF(X),Y �� Mor�(X, GG(Y )),

where m∗ = Mor�(m,−) and the question mark can be replaced by the natural
transformation

ϕF(X),Y ◦ m∗
Y ◦ ϕ−1

X,Y .

Together with a corresponding diagram for the unit we conclude by the Yoneda lemma
that there is a comonad structure on G:

δ : G → GG, ε : G → I�.

It may come as a surprise that, in the situation considered in 2.1, the category of
F-modules is isomorphic to the category of G-comodules.

2.2. Modules and comodules for an adjoint pair. Let (F, G) be an adjoint pair
of functors with unit η : I� → GF and counit ε : FG → I�. Let F be a monad
and consider G with the induced comonad structure. Then the (Eilenberg–Moore)
categories �F and �G are isomorphic to each other.

Proof. The isomorphism is given by a functor leaving objects and morphisms
unchanged and turning F-module structure maps to G-comodule structure maps and
vice versa. An F-module �A : F(A) → A induces a morphism

A
ηA �� GF(A)

G�A �� G(A),

making A a G-comodule. Similarly, a comodule �A : A → G(A) induces

F(A)
F�A

�� FG(A)
εA �� A,

defining an F-module structure on A.

It remains to show that module morphisms are also comodule morphisms. An
F-module morphism f : A′ → A yields a commutative diagram

F(A′)
F(f ) ��

�A′

��

F(A)

�A

��
A′ f �� A ,
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from which we obtain the commutative diagram

A′ f ��

ηA′

��

A

ηA
��

GF(A′)
GF(f ) ��

G�A′
��

GF(A)

G�A

��
G(A′)

G(f ) �� G(A).

Commutativity of the outer rectangle shows that f is also a G-comodule morphism.
Similarly one proves that G-comodule morphisms are also F-module morphisms. �

2.3. Adjoints of comonads. Let (F, G) be an adjoint pair of endofunctors on �.
Now assume F to be a comonad. Then—with similar arguments as in 2.1—one can
see that G has a monad structure.

Related to such a pair we have the categories �F and �G. Unlike the monad–
comonad case considered in 2.2, here we do not get an equivalence between �F and �G.
There is, however, an equivalence between certain subcategories (Kleisli subcategories,
see [1, Section 2]). We will come back to this problem for R� (in 3.9).

Having the general setting developed above, one may ask about the meaning of
this in the category of R-modules. For this, recall the following.

2.4. Adjoint endofunctors on R�. For any R-module M, the endofunctors M ⊗R −
and HomR(M,−) form an adjoint pair by the isomorphism

ψM
X,Y : HomR(M ⊗R X, Y ) → HomR(X, HomR(M, Y )), γ �→ [x �→ γ (− ⊗ x)],

with unit ν : I → HomR(M, M ⊗R −) and counit ε : M ⊗R Hom(M,−) → I .

First we apply 2.1 and 2.2 to algebras.

PROPOSITION 2.5. For an R-module A the following are equivalent:

(a) A is an R-algebra.
(b) A ⊗R − : R� → R� is a monad.
(c) HomR(A,−) : R� → R� is a comonad.

In this case the categories A� = �A⊗R− and �Hom(A,−) are isomorphic.

Proof. The assertions are special cases of 2.1 and 2.2. The algebra structure
on A, m : A ⊗R A → A and e : R → A correspond to the comonad structure on
HomR(A,−):

HomR(A,−)
m∗−→ HomR(A ⊗R A,−)

ψA
A,−−→ HomR(A, HomR(A,−)),

HomR(A,−)
e∗−→ HomR(R,−),

where m∗ = HomR(m,−) and e∗ = HomR(e,−).
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The A-module structure ρN : A ⊗R N → N induces a HomR(A,−)-comodule
structure on N:

ρ̂N : N
νN �� HomR(A, A ⊗R N)

Hom(A,ρN ) �� HomR(A, N).

On the other hand, a comodule structure ρN : N → HomR(A, N) induces an A-module
structure on N:

ρ̃N : A ⊗R N
I⊗ρN

�� A ⊗R HomR(A, N)
εN �� N.

The equivalence between the module and comodule categories is given by

�A⊗R− → �Hom(A,−), (M, ρN) �→ (M, ρ̂N),

keeping the morphisms unchanged. �
2.6. Value at R. Since R is a generator in R� and A ⊗R − preserves direct sums

and epimorphisms, the functor A ⊗R − : R� → R� is fully determined by the value at
R, that is, by A ⊗R R � A. Similarly, a natural transformation ϕ : A ⊗R − → B ⊗R −
between tensor functors is of the form ϕR ⊗R −, where ϕR : A → B is an R-linear map.

In general, HomR(A,−) is not determined by A∗ = HomR(A, R), unless it
preserves direct sums and epimorphisms, that is, unless A is a finitely generated and
projective R-module. However, HomR(A,−) is determined by HomR(A, Q) for any
cogenerator Q ∈ R� since it is left exact and preserves direct products. For a natural
transformation ψ : HomR(A,−) → HomR(B,−) between Hom functors, it follows by
the Yoneda lemma that ψ = HomR(ψR,−), where ψR : B → A is an R-linear map.

3. Comodules and contramodules. In this section, let (C,�, ε) be an R-coalgebra
(see 1.3).

The category C� of left C-comodules is well investigated. Besides the basic
facts mentioned in 1.4, there are more relations which partly result from special
properties of the functor C ⊗R − as being right exact and preserving coproducts
(see [2]).

3.1. The category C�.

(1) C� is an additive category with coproducts and cokernels.
(2) For any generator P ∈ R�, C ⊗R P is a subgenerator in C�, in particular, C

is a subgenerator in C�.
(3) For any monomorphism f : X → Y in R�, f ⊗R IC : C ⊗R X → C ⊗R Y is a

monomorphism in C�.
(4) For any family Xλ of R-modules, C ⊗R

∏
� Xλ is the product of the C-

comodules C ⊗R Xλ.

The R-module structure of C has a strong influence on the properties of C�

[2, 3.14].

PROPOSITION 3.2. For an R-coalgebra C, the following are equivalent:

(a) C is flat as an R-module.
(b) Every monomorphism in C� is injective.
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(c) The forgetful functor C� → R� respects monomorphisms.

In this case, C� is an abelian category and

(i) for any cogenerator Q ∈ R�, C ⊗R Q is a cogenerator in C�;
(ii) for any injective X ∈ R�, C ⊗R X is injective in C�.

In view of the adjointness of the endofunctors C ⊗R − and HomR(C,−), the latter
has a monad structure by 2.3.

PROPOSITION 3.3. For an R-module C, the following are equivalent:

(a) C is an R-coalgebra.
(b) C ⊗R − : R� → R� is a comonad.
(c) HomR(C,−) : R� → R� is a monad.

Hereby the coalgebra structure maps � : C → C ⊗R C, ε : C → R, correspond to
the monad structure

HomR(C, HomR(C,−))
�−→ HomR(C ⊗R C,−)

�∗−→ HomR(C,−),

HomR(R,−)
ε∗−→ HomR(C,−),

where �∗ = HomR(�,−), ε∗ = HomR(ε,−), and the isomorphism is from 2.4.
Henceforth we will write [C,−] = HomR(C,−) for short. By applying 1.6 we have

the definition of [C,−]-modules and the category �[C,−] with the (free) functor

φ[C,−] : R� → �[C,−]

being left adjoint to the forgetful functor U[C,−] : �[C,−] → R�. Following [4], the
[C,−]-modules are also called C-contramodules.

By left exactness of the functor [C,−] we obtain (with similar arguments as in the
comodule case) special properties of [C,−]-modules.

3.4. The category �[C,−]. Let C be an R-coalgebra.

(1) �[C,−] is an additive category with products and kernels.
(2) For any M ∈ �[C,−], Hom[C,−]([C, R], M) � M.
(3) For any epimorphism h : X → Y in R�, [C, h] : [C, X ] → [C, Y ] is an

epimorphism (not necessarily surjective) in �[C,−].
(4) For any family Xλ of R-modules, [C,

⊕
� Xλ] is the coproduct of the [C,−]-

modules [C, Xλ].

For C-comodules, it is not always clear if the kernel of a C-comodule morphism is
a subcomodule. Here we need some condition to make the cokernel of a [C,−]-module
morphism again a [C,−]-module.

PROPOSITION 3.5. Let C be an R-algebra. If CR is projective, then for any [C,−]-
submodule K ⊂ M, the R-module M/K is a [C,−]-module.
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Proof. By assumption we have the commutative diagram with exact rows

0 �� [C, K ]

��

�� [C, M]

��

�� [C, M/K ] �� 0

0 �� K �� M �� M/K �� 0,

which can be completed commutatively by an R-morphism [C, M/K ] → M/K . It is
routine to check that this provides M/K with a [C,−]-module structure. �

As observed above, in �[C,−] epimorphisms need not be surjective maps. This is
the case under the following conditions.

PROPOSITION 3.6. For an R-coalgebra C, the following are equivalent:

(a) CR is projective.
(b) Every epimorphism in �[C,−] is surjective.
(c) The forgetful functor �[C,−] → �R respects epimorphisms.

In this case, �[C,−] is an abelian category and

(i) for any generator P ∈ R�, [C, P] is a generator in �[C,−];
(ii) for any projective Y ∈ R�, [C, Y ] is projective in �[C,−].

Proof. (b)⇒(a) For any epimorphism f : K → L in R�, Hom(C, f ) :
HomR(C, K) → HomR(C, K) is an epimorphism in �[C,−] and hence surjective by
(b). This means that CR is projective.

(c)⇒(a) is shown with a similar argument.
(a)⇒(c) Assume CR to be projective and consider an epimorphism f : M → N in

�[C,−]. Then the cokernel h : N → N/f (M) is a morphims in �[C,−] and 0f = hf = 0.
Since f is an epimorphism, this implies N = f (M). �

Recall that for any R-coalgebra C, the dual space C∗ = HomR(C, R) has a
ring structure by the convolution product for f, g ∈ C∗, f ∗ g = (f ⊗ g) ◦ �. The
relation between C-comodules and modules over the dual ring of C is well
studied (e.g. [2, Section 19]). Now it follows from the general observations in
2.1 and 2.3 that a coalgebra C gives rise to two comonads and two monads
on R�:

C ⊗R − and HomR(C∗,−), C∗ ⊗R − and HomR(C,−).

Relations between these are given by morphisms which are well known in module
theory—but usually not viewed under this aspect.

3.7. The comonads C ⊗R − and [C∗,−]. The comonad morphism

α : C ⊗R − → HomR(C∗,−), c ⊗ − �→ [f �→ f (c)−]

yields a faithful functor

Gα : C� −→ �[C∗,−] � �C∗ ,

N
�N

−→ C ⊗R N �−→ N
�N

−→ C ⊗R N
αN−→ HomR(C∗, N),
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and the following are equivalent:

(a) αN is injective for each N ∈ R�.
(b) Gα is a full functor.
(c) C is a locally projective left R-module.

If these conditions are satisfied, C� is equal to σ [CC∗ ], the full subcategory of �C∗

subgenerated by C.

Similar to 3.7, C-contramodules can be related to C∗-modules.

3.8. The monads [C,−] and − ⊗R C∗. The monad morphism

β : − ⊗R C∗ → HomR(C,−), − ⊗ f �→ [c �→ f (c)−]

yields a faithful functor

Fβ : �[C,−] −→ �C∗ ,

HomR(C, M)
�M−→ M �−→ M ⊗R C∗ βM−→ HomR(C, M)

�M−→ M,

and the following are equivalent:

(a) β is surjective for all M ∈ R�.
(b) Fβ is an isomorphism.
(c) C is a finitely generated and projective R-module.

In general, C is not a [C,−]-module and [C, R] is not a C-comodule. In fact,
[C, R] ∈ C� holds provided C is finitely generated and projective as an R-module.

We now consider the relationship between the categories of C-comodules and
C-contramodules. As indicated in 2.3, the two categories need not be equivalent. This
becomes evident from their properties listed in 3.4 and 3.1, respectively. However, they
are related by an adjoint pair of functors.

3.9. Correspondence of categories. Let C be an R-coalgebra. Then

HomC(C,−) : C� → �[C,−], M �→ HomC(C, M)

is a functor which has a left adjoint given by the contratensor product defined for
(N, ρ) ∈ C� and (M, α) ∈ �[C,−] as the coequaliser

HomR(C, M) ⊗R N
h ��

α⊗RIN

�� M ⊗R N �� M ⊗[C,−] N,

for the map h : f ⊗R n �→ (f ⊗R IN) ◦ ρ(n).
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This follows by Dubuc’s adjoint triangle theorem applied to the diagram

C�
HomC (C,−) ��

HomC (C,−)

���
��

��
��

��
��

��
��

��
�[C,−]

U[C,−]

		��
��

��
��

��
��

��
��

�

�R

C⊗R−



�����������������

φ[C,−]

�������������������

by the existence of the functor in the upper line and the fact that C� has coequalisers
(see [1, Section 4], [3, Appendix] and [6]).

3.10. Equivalence of subcategories. Take any X ∈ R�. Since C ⊗R − is right adjoint
to the forgetful functor, HomC(C,−) takes

C ⊗R X �→ HomC(C, C ⊗R X) � HomR(C, X).

On the other hand, the functor C ⊗[C,−] − transfers

HomR(C, X) �→ C ⊗[C,−] HomR(C, X) � C ⊗R X.

This shows that the full subcategory of C�, whose objects are of the form C ⊗R X ,
is equivalent to the full subcategory of �[C,−], with objects HomR(C, X), X ∈ R�

(Kleisli subcategories, e.g. [1]).

Finally we apply the formalism developed to bialgebras and bimodules.

3.11. Bialgebras. An R-module B is called an R-bialgebra if it is

(i) an algebra (B, m, e) and a coalgebra (B, δ, ε),
(ii) the structures are compatible.

Then we know from 2.1 and 2.3 that HomR(B,−) is a monad as well as a comonad
and certain compatibility conditions hold.

Thus, a bimonad may be defined by properties of two monads B ⊗R − and
HomR(B,−) or else by the same two functors endowed with comonad structures.

3.12. Bimodules. For an R-bialgebra B, (mixed) left B-bimodules are defined as
R-modules equipped with a left B-module and a left B-comodule structure subject to
some compatibility conditions. With morphisms respecting the module as well as the
comodule structure, they form a category which we denote by B

B�. There is a functor

B ⊗R − : R� → B
B�, M �→ (B ⊗R M, m ⊗ I, δ ⊗ I),

and B is called a Hopf algebra provided this is an equivalence of categories. The latter
can be characterised by the existence of an antipode.

Now, considering the monad and comonad [B,−] = Hom(B,−), we can also
define bimodules leading to the category M[B,−]

[B,−] and the functor

HomR(B,−) : R� → �
[B,−]
[B,−], M �→ (HomR(B, M), m∗, δ∗),

which is an equivalence if and only if B is a Hopf algebra.
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These relationships are explained in more detail in [1]. It is shown in [5] and [7]
how they can be transferred to bimonads on arbitrary categories.
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