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Abstract

Galois comodules over a coring can be characterised by properties of the relative
injective comodules. They motivated the definition of Galois functors over some comonad
(or monad) on any category and in the first section of the present paper we investigate
the role of the relative injectives (projectives) in this context.

Then we generalise the notion of corings (derived from an entwining of an algebra and
a coalgebra) to the entwining of a monad and a comonad. Hereby a key role is played
by the notion of a grouplike natural transformation g : I — G generalising the grouplike
elements in corings. We apply the evolving theory to Hopf monads on arbitrary categories,
and to opmonoidal monads with antipode on autonomous monoidal categories (named
Hopf monads by Bruguiéres and Virelizier) which can be understood as an entwining of
two related functors.

As well-known, for any set G the product G' x — defines an endofunctor on the category
of sets and this is a Hopf monad if and only if G allows for a group structure. In the
final section the elements of this case are generalised to arbitrary categories with finite
products leading to Galois objects in the sense of Chase and Sweedler.

Key Words: Corings, (Galois) comodules, Galois functors, relative injectives (projec-
tives), equivalence of categories.
AMS classification: 18A40, 16T15.

Contents

1 Galois comodule and module functors

2 Entwinings

3 Grouplike morphisms

4 Bimonads

5 Opmonoidal monads

6 Categories with finite products and Galois objects
Introduction

11

15

23

25

30

An entwining of an algebra A and a coalgebra C' over a commutative ring R is given by an
R-linear map A : A®gr C — C ®g A satisfying certain conditions (Brzeziriski and Majid in
The corresponding entwined modules are defined as R-modules M which allow for an
A-module structure op; : A®g M — M and a C-comodule structure o™ : M — C ®r M with
a compatibility condition expressed by the commutativity of the diagram (e.g. [9, 32.4])

[8])-

oM o™

ARr M M CM
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An entwining structure (A, C, A) makes C := C®p A to an A-coring and the entwined modules
are just the left comodules for the coring C.

In [27], a left C-comodule P with S = End®(P). is called a Galois comodule provided the
natural transformation Hom4 (P, —) ®s P — C ® 4 — is an isomorphism. Such modules can be
characterised by properties of the (C, A)-injective comodules [27, 4.1].

If A itself is a C-comodule, that is, it allows for a grouplike element, then C is called a
Galois coring provided A is a Galois comodule.

As a special case, if an R-module B has entwined algebra and coalgebra structures, then
B ®p B is a B-coring. In this situation, B is a B ® g B-Galois comodule, that is, B ® B is
a Galois coring, if and only if B is a Hopf algebra over R.

Since the tensor product is fundamental for these notions, generalisations to monoidal
categories were investigated, e.g. in McCrudden [17], Bruguieéres, and Virelizier [7], Loday
[16], Mesablishvili [18], and others.

In this paper we are concerned with the extension of these formalisms to endofunctors on
arbitrary categories. The key to this is the following observation. The R-algebra A induces a
monad A®pg —, and the R-coalgebra C yields a comonad C'®r — on the (monoidal) category of
R-modules. Thus the entwining (A, C, \) becomes a special case of the entwining of a monad
with a comonad on any category which is known as mized distributive law from early papers
of Barr [1], Beck [2], van Osdol [26], and others (see [28] for more references). The theory of
the related entwined modules is well understood in this context.

Yet, the additional constructions and notions for (A, C, \) mentioned above are only partly
transferred to monads and comonads on arbitrary categories, e.g. in Gémez-Torrecillas [14],
Bohm and Menini [5], Bohm, Brzezifiski and Wisbauer [4], and [21]. The purpose of this
article is to continue these investigations.

A basic notion for this approach is the following (e.g. [14], [21]). Given a comonad
G = (G,4,¢) on a category A, a functor F' : B — A is called a G-comodule if there is a
natural transformation & : F — GF making F a G-comodule in an obvious sense. Such a
functor is said to be G-Galois provided F' has a right adjoint R : A — B, and the induced
comonad morphism FFR — G is an isomorphism (Definition 1.3). In Section 1 we continue
the investigation of these functors, in particular of their behaviour towards relative injective
modules. Dually, given a monad T = (T,m,e) on A, a functor R : B — A is said to be
a T-module if there is a natural transformation o : TR — R making R a T-module in an
obvious way. Such a functor is called T-Galois if the induced monad morphism 7" — RF,
where F : A — B is a left adjoint to R, is an isomorphism (Definition 1.16). These functors
show a special behaviour toward relative projectives and this is outlined in the last part of
Section 1.

Section 2 is concerned with G-comodule and T-module functors considered in the context
of mixed distributive laws A : TG — GT'. In particular, the relevance of the Galois property
for making the comparison functor K : A — (AG)T an equivalence is of interest.

As mentioned before, in an entwining structure (A4, C, \), the grouplike elements allow for
a C ®p A-comodule structure on A. In Section 3 we introduce, for a comonad (G, d,e) on
A, grouplike morphisms g : I — G requiring suitable properties. For a monad F on A with

a mixed distributive law A : FG — GF, the grouplike element g induces two G-comodule

structures on the functor F, namely gF : F — GF and g : F AoFyg GF. The equaliser

F9 22, F of these two structure maps can be seen as monad morphism. Properties of the
resulting functors are investigated and eventually conditions are given to obtain an equivalence
between A pg and the category (Ar)“ (see 3.14). This generalises the characterisation of Galois
corings in module categories (e.g. [9, 28.18]).

In Section 4, the preceding results are applied to the case of an endofunctor H, which is
a monad (H,m,e) as well as a comonad (H,d,e) subject to some compatibility conditions.
Such functors are called bimonads in [21]. Under mild conditions on the base category A, it
follows that H is a Hopf monad (has an antipode) if and only if (H,m,e) is an (H, d, £)-Galois
comodule or - equivalently - (H,4d,¢) is an (H, m, e)-Galois module.

In Section 5 we consider opmonoidal monads T = (T, m,e) on a strict monoidal category



(V,®,1) (see [17]), called bimonads in [7]. Hereby T'(I) has the structure of a coalgebra in V,
and, as pointed out in [21, 2.2], their theory can be understood as an entwining between the
monad T and the comonad — ® T'(I) on V. Thus our theory applies and results from [7] are
reconsidered from this point of view. This leads to an improvement of [7, Theorem 4.6] which
may be seen as an extended version of the Fundamental Theorem of Hopf algebras for right
autonomous strict monoidal categories.

In the final section we generalise known properties of the endofunctors G x — on the
category of sets, G any set, to categories with finite products. This relates our notions with
Galois objects in the sense of Chase and Sweedler [11] (in the category opposite to commutative
algebras) and we obtain a more general form of their Theorem 12.5 by replacing the condition
on the Hopf algebra to be finitely generated and projective over the base ring by flatness
without finiteness condition.

1 Galois comodule and module functors

Let A and B denote any categories. By I,, Iy or just by I we denote the identity morphism
of an object a € A, respectively the identity functor of a category A.

Recall (e.g. from [13]) that a monad T on A is a triple (T, m,e) where T : A — A is a
functor with natural transformations m : TT — T, e : I — T satisfying associativity and
unitality conditions. A T-module is an object a € A with a morphism h, : T'(a) — a subject
to associativity and unitality conditions. The (Eilenberg-Moore) category of T-modules is
denoted by Ar and there is a free functor ¢ : A — A, a— (T'(a), m,) which is left adjoint
to the forgetful functor Ur : A — A.

Dually, a comonad G on A is a triple (G, d,e) where G : A — A is a functor with natural
transformations § : G — GG, € : G — I, and G-comodules are objects a € A with morphisms
pa : @ — G(a). Both notions are subject to coassociativity and counitality conditions. The
(Eilenberg-Moore) category of G-comodules is denoted by A® and there is a cofree functor
¢% : A — A% a+— (G(a),d,) which is right adjoint to the forgetful functor U% : A® — A.

For convenience we recall some notions from [21, Section 3].

1.1. G-comodule functors. Given a comonad G = (G,d,¢) on A, a functor F : B — A
is a left G-comodule if there exists a natural transformation §: F — GF with commutative
diagrams

F—2sqr F—2ar (1.1)
\ leF Bl iéF
F, GFWGGF

Obviously (G, d) and (GG, 6G) both are left G-comodules. B
A G-comodule structure on F' : B — A is equivalent to the existence of a functor F': B —
A% (dual to [12, Proposition II.1.1]) leading to a commutative diagram

B — > AG

A.

Indeed, if F is such a functor, then F'(b) = (F(b), 3) for some morphism 3, : F\(b) — GF(b)
and the collection {3y, b € B} constitutes a natural transformation 8 : F — GF making F a
G-comodule. Conversely, if (F,3: F — GF) is a G-module, then F : B — A% is defined by
F(b) = (F(b), Bp)-



If a G-comodule (F,3) admits a right adjoint R : A — B, with counit o : FR — I, then
the composite

t=:FR - gpr %7

is a comonad morphism from the comonad generated by the adjunction F' 4 R to the comonad

G.

1.2 Proposition. ([18, Theorem 4.4]) The functor F is an equivalence of categories if and
only if the functor F' is comonadic and t% is an isomorphism of comonads.

1.3. Definition. (|21, Definition 3.5]) A left G-comodule F : B — A with a right adjoint
R : A — B is said to be G-Galois if the corresponding morphism ¢z : 'R — G of comonads
on A is an isomorphism.

Thus, F is an equivalence if and only if I is G-Galois and comonadic.

1.4. Right adjoint for F. If the category B has equalisers of coreflexive pairs, the functor
F has a right adjoint.

Proof. This can be described as follows (see [12]): With the composite

R Rt+
v: R—~> RFR —=> RG,

a right adjoint to F is the equaliser (R, €) of the diagram

RUSnC

RU% RGUY = RUC¢CUC,

yUC

with @ : I — ¢CUC the unit of UY 4 ¢C.
An easy inspection shows that for any (a,6,) € A%, the (a,6,)-component of the above
diagram is
R(0a)

R(a) RG(a).

Ya

Now, for any a € A, (R(F))(a) can be seen as the equaliser

(B(F)(a) " RF() == RGF(a).

Thus, writing P for the monad on A generated by the adjunction F - R, the diagram

€ R
P——RF :F>> RGF
Y

is an equaliser diagram. O

In view of the characterisation of Galois functors we have a closer look at some related
classes of relative injective objects.
Let F : B — A be any functor. Recall (from [25]) that an object b € B is said to be
F-injective if for any diagram in B,
I

b1 H‘bg

g E
l 2 h
ya

b

with F(f) a split monomorphism in A, there exists a morphism h : b — b such that hf = g.
We write Inj(F,B) for the full subcategory of B with objects all F-injectives.
The following result from [25] will be needed.



1.5 Proposition. Let n,e : F 4 R : A — B be an adjunction. For any object b € B, the
following assertions are equivalent:

(a) b is F-injective;
(b) b is a coretract for some R(a), with a € A;
(c) the b-component ny, : b — RF(b) of n is a split monomorphism.

1.6 Remark. For any a € A, R(eq) - r(a) = I by one of the triangular identities for the
adjunction F' 4 R. Thus, R(a) € Inj(F,B) for all a € A. Moreover, since the composite of
coretracts is again a coretract, it follows from (b) that Inj(F,B) is closed under coretracts.

1.7. Functor between injectives. Let F' : B — A be a G-module with a right adjoint
R:A — Bandunitn: I — RF. Write G’ for the comonad on A generated by the adjunction
F 4 R and consider the comparison functor K¢ : B — AC. If b € B is F-injective, then
Kgi(b) = (F(b), F(m)) is Ugs-injective, since by the fact that n is a split monomorphism in
B, (nc')yer vy = F(mp) is a split monomorphism in A%’ Thus the functor K¢ : B — Ag
yields a functor

Inj(K¢) : Inj(F, B) — Inj(US", AS").

When B has equalisers, this functor is an equivalence of categories (see [25]).
We shall henceforth assume that B has equalisers.
1.8 Proposition. With the data given in 1.7, the functor R : A® — B restricts to a functor
R :Inj(U%, A%) — Inj(F,B).

Proof. Let (a,0,) be an arbitrary object of Inj(U%, A%). Then, by Proposition 1.5, there
exists an object ag € A such that (a,6,) is a coretraction of ¢%(ag) = (G(ao), 4,) in A%, i.e.,
there exist morphisms

f:(a,0a) = (Glao), da,) and g : (G(ao), ay) — (a,0a)

in A with gf = I. Since f and g are morphisms in A%, the diagram

(6G )ao

G(a()) E— GG( 0 )

a
f“g G(f) lG(g)

commutes. By naturality of v (see 1.4), the diagram

VG(ag)

RG(agp) RGG(ayp)
R(f) lR(f}) NRG
R(a) RG(a)

also commutes. Consider now the following commutative diagram

YG(ag)
R(ap) —=°> RG(ao) —°> RGG (ao) (1.2)
A 6G)a0
R(f) || R(9) RG(f) || RG(g)
E(a,' R(a) ————= RG(a



It is not hard to see that the top row of this diagram is a (split) equaliser (see [14]), and since
the bottom row is an equaliser by the very definition of €, it follows from the commutativity
of the diagram that R(a,,) is a coretract of R(ag), and thus is an object of Inj(F,B) (see

Remark 1.6). It means that the functor R : A® — B can be restricted to a functor R
Inj(U%, AY) — Inj(F,B). O

1.9 Proposition. With the data given in 1.7, suppose that for any b € B, (tz)p@) is an
isomorphism. Then the functor F : B — A® can be restricted to a functor

F': Inj(F,B) — Inj(U%, AS).
Proof. Let ¢’ denote the comultiplication in the comonad G’ (see 1.7). Recall from [18]
that F' = A;_ - Kg/, where A;_ is the functor A% — A% induced by the comond morphism
t7: G — G. Then for any b € B,

F(RF(b)) = A (Ka/(UF(b))) = Ay (FRF(b), Figp)
= At (G'F(b), 05 )) = (G'F(b), (tp)ar p(v) - Opn))-

Consider now the diagram

(G0

G'F(b) Gre)
6%(b>i "
G'G'F(b) S
GG'F(b) Ty GGF(b),

in which the triangle commutes by the definition of the composite (t7)p).(t7)F@), while
the diagram (1) commutes since t is a morphism of comonads. The commutativity of
the outer diagram shows that (t5)p@) is @ morphism from the G-coalgebra F(RF(b)) =
(G'F(b), (tF)c rv) - Opp)) to the G-coalgebra (GF'(b), 6 (p)). Moreover, (t7)r(p) is an isomor-
phism by our assumption. Thus, for any b € B, F(RF(b)) is isomorphic to the G-coalgebra
(GF(b),0p()), which is of course an object of the category Inj(U%,A%). Now, since any
b € Inj(F,B) is a coretract of RF(b) (see Remark 1.6), and since any functor takes coretracts
to coretracts, it follows that, for any b € Inj(F,B), F(b) is a coretract of the G-coalgebra
(GF(b),0r@p)) € Inj(U%, A%), and thus is an object of the category Inj(U%, A%), again by
Remark 1.6. This completes the proof. a

The following technical observation is needed for the next proposition.

1.10 Lemma. Let v,k : W A W' : Y — X be an adjunction of any categories. If i : 1’ — x
and j : x — x' are morphisms in X such that ji = I and if 1, is an isomorphism, then v,/ is
also an isomorphism.

Proof. Since ji = I, the diagram
i I
P —r—=
ij

is a split equaliser. Then the diagram

! i I
W (') — DWW (2) ————s WW(2)
W'W (i5)




is also a split equaliser. Now considering the following commutative diagram

x/ ¢ x ! X
L
WW(') —————— WW() ——= WW(x)
W’W() ’ ..
i WIW (i)

and recalling that the vertical two morphisms are both isomorphisms by assumption, we get
that the morphism ¢, is also an isomorphism. O

1.11 Proposition. In the situation of Proposition 1.9, Inj(F,B) is (isomorphic to) a core-
flective subcategory of the category Inj(UY, AY).

Proof. By Proposition 1.8, the functor R restricts to a functor
R :Inj(US, AS) — Inj(F, B),
while according to Proposition 1.9, the functor F restricts to a functor
F': Inj(F,B) — Inj(U%, A%).
Since
e [ is a left adjoint to R,
e Inj(F,B) is a full subcategory of B, and
e Inj(U%, A%) is a full subcategory of A,

the functor I is left adjoint to the functor & , and the unit 7 : I — R F' of the adjunction
F' 4R is the restriction of 7 : F - R to the subcategory Inj(F,B), while the counit &’ :
F'R — I of this adjunction is the restriction of Z : FR — I to the subcategory Inj(U%, A).

Next, since the top of the diagram 1.2 is a (split) equaliser, R(G(ao),da,) =~ R(ap). In
particular, taking (GF'(b),dp()), we see that

RF(b) ~ E(GF(Z)), (Sp(b)) = E?(UF([)))

Thus, the RF(b)-component 7z, of the unit 7' : I — R'F of the adjunction F 4 R is an
isomorphism. It now follows from Lemma 1.10 - since any b € Inj(F,B) is a coretraction of
RF(b) - that 7}, is an isomorphism for all b € Inj(F,B), proving that the unit 7’ of the adjunc-
tion F 4 R is an isomorphism. Thus Inj(F,B) is (isomorphic to) a coreflective subcategory
of the category Inj(U%, A%). O

1.12 Corollary. In the situation of Proposition 1.9, suppose that each component of the unit
n: 1 — RF is a split monomorphism. Then the category B is (isomorphic to) a coreflective
subcategory of Inj(U%, A%).

Proof. When each component of the unit n : I — RF is a split monomorphism, it follows
from Proposition 1.5 that every b € B is F-injective; i.e. B = Inj(F,B). The assertion now
follows from Proposition 1.11. a

1.13. Characterisation of G-Galois comodules. Assume B to admit equalisers, let G be
a comonad on A, and F' : B — A a functor with right adjoint R : A — B. If there exists a
functor F : B — AC with USF = F, then the following are equivalent:

(a) F is G-Galois, i.e. tz: G’ — G is an isomorphism;



(b) the following composite is an isomorphism,
_ FR _ Pt
FRL)¢GUGFR: ¢GFR*E>¢G :
) the functor F : B — AC restricts to an equivalence of categories
(c) q g
Inj(F,B) — Inj([U%, A%);

(d) for any (a,6,) € Inj(U®,A®), the (a,8,)-component E(q,q,) of the counit € of the ad-
junction F 4 R, is an isomorphism;
(e) for any a € A, Ey(a) = E(G(a),6.) 15 an isomorphism.

Proof. That (a) and (b) are equivalent is proved in [12]. By the proof of [14, Theorem
of 2.6], for any a € A, E4c(4) = E(G(a),5.) = (t7)a, thus (a) and (e) are equivalent.

By Remark 1.6, (d) implies (e).

Since B admits equalisers by our assumptions, it follows from Proposition 1.7 that the
functor Inj(K¢) is an equivalence of categories. Now, if ¢ : G' — G is an isomorphism of
comonads, then the functor A;_ is an isomorphism of categories, and thus F' is isomorphic
to the comparison functor Kg/. It now follows from Proposition 1.7 that F restricts to the
functor Inj(F,B) — Inj(U%, A¥) which is an equivalence of categories. Thus (a) = (c).

If the functor F : B — A® restricts to a functor

7 Inj(F,B) — Inj(U%,AY),

then one can prove, as in the proof of Proposition 1.11, that F s left adjoint to R and that
the counit & : F R — I of this adjunction is the restriction of the counit € : F R — I of the
adjunction F 4 R to the subcategory Inj(U%, A%). Now, if Fisan equivalence of categories,
then & is an isomorphism. Thus, for any (a,6,) € Inj(U%, A%), 52&9&) is an isomorphism
proving that (c¢)=-(d). O

1.14. T-module functors. Given a monad T = (T, m,e) on A, a functor R : B — A is said
to be a (left) T-module if there exists a natural transformation o : TR — R with commuting
diagrams

R—E~TR TTR "8~ 1TR (1.3)
NFoe b

R, TR

R.

[e3

It is easy to see that (7',m) and (TT,mT) both are left T-modules.
A T-module structure on R is equivalent to the existence of a functor R : B — Az inducing
a commutative diagram (see [12, Proposition II.1.1])

B—C> Ag

N

A.

Indeed (compare [12]), if R is such a functor, then R(b) = (R(b), o) for some morphism
ap : TR(b) — R(b) and the collection {ap, b € B} constitutes a natural transformation
a : TR — R making R a T-module. Conversely, if (R,« : TR — R) is a T-module, then
R:B — Ag is defined by R(b) = (R(b), ap).

For any T-module (R : B — A, «) admitting a left adjoint functor F' : A — B, the
composite

T fe?
tm: T —>TRF Y~ RF,




where 77 : I — RF is the unit of the adjunction F' 4 R, is a monad morphism from T to
the monad on A generated by the adjunction ' 4 R. Dual to [18, Lemma 4.3], we have a
commutative diagram

B—" App

N

AT7

with the comparison functor Kg : B — Agrp, b+— (R(b), R(ep)), where € is the counit of the
adjunction F' 4 R. As the dual of [18, Theorem 4.4], we have

1.15 Proposition. The functor R is an equivalence of categories if and only if the functor R
is monadic (i.e. Kg is an equivalence) and tg is an isomorphism of monads.

Similar to 1.3 one defines ([21, Definition 3.5], [4, 2.19])

1.16. Definition. A left T-module R : B — A with a left adjoint F' : A — B is said to be
T-Galois if the corresponding morphism ¢ : 7' — RF' of monads on A is an isomorphism.

Given a functor R : B — A, we write Proj(R,B) for the full subcategory of B given by
R-projective objects. The following is dual to 1.13.

1.17. Characterisation of T-Galois modules. Assume the category B to have equalisers.
Let T = (T, m,e) be a monad on A, and R:B — A a left T-module functor with left adjoint
F: A — B (and unit n, counit ). If there exists a functor R : B — A with UrR = R, then
the following are equivalent:

(a) R is T-Galois;
(b) the following composition is an isomorphism:

_ erRF __
o1 > 1 RF = rUrRF - R ;

(c) the functor R : B — Arp restricts to an equivalence between the categories Proj(R,B)
and Proj(Ur, Ar);

(d) for any (a,h.) € Proj(Ur,Ar), the (a, hy)-component of the unit i of the adjunction
L+ R, is an isomorphism;

(e) for any a € A, My, () = TN(1(a), ma) 8 an isomorphism.

Dual to 1.4 we observe:

1.18. Left adjoint for R. If B admits coequalisers of reflexive pairs, then the functor R
admits a left adjoint.

Proof. Let (R,a: TR — R) be a left T-module with a left adjoint F': B — A. Consider
the composite
Ftg eF
B: FT —= FRF ——F,

where € : FR — I is the counit of F 4 R. It is easy to check that (F, () is a right T-module.
According to [12, Theorem A.1], when a coequaliser (R, %) exists for the diagram of functors

FUTET

FUr¢rUr = FTUy FUr, (1.4)

BUT

where e7 : ¢rUp — I is the counit of ¢ 4 Urp, then R is left adjoint to R : B — Ap. It is
easy to see that for any (a, h,) € A7, the (a, h,)-component in the diagram 1.4 is the pair

F(ha)
FT(a) ———= F(a) (1.5)

a



which is a reflexive pair since 3, - F'(e,) = F(hqa) - F(e,) = I. This proves our claim O

So far we have dealt with (co)module structures on functors. It is also of interest to
consider the corresponding relations between monads and comonads.

1.19. Definitions. Let T = (T, m,e) be a monad and G = (G, d,¢) a comonad on A. We
say that G is T-Galois, if there exists a left T-module structure « : TG — G on the functor
G such that the composite

A6 TG > Taa 2% qa

is an isomorphism.
Dually, T is G-Galois, if there is a left G-comodule structure 3 : T'— GT on the functor
T such that the composite

T m
v TT -2 arr S o
is an isomorphism.
We need the following (dual of [24, Lemma 21.1.5])

1.20 Proposition. Letn,e : FH1R:C — A andn',¢' : F' 4 R : C — B be adjunctions and
let

be a diagram of categories and functors with F'X = F. Write a for the composition

nXR Il / R'e /
XR— R F XR=RFR—R .

Then the natural transformation Sx = F'a: FR = F’XR — F'R’ is a morphism of comon-
ads.

Note that for the commutative diagram (see 1.1)

B ——> AG

A

)

where F' has a right adjoint R, the related comonad morphism S7 : FR — G is just the
comonad morphism ¢z : FR — G.

From the proof of [24, Theorem 21.1.10(b)] we obtain:

1.21 Proposition. Let F 1 R: D — A, /" 4R :D - Band F/" 4 R" : D — C be
adjunctions and let

A—>B—L>C

F\\ lF' P
D

be a commutative diagram of categories and functors. Write Sx for the comonad morphism
FR — F'R', Sy for the comonad morphism F'R' — F"R" and Syx for the comonad mor-
phism FR — F"R" that exist according to the previous proposition. Then Syx = Sy Sx.
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2 Entwinings

2.1. Entwinings. We fix a mixed distributive law, also called an entwining, A : TG — GT
from the monad T = (T,m,e) to the comonad G = (G, d,¢), and write T = (T, m,e) for a
monad on A% lifting T, and G = (G, §,€) for a comonad on A7 lifting G (e.g. [28, Section
5)).

It is well-known that for any object (a, h,) of A,

~ ~

L4 G(aa ha) = (G(a)a G(ha) : )‘a)7 L4 (5)(a,ha) = 5(17 L4 (é\)(a,ha) = Ea,
while for any object (a,6,) of the category A,
o T(a,0.) = (T(a), Ao T(0.); & ()00, =mar ® (@)ao.) = €a
and that there is an isomorphism of categories
(A%)5 =~ (Ar)©.

We write AZ(\) (or just A%, when the mixed distributive law \ is understood) for the category
whose objects are triples (a, hq,0,), where (a,h,) € Ar and (a,6,) € AY with commuting
diagram

T(a) > a2~ G(a) (2.1)

T(%)i TG(hQ)

TG(a) — GT(a).

Let K : A — (A%)% be a functor inducing a commutative diagram

A5 (A%)5 (2.2)
¢ J,Uf
AC.

Write ag : fgbG — ¢% for the corresponding T-module structure on #Y (see 1.14). Since T
is the lifting of T corresponding to A\, UST = TU% and one has the natural transformation

a=U%k) : UST¢® =TUS¢ = TG — U%4% = G.

It is easy to see that a provides a left T-module structure on G with commutative diagram

TG —>G—2=GG (2.3)

| Jo

TGG ——5— GTG.

Conversely, a natural transformation

a:UST¢% =TU%¢S =TG — U%4C = @
making G a left T-module, can be lifted to a left T-module structure on ¢@ if and only if for
every a € A, a, : TG(a) — G(a) is a morphism in A from the G-coalgebra (TG/(a), AG(a) -

T(d4)) to the G-coalgebra (G(a), §,), which is just to say that the a-component of the diagram
(2.3) commutes. Thus we have proved:
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2.2 Proposition. With the data given in 2.1, the assignment
K:A— (A% +— U%ag): TG — G,

yields a bijection between functors K making the diagram (2.2) commute and left T-module
structures o : TG — G on G for which the diagram (2.3) commutes.

Now let K’ : A — (AT)a be a functor inducing a commutative diagram

. (Ar)C (2.4)

R

A

Write Bk : ¢ — (A}’QST for the corresponding G-comodule structure on ¢r (see 1.1). One has
the natural transformation

B =Ur(Bx): Urdr =T — UpGdr = GUrdr = GT

which induces a G-comodule structure on 7' with commutative diagram

"7 g7 (2.5)

ml Tgm

TGT —— = GIT.

From this we obtain:

2.3 Proposition. In the situation described above, the assignment
K':A— (AT)a —  Ur(Bx): T — GT,

yields a bijection between functors K' making the diagram (2.4) commute and left G-comodule
structures 3 : T — GT on the functor T for which the diagram (2.5) commutes.

To give a functor K’ : A — (AT) making the diagram (2.4) commute is to give a natural
transformation a : Up — UrG making Uz a right G-comodule (see [14, Proposition 2.1]). For
any (a,hq) € Ar, G(a, ha) = (G(a), G(hg) - Ao), the (a, hy)-component Q(a,h,) 18 @ morphism
a — G(a) in A with commutative diagrams

X(a,ha)

a —— G(a) G(a)

a
\ Q(a, ha)l ltsc(a)

G(a) —>GG(a)7
G(a(a,hq))

A(a,ha)

and the corresponding comonad morphism tx : ¢prUpr — G is the composite

Ppra ~ G ~
$rUr == 6U7G ——> @
Then, since for any (a, hs) € A7, (67)(a,h.) = Pa, the component (tx+)(q,n,) is the composite

T((a,hq)) G(ha)
—_—

T(a) TG(a) 22> GT(a)

Now it follows from Proposition 1.2:

G(a).
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2.4 Theorem. In the situation described above, the functor K' is an equivalence of categories
if and only if for any (a,ha) € Az, the composite G(ha) - Mg - T((q,p,)) is an isomorphism
and the functor ¢ is comonadic.

For the dual situation, let K : A — (AG)f be a functor inducing commutativity of the
diagram (2.2). Since the functor ¢ has a left adjoint U® : A — A, it follows from [14] that
to give such a functor is to give a right T-module structure o : UST — UC on UC.

For any (a,0,) € A%, T(a,0,) = (T(a),\q - T(0,)), the (a,,)-component a(,yg,) is a
morphism T'(a) — a in A with commutative diagrams

€a T(a(a,04))
a ——=T(a) TT(a) ———————T(a)

\ l%z,ea) mai %(a,04)

a T(a) ——a,

X(a,ha)

and the corresponding monad morphism tx : ¢SUC — T is the composite
. n°T ~ 9¢
TL> ¢GUGT*O[> ¢GUG .
Now, since for any (a,,) € A, (HG)(a’ga) = 04, the component ()40, is the composite

T(aa) Aa G(O‘(a,h,u))

T(a) TG(a)

GT(a) G(a).

As a consequence we get from Proposition 1.15:

2.5 Theorem. In the situation described above, the functor K is an equivalence of categories
if and only if for any (a,0,) € A%, the composite G((a,hy)) - Aa - T(0a) is an isomorphism
and the functor ¢@ is monadic.

The following observation is probably known but we are not aware of a suitable reference.
Recall that a functor i : C — A with C a small category is dense, if the functor

i: A% — [C,Set], a Mory(i(—),a),
is full and faithful.
2.6 Lemma. Leti:C — A be a dense functor. Given two adjunctions
FAU F 44U : A — B,

and a natural transformation 7 : F' — F’, then T is an isomorphism of functors if and only if
Ti: Fi — F'i is so.

Proof. Write 7/ : U’ — U for the natural transformation corresponding to 7, that is 7
and 7/ are mates, denoted by 7 47’ (e.g. [21, 7.1], [4, 2.2]). Then 7 is an isomorphism if and
only if 7/ is so. So it is enough to show that 7’ is an isomorphism. Since 7 - 7/, the diagram

’
Xila), b

Morg (F"i(a), b) —————— Mory (i(a), U’ (b))
Morng(‘ri(u),b)l J{Mom(i(a)n‘é)

Morg (Fi(a), b) Mory (i(a), U(b)),

Xi(a), b
where « (resp. o) is the bijection corresponding to the adjunction F 4 U (resp. F' 4 U’),
commutes for all a,b € A. Since 7;(,) is an isomorphism by our assumption on 7, it follows
that the natural transformation Mora (i(a), 7¢) is an isomorphism, implying - since ¢ is dense
- that 7/ : U’ — U is an isomorphism. O
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2.7 Proposition. With the data given in 2.1, let K/ : A — (AT)G be a functor with UCK' =
or and B dp — ngST the corresponding G-comodule structure on o1 (see 1.1). Suppose
that

(i) A admits equalisers of coreflexive pairs and both T and G have right adjoints, or

(ii) A admits small colimits and both T and G preserve them.

Then (éT, Bk’ is G-Galois if and only if (T,Ur(Br)) is G-Galois.

Proof. For any a € A, the ¢r(a) = (T'(a), mg)-component of tx: : ppUr — G is just
(yr)a (see 1.19). Thus it is enough to show that tx/ is an isomorphism if and only if its
restriction to free T-modules is.

(i) If T has a right adjoint, there exists a comonad H inducing an isomorphism of categories
A7 ~ AHM: this implies that the functor Ur is comonadic and hence has a right adjoint. It
follows that the composite GUr also has a right adjoint. Next, since G is the lifting of G, we
have the commutative diagram

Ar &, Ar
UTl lUT
A—F>A
Since
e GUr has a right adjoint,
e the functor Ur is comonadic, and
e A7 admits equalisers of coreflexive pairs (since A does so),

it follows from the dual of [12, Theorem A.1] that the functor G has a right adjoint.

Now, since the full subcategory of Ar given by free T-modules is dense in A, it follows
from Lemma 2.6 that tx: : ¢7Ur — G is an isomorphism if and only if its restriction to free
T-modules is.

(ii) Since T preserves colimits, the category Ar admits colimits and the functor Ur : Ar —
A creates them. Thus

e the functor ¢ Ur preserves colimits;

e any functor L : B — Ar preserves colimits if and only if the composite UrL does; so, in
particular, the functor G preserves colimits, since UrG = TUr and TUr is the composite
of two colimit-preserving functors.

The full subcategory of Az given by the free T-modules is dense and since the functors
¢rUr and G both preserve colimits, it follows from [24, Theorem 17.2.7] that the natural
transformation

tK/ : ¢TUT — é
is an isomorphism if and only if its restriction to the free T-modules is so; i.e. if (tx7) gy (q) 18
an isomorphism for all @ € A. This completes the proof. O

Dually, one has

2.8 Proposition. With the data given in 2.1, let K : A — (AG)f be a functor with Uz K = o
and ag : quG — @Y the corresponding T-module structure on ¢%. Suppose that

(i) A admits coequalisers of reflexive pairs and both T and G have left adjoints, or

(ii) A admits all small limits and both T and G preserve them.

Then (6%, o) is T-Galois if and only if (G, U%(ak)) is T-Galois.

The results of the preceding two propositions may be compared with Bohm and Menini’s
[5, Theorem 3.3].
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3 Grouplike morphisms

In this section we extend the theory of Galois corings C over a ring A to entwinings of a monad
F and a comonad G on general categories. For this we extend the notion of a grouplike element
in C (e.g. [9, 28.1]) to the notion of a grouplike natural transformation I — G.

3.1. Definition. Let G = (G, J, ) be a comonad on a category A. A natural transformation
g : I — G is called a grouplike morphism provided it induces commutative diagrams

¢ 1—2>q
= 99
I, GG.

Comonads with grouplike morphisms are called computational in [6] (see also [23]). The
next result transfers Proposition 5.1 in [18].

2. Grouplike morphisms and comodule structure. Let F = (F,m,e) be a monad
and G = (G, ,¢e) a comonad on a category A with an entwining A : FG — GF. If G has a
grouplike morphism g : I — G, then F has two left G-comodule structures (see 1.1) given by

1) §:F2 s pg-—2>GF and (2) gF:F — GF.

Proof. (1) In the diagram

Fg A
F——FG——>GF
\lFs ieF
F———F,

the triangle is commutative by the grouplike properties of g and the square is commutative
by the properties of the entwining A. In the diagram

F< A L GF
FGG S5F
Ai e
L GFG —22~ GGF,

the right rectangle is commutative by properties of entwinings, the triangle is commutative
by properties of the grouplike morphism g, and the pentagon is commutative by naturality of
composition. This shows that g makes F' a left G-comodule.

(2) To say that (F,gF : F — GF) is a left G-comodule is to say that the diagrams

F F
F—2sqr jp—

GF
\ J/EF gFi léF

are commutative. Using the fact that
GgF - gF = ggF,
the commutativity of these diagrams follows from the definition of a grouplike morphism. 0O

The pattern of the proof of [18, Proposition 5.3] also yields:
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3.3. F' as mixed bimodule. With the data given in 3.2, (F,m, §) is a mized (F, G)-bimodule.

Proof. We need to show commutativity of the diagram

FF—"—sp—2sgF
ra| fon
FGF—2 > GrF
However, by the definition of g, we get the diagram

m Fg A

FF F FG GF
FFgl //////TEL/////;V TGWL
AF
FFG F}\ FGF GFF,

in which the right pentagon is commutative since A is an entwining and the triangle is com-
mutative by naturality of composition. This proves our claim. a

Combining 2.3, 3.2 and 3.3 yields the existence of a functor K, : A — (Ar)% making the
diagram

Ky ~
A —=(Ap)®

oF iUG
Ap

commute. Note that Ky(a) = ((F(a), mq), §a)-
Now assume that A admits equalisers. Then the category of endofunctors of A also has

equalisers and we have the

3.4. Equaliser functor. With the data given in 3.2, define a functor F9 as an equaliser of
functors

! F
oL p J GF

A

FG.

Then F9 is a monad on A and ip : F'9 — F is a monad morphism.

Proof. We adapt the proof of [18, 5.2]. The following two diagrams are commutative by
naturality of composition,

| —S > F [ —S > F

gl lgF g Fg

G——= GF, G— s FG.

Since \ - eG = Ge, it follows that
ANFg-e=X-eG-g=Ge-g=gF -e.

Thus there exists a unique morphism €’ : I — F9 yielding a commutative diagram

FQLF

I .
Observe that
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(a) the diagrams rF L pra rr "L orp

l e =] |on

F—FG, F———GF
Fg gF
commute by naturality of composition,
(B) A-mG =Gm - \F - F), since A is an entwining;
(v) M- Fg-ip =gF -ip, since i is an equaliser of gF' and A - Fg,
(0) ipip =ipF - F9ip = Fip - ip F9, by naturality of composition.
Hence we have
) )\mGFngFZF
=(B) GmAFF)\FFgZFZF
) Gm-)\F-F)vFFg'FiF'iFFg
) Gm)\FFgFFzeFFg
=) Gm)\FFngFFquF
=(9) Gm-gFF-iFiF
=(a) gF-m-iFiF.

Considering now the diagram

gFF
Fopes 25 pR J FGF A GFF
|
|
4 I m G
|
F9 F FG GF,

i

one sees that there exists a unique morphism m’ : F9F9 — F9 making the left square of the
diagram commute. The result now follows from [3, Lemma 3.2]. O

As we have seen, the morphism 3 = g : I' — GF makes I' a left G-comodule. Consider
the related functor K, : A — (Ap)“ and write ¢ : $pUp — G for the corresponding morphism
of comonads on Ap. It is easy to see that for any (a,ha) € Ap, t(4,p,) is the composite

F(ga) Aa G(ha)
—_—

F(a) FG(a) GF(a) G(a). (3.1)

Since Fg-e = eG- g by naturality of composition and A-eG = Ge, the (a, h,) € Ap-component
of the morphism

Fu Upt ~
'y:UF—>n L UpppUp —— UrG

is just the morphism g, : @ — G(a). It follows that the monad generated by the functor K|,
and its right adjoint R, is given by the equaliser of the diagram

gF

F GF.

g=X\Fg

Thus F9 is just the monad on A generated by the adjunction K, 4 R,.
Since any functor with a right adjoint is full and faithful if and only if the unit of the
adjunction is an isomorphism, we have the
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3.5 Proposition. Let g : [ — G be a grouplike morphism. Then the corresponding functor
Ky A — (Ap)9 is full and faithful if and only if the functor F9 is (isomorphic to) the identity
monad on A.

For an entwining A : TG — GT and a grouplike morphism g : I — G, for any (a, h,) € Ap,
the (a, hy)-component ¢, 1,y of the comonad morphism ¢ : ¢pUp — G, corresponding to the
functor K, : A — (Ap)Y, is given in (3.1). Consider the diagram

Fla) — L pR) <" Fla)
F(ga)l W F(gr(a)) @ lgF(a)
FG(eq € a
FG(a) —2“) | pGR(a) <" GF(a)

AQJ/ R v Glerta)
€F(a)
GF(eq
GF(a) “) . GFF(a)
5) oy ©
GF(a) P— GF<Q)7

in which
e diagram (1) is commutative by naturality of g : I — G;
e diagram (2) is commutative by naturality of composition;
e diagram (3) is commutative by naturality of A : FG — GF;
e diagram (4) is commutative since A is an entwining, and
o diagrams (5) and (6) are commutative since F' is a monad.

It follows from the commutativity of this diagram that the diagram

€F(a)

F(a) FF(a) (32)

(eu)
F(gr(a))

FGF(a)
AF(a)
GFF(a)

(;(nla)

9F(a)
Fla) ———= GF(a)
Aa'Fmga)

is serially commutative.

3.6 Proposition. Let A : TG — GT be an entwining and g : I — G be a grouplike mor-
phism. If the monad F is of descent type (that is, the free F-algebra functor ¢ : A — Ap is
precomonadic) and if the monad F is G-Galois w.r.t. the G-coaction g : F — GF (see 3.2),
then the monad F9 is (isomorphic to) the identity monad.

Proof. To say that F is of descent type is to say that the diagram

ca €F(a)
o —— F(a) ————= FF(a)
era)
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is a coequaliser diagram for all a € A (see [9]), while to say that the monad F' is G-Galois w.r.t
G-coaction g : F' — GF' is to say that, for any a € A, the composite G(m4) - Ap(a) - F(9r(a))
is an isomorphism. The result now follows from the commutativity of the diagram (3.2). O

3.7. Left adjoint of (ip)*. Since ip : F'9 — F' is a morphism of monads, it induces a functor
(iF)* :Ap — Aps, (a7 ha) = (a, hq - (iF)a)'

Moreover, when the category A has coequalisers of reflexive pairs (which is certainly the
case if A has coequalisers of reflexive pairs and F' preserves them), (ip)* has a left adjoint
(ir)1: Aps — Ap which is defined as follows: For notational reasons, write

n,o: VAU :Ap — A (resp. ', 0’ : V' 44U’ : Aps — A)
for the forgetful-free adjunction (¢r,Ur) (resp. (¢rs,Urs). Then (i) is the coequaliser of

the diagram of functors and natural transformations

VU'o'
VUV ————2 VU ————— (ip), (3.3)

where (3 is the composite
VUV — s VUVUVU = VU'VU (ip) VT
VU'o! (ip)*" VU’ VU’
e OV g iy VU = VOV —YY
It is not hard to see that for any (a, hq) € Aps, the (a, hy)-component of the diagram (3.3) is
the diagram

F(hqa)
FFI(0) — = FF(a) —- Fa) == (ip)i(a, hy) .

Let G be the comonad on Ap that is the lifting of the comonad G corresponding to the

~

entwining A. Then for any (a, h,) € Ap, G(a, hy) = (G(a), G(ha) * o).
3.8 Lemma. With the data given in 3.2, we have the morphism
Ja : F(a) = GF(a) for any (a,h,) € Ap.

(i) Each g, can be seen as a morphism in Ap from the free F-module V(a) = (F(a),m,)
to the F'-module

G(V(a) = G(F(a),ma) = (GF(a), G(ma) - Ap(a)).
(ii) The family (Gr(a))aca induces a natural transformation oy : V — GV making V' a left
G-comodule.
Proof. (i) Consider the diagram

FF(ga) F(Xa)

FF(a) FFG(a) FGF(a)
l/\ma)
Mg (1) ma(a) (2) GFF(CL)

lG(ma)

F(a) ——— FG(a) ———— > GF(a)

F(ga) Xa ’
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in which part (1) commutes by naturality of m, while part (2) commutes since A is an entwining.
Thus the outer rectangle is commutative, which just means that § : F(a) — GF(a) is a
morphism in Ar from the free F-module V' (a) = (F(a), m,) to the F-module (GF(a), G(m,)-
)\F(a))'

(ii) Using that for any (a, h,) € Ap,

* (ea)aha) = (Ec)ary @ (0g)(ahy) = (0G)as ® (F,7) is a left G-comodule,

it is not hard to prove that the pair (V,ay ) is a left G-comodule. a

3.9 Lemma. With the notation above,

(1) the left rectangle in the diagram

r_

VU o
vUvV'U - VU ! (ir):
|
avU’V’U’l \L(XVU/ | Cip),
N GvU'cs’ N G ~ V
GvU'vV'y’! T) GVU’ G(ip)

18 serially commutative;
(2) there erists a unique natural transformation o, : (ir) — G(ip)y making the right
square of the diagram commute.
Proof. (2) follows from the fact that ¢ is a coequaliser of VU’c’ and S.

(1) To show that the left square is serially commutative, we have to show that for any
(a,hy) € AR, the diagram

F(ha)

FF9(a)

- > FF(a) —————>F
SR (a) e (a)

(9 F9(a) GF(hy) (@a

T

GFF9(a) GFF(a) GF(a)

GF((ir)a) G(ma)
is so. The left diagram below is commutative by naturality of g : I — G,

FG(ha)

F9(a) i a FGF9(a) FG(a)
gFg(a)l lga AF9(a) \L lka
GF9(a) TR G(a), GFF9(a) RO GF(a)

while the right square is commutative by naturality of A\. From this we obtain the commutative
diagram
F(hg)

FF9(a) F(a)
F(grocay) J{ J{F(ga)
FGF9(a) - e FG(a)
)\Fg(a)l J/,\a
GFF9(a) GFOD GF(a)



Next, consider the diagram

FF9(a) o)) FF(a) — ™+ F(a)
F((ir)a) @) R
Flgrac) W FF(a) FFG(a) ——
F(9F(a))
F(Xo)
()
FGF9(a) FEGR)) FGF(a)
1F )a
Ao (5) A Gma)
GFFY(a) TG GFF(a)
1F )a

in which
e diagram (1) commutes by naturality of composition;

e diagram (2) commutes by () in proof of 3.4;

1)

2)
e diagram (3) commutes by naturality of m;
e diagram (4) commutes since A is an entwining, and
(5)

e diagram (5) commutes by naturality of .

Thus the outer diagram is commutative and this completes the proof of the lemma.

O

3.10. Natural transformation Sy,,. In 3.8, a left G-comodule (V,ay) is considered and

by commutativity of the diagram in 3.9, the pair ((ir)i, o (i), ) is also a left G-comodule. Thus,

as noted in 1.1, there exists a unique functor ip : Aps — (Ar)¢ yielding commutativity in

the right triangle of the diagram

A oro Apg r (AF)é
oF l(i%
Ap

where UC (AF)@ — Ap is the evident forgetful functor.
A direct inspection shows that the diagram

Fm/
— T
FipF9 mF9 Fip m
FFIF9 —— FFFY FFg\FHFM/F
-~ ’
FFI¢ Fe

is a split coequaliser diagram. This means in particular that for any a € A,

(ir)i(@ro(a)) = (ip)i(F9(a),my) = (F(a),ma) = ¢r(a).

Thus the left triangle in the diagram is also commutative.
Consider the related comonad morphisms

® Sy.s t 0rUp — (ip)i(ip)* corresponding to the left triangle in (3.4),

o S (iph(ir)" — G corresponding to the right triangle in (3.4),

21

(3.4)



e and S— =t:¢pUp — G corresponding to the outer diagram in (3.4)

LR PFg

Then it follows from Proposition 1.21 that ¢t = 57+ Sy ., -

3.11 Lemma. With the notation from 8.10, for any (a,h,) € Ap, the (a, hy)-component of
the natural transformation Sg,, is the morphism

qa : Fa) = (ir)i((ir)"(a, ha)) = (ir)i(a; ha - (ir)a)-

Proof. Consider the natural transformation « : ¢peUp — (ip)* corresponding to the left
triangle in (3.4) which is the composite

neraU N . \x (ir)” . \x
bpoUp —22 s (i) (ip)1ppoUp = (ip)* ¢pUp — " (ip)*

where 7 : I — (ip)*(ip): is the unit of the adjunction (ir); 4 (ir)*. A simple calculation
shows that, for any (a, h.) € Ap, a(q,p,) is the composite

(iF)a

FI9(a) F(a) a.

Thus, the (a, hy)-component of Sy, is the morphism

(ip)i(ha - (ir)a) : (1p)1(@FsUr(a, ha)) — (ir)1((ir)*(a; ha)).

Since ¢ppeUp(a, hy) = ¢rpa(a) = (F9(a),m!) and (ip)*(a, hy) = (@, he - (ir)a), it follows from
the definition of (ir), that the diagram

F(my)
T T

FFIF9(a) - FFFI(a) ——= FF9(a) — (ip)1(¢rsUr(a, hq))
F((ir)ro(a)) MFEI(a)

ha (iF)a
FF9(ha(iF)a) e (ir)e) F(ha(iF)a) (S¢pg)(a,ha)

1F)a F(ha)
F((ir) )F

FF9(a) F(a) F(a) —— (ir)((ir)*(a, ha)),

whose rows are coequaliser diagrams, is commutative. Note now that the diagram

Fm/
’4—_’__——\

FipF? 9 Fi
FF9F9 — FFF9 "> P9 —' FF "> F
~ ’

FF9¢ fre

is a split coequaliser diagram. It follows that the diagram

mu'F((iF)a)

FF9(a) F(a)
F((iF)a)l J{(Swg)(a,ha)
F(a) (ir)i((ir)*(a, ha))

is commutative. Now, since qq - F(ha) - F((iF)a) = qa - Ma - F((ir)a) and since (S¢,.q)(a,n,) 18
the unique morphism making the square commute, we see that (S, )(a,h.) = a- a

3.12 Proposition. With the notation from 8.10, suppose the natural transformation t :

orUp — G to be componentwise a monomorphism. Then Sy, @ ¢pUp — (ip)i(ip)* is
an isomorphism. Thus, Si—: (ip)i(ir)* — G is an isomorphism if and only if t is so.
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Proof. First note that, by the previous lemma, Sy, is a componentwise regular epimor-
phism. Now, since any regular epimorphism that is a monomorphism is an isomorphism and
since t = S+ Sy, (see 3.10), the result follows. |

3.13. Galois entwinings. Write G for the comonad on the category Ap generated by the
adjunction (ip) - (ip)* and let ¢, : G — G be the related comonad morphism (see [18,
Theorem 4.1]). This leads to a commutative diagram with the canonical comparison functor
Kz (e.g. [18, Lemma 4.3])

K _
Aps —> (Ap)©

o l(AF)tg
ir

(Ap)C.

By Definition 1.3, the functor (ir), is G-Galois provided ty: G — G is an isomorphism.
If this is the case we call (F,G, A, g) a Galois entwining and g : I — G a Galois (grouplike)
morphism and we have:

3.14 Theorem. Let A : FG — GF be an entwining from a monad F to a comonad G on
a category A. Suppose that g : I — G is a grouplike morphism such that the corresponding
functor (ip)* : Ap — Aps admits a left adjoint functor (ip) : Aps — Ap (see 3.7). Then the
comparison functorip : Aps — (Ap)% is an equivalence of categories if and only if (F, G, )\, g)
is a Galois entwining and the functor (ip): is comonadic.

In the situation of the preceding theorem, if g is such that the corresponding comparison
functor K, : A — (Ap)¢ is full and faithful, it follows from Proposition 3.5 that the functor
ir reduces to the functor K g-

4 Bimonads

4.1. Properties of bimonads. Recall from [21, Definition 4.1] that a bimonad H on a
category A is an endofunctor H : A — A which has a monad structure H = (H, m,e) and a
comonad structure H = (H, §,¢) with an entwining A : HH — HH inducing commutativity
of the diagrams

eH e e
HH —= I—%—=q I—S>H (4.1)
5
ml le el o \ \LE
€ eH
H——>1, H—xHH, I
He
HH —">H—">HH (4.2)

| f1m

Joining H from the left to the central diagram in (4.1) and attaching the resulting square
on the left hand side of (4.2), one derives the relation

A-He=4. (4.3)
For the bimonad H we obtain the comparison functor

Kg:A— Ag, a — (H(a),ma,5a),
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where AL = Ag(/\), with commutative diagrams

A (AT Al A (A ~ A (4.4)
bH lUE o7 iUﬁ
Ap AH

As noticed in [28, 5.13], the comparison functor K is full and faithful by the isomorphism
Mor (H(a), H(b)) — Mora(a,b), f+ epo foeq.

We now reconsider bimonads and Hopf monads in view of the notions introduced in the
preceding sections. It is clear from (4.1) that the unit e : I — H is a grouplike morphisms
(as defined in 3.1). Write v for the composite Hm - §H. Then since v - He = ¢ (see [21,
(5.2)]), it is easy to see that the functor Ky is just the functor K, corresponding to the
grouplike morphisms e : I — H. Then, since the functor Ky is full and faithful, it follows
from Proposition 3.5 that the diagram

e eH
I—H S HH
d=X\-He

is an equaliser diagram. Therefore the functor F© from 3.4, that is H*, is just the identity on
A. Thus (ig)* turns out to be the forgetful functor Uy : Ay — A and its left adjoint (ig)
is the free functor ¢y : A — Apy. Now, since the unit of the adjunction ¢ 4 Ug is a split

monomorphism, the functor ¢y : A — Ay is always comonadic, provided the category A is
Cauchy complete (see Corollary 3.19 in [19]), it follows from 3.14:

4.2. ¢y as H-Galois functor. For a bimonad H on a Cauchy complete category A, the
following are equivalent:

(a) ¢u is a H-Galois functor;

(b) the unit e : I — H is a Galois grouplike morphism;

(c) the functor Ky : A — AL is an equivalence of categories.

4.3 Proposition. Assume that A admits equalisers and that H has a right adjoint. Then the
following are equivalent:

(a) the functor Ky : A — A is an equivalence of categories;
(b) (H,m) is H-Galois;
(¢) H has an antipode.
Proof. Clearly (a) implies (b), while the equivalence of (a) and (c) is proved in [21,
5.6]. So suppose that (H,m) is H-Galois. Then it follows from Proposition 2.7 that ¢y is

H-Galois, i.e. the comonad morphism t4, : ¢gUy — H is an isomorphism. Now, since the
category A admits equalisers, it is Cauchy complete, and as it was noted above, the functor ¢ H
is always comonadic, it follows from Proposition 1.2 that Ky is an equivalence of categories.
This completes the proof. a

Dually, one has

4.4 Proposition. Assume that A admits coequalisers and that H has a left adjoint. Then
the following are equivalent:

(a) the functor Ky : A — A is an equivalence of categories;
(b) (H,6) is H-Galois;
(¢) H has an antipode.
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Summarising the previous observations yields the main result of this section:

4.5 Theorem. Let H be a bimonad on the category A and assume that
(i) A has small limits or colimits and H preserves them, or
(ii) A admits equalisers and H has a right adjoint, or
(iil) A admits coequalisers and H has a left adjoint.

Then the functor Ky : A — Al is an equivalence of categories if and only if H has an
antipode.

Proof. The assertions follow by the propositions 2.7, 2.8, 4.3 and 4.4. O

5 Opmonoidal monads

Let (V,®,1) be a strict monoidal category.

5.1. Opmonoidal monads. Let T = (T, m, e) be a monad on V, such that the functor 7" and
the natural transformations m and e are opmonoidal, that is, there are natural transformations

xxy :T'(XQY)->T(X)T(Y) for X,Y €V

and a morphism 6y : T(I) — I satisfying certain compatibility axioms. Following McCrudden
[17] we call such monads opmonoidal monads. They were introduced in Moerdijk [22] under
the name Hopf monads and are named bimonads by Bruguiéres and Virelizier in [7, Section
2.3].

It follows from the definition of an opmonoidal monad T that the triple

(T, x1,1:TA) = T@M@T(D), 0p: T(T) — )

is a coalgebra in V (see [7, p. 704]), and thus one has a comonad G on V whose functor part
is G = —®T(I). Then the compatibility axioms ensure that the natural transformation

A= (T(=)®m1)-x— v : TG — GT,
is a mixed distributive law (entwining) from the monad T to the comonad G.

5.2. Entwined modules. For an opmonoidal monad T on V, the entwined modules are
objects M € V with a T-module structure h : T(M) — M and a comodule structure p : M —
M @ T'(I) inducing commutativity of the diagram

h 4

T(M) M M @ T(I)
T(P)l Th@T(H)
XM, T (T) T(M)®mg
TMeT() —————TM)TT(I) —————=T(M) @ T(I).

(In [7, Section 4.2] these are named right Hopf T-modules). They form a category in an obvious
way which we denote by Vg.
From the ingredients of the definition one obtains the commutative diagram

m X—.I

T T ’ T(—)@TI)
TX—,H\L Tm@T(H)
T(T(-) © T(1) 2210+ (=) @ TT(1) —— 2™+ 77(~) @ T(I)

25



which shows that for any X € V, T'(X) is an an entwined T-module leading to the commutative
diagram

V—"> (V7)C = V§

el
T lU

with a comparison functor K(X) = (T(X), mx, xx,1)-
For the corresponding comonad morphism tx : ¢pUpr — G, it is easy to see that for any
(X, hx) € Vp, the (X, hx)-component of tx is the composite

XX, 1 hx ®T(H)

T(X) T(X)eT®I) X @ T(I).

Since tx is a comonad morphism, we have the commutative diagram

orUr L G

and since, for any (X,hx) € V, (e1)(x,nx) = hx and (e5)(x,nyx) = X @ 01, we have
5.3 Lemma. For any (X,hx) € Vr,
(X®0r) - (tx)(x,hy) = hx-
5.4. Remark. Note that there are also functors
V= Vg, (M,h)— (M @T(),h:=(h®m)o X,y M @ xin)
V¢ = VE, (N,p) = (T(N),my,p:= (T(N) @mz) o xnr1 o T(p)).
The second functor corresponds to [7, Lemma 4.3].

5.5. Grouplike morphism. Since T is an opmonoidal monad on V, the following two
diagrams

T —= 7(I) and I ———T(I)
\loﬂ %\ iXLH
I T(I) @ T(I)

both are commutative, implying that the natural transformation
g=—Qe:1—-—-—T()

is a grouplike morphism. Note that g7 : T'— T ® T'(I) is the natural transformation given by
TX)®e: T(X)—T(X)®T(I), while A-Tg : T — T ® T(I) is given by the composite
T(X®er)

XX, T (1) T(X)®@my

T(X) T(X @ T(D)) T(X)TT) T(X)T(I) .
Since T is an opmonoidal monad, the diagram
T(X) —XED pix @ T(D)

XX,H\L \LXX,T(H)

T(X) @ T~y 10 @ TT(D)
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is commutative. But since my - ef = I, we see that A - Tg is just the natural transformation
X—1- Thus, for any X € V, T9(X) is the equaliser

T(X)®er
TI(X)——T(X) ———=TX)T®d).

XX,I

Note that the functor K : V — V$ is just the functor K, : V — V¥ = (VT)@.

5.6. Antipodes. For opmonoidal monads on a right autonomous category V, a right antipode
is defined in [7, Section 3.3] and its existence is equivalent to the fact that the category of
T-modules is right autonomous ([7, Theorem 3.8]).

From now on we suppose that T is an opmonoidal monad, on a right autonomous category,
with a right antipode (a right Hopf monad in the sense of [7, Section 3.6]).

Consider the natural transformation I : G — T'T defined in [7, Section 4.5]. We shall need
the following simple properties of this functor (see [7, Lemma 4.9]):

m~F:6®0H. (51)
Tm-TT-x_1=Te. (5.2)

Using these, one can calculate (see [7]) that for any (X, hx,9x) € V§,
hx -T(hx) I'x -¥x =Ix (5.3)

5.7 Lemma. For any (X, hx,9x) € VE, the morphism
(tK)(X,hX) = (hX ®T(]I)) “XX,1: T(X) - X® T(H)
s a split monomorphism.

Proof. For any (X, hx,Vx) € Vg, consider the composite
Q(X,hX) = T(hx) . FX . X ®T(H) — T(X)
We claim that q(x, ny) - (tx)(x,ny) = I. Indeed, consider the diagram

T(X) — L rxyerm X0 | xer

lFT(X) W lfx

(D)
Tex) TTT(X) W) TT(X)
ex X
lT(mX) @) T(hx)

TT(X) T(X)

T(hx)
In this diagram
e square (1) commutes because I is a functor,
e square (2) commutes because (X, hyx) is a T-algebra, and
e the triangle commutes because of (5.2).
It follows that
4x,hy)  (tx)(x, hy) =T(hx) - T(ex) =T(hx -ex) = Ix.

Thus
qx,hx)  (EK)(x, hx) = Ix- (5.4)
O

Since, by Lemma 5.7, t i is a componentwise (split) monomorphism, Proposition 3.12 yields
the
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5.8. Corollary. tx : ¢p7Upr — G is an isomorphism if and only if ef : I — T(I) is a Galois
grouplike morphism.

5.9 Proposition. With the data given in 5.6, for any (X, hx,Vx) € Vg, the diagram

U X, hy) VX T(Wx)
——=T(X)—/——=T(XT()), (5.5)
T(X®e]1)

is a split equaliser diagram.

Proof. Note first that, by [7, Lemma 4.11], the composite q(x 1) - Ux equalises the pair
(T(Wx),T(X ®eg)). Next the following diagram is serially commutative (see [14])

T(9x)
T(X) —/—————————=T(X®T(I) (5.6)
T(X®€H)
Sll \Lsz
I x @T(I)
X———XoT()————= XTI eT(d)
X X®x1,1
where 51 = (tx)(x,ny) and sz = (tK)(X®T(H)7hX®T(][))' Note that the bottom row of this

diagram is split by the morphisms X ® 6y and X ® T'(I) ® 6;. Recall that this means

(X ®6) Ix =1, (5.7)
(X (2] T(]I) X 9[[) . (X X XH,H) =1, and (58)
(XTI @ 0) (Ox @ T(D) =Vx - (X © ). (5.9)

By 5.3, we now have
hx - qx,hy) Ux =hx -T(hx) -I'x -0x = Ix.
Furthermore, since s - T(X ® e1) = (X ® x1,1) - 81,
4x,hx) (X @TI) @61) - s2- T(X @ er)
= (X, hy) (XTI @0) - (X @ x1,1) - 81

=(5.8) A(X, hx) 51 = 4(X, hx) - (LK) (X, hx) =(5.0) Ix,
and since sy - T(¥x) = (Ux @ T(D)) - s1,

A, hy) (X @TI) @ 0r) - s2- T(Vx)
= qx,hy) (XTI @6) - (Ix @ T(I)) - 51
=(5.9) d(X,hx) " VUx - (X ®01) - 51
= q(x,hx) VUx (X ®@01) - (tK)(x, hx)
=1.53 (X, hy) " VUx " hx.

We have proved that

hx - qx,nx) - Vx = Ix, (5.10)

Ux,hy) (X Q@TA)@0r)-s2-T(X ®er) = Ix, and (5.11)

Ux,nx) (X @TI) @ 61) - s2- T(Wx) = q(x, ny) - Ix - hx, (5.12)

which just means that (5.5) is a split equaliser: a splitting is given by hx and by q(x, ny)
(X @T(I) ®6) - so. O
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5.10 Proposition. Given the data from 5.6, the functor K : V. — VS has a fully faithful
right adjoint if and only if for any (X, hx,9x) € VG, the pair of morphisms

9 x

X X @ T(I) (5.13)

X®er
has an equaliser and this equaliser is preserved by T .

Proof. By 1.4, K has a right adjoint if and only if (5.13) has an equaliser for all
(X, hx,9x) € VE. We write (X,ix : X — X) for this equaliser. Thus R(X,hx,0x) =
(X,ix). Since the diagram (5.6) is commutative and since T'(ix ) equalises T'(9x) and T'(X ®

er), there exists a unique morphism kx = k(x ny,9x) : T(X) — X making the diagram

T(ix) T(9x)

T(X)———T(X) ﬁ T(X @ T(I)) (5.14)
kxl Sll l32
Ox QT (I)
X . X T ?ﬁX@T(H) @ T(I)

commute. Since (X, hx)" Ux - kx = 4(X,hx) " 51 -T(ix) =T(ix) and since (X, (X hx) " Ix) is
an equaliser of the pair (T'(Vx),T(X ® eg)) by Proposition 5.9, it follows from the universal
property of equalisers that kx is an isomorphism if and only if the top row of diagram (5.14)
is an equaliser diagram, i.e. if T preserves the equaliser of (5.13). Since according to [14],
kx = k(x,hy,0x) 18 the (X, hx,¥x)-component of the counit € of the adjunction K - R and
since R is full and faithful if and only if € is an isomorphism, it follows that R is a fully faithful
functor if and only if for any (X, hx,9x) € VE, the pair of morphisms (Jx, X ® e;) has an
equaliser and this equaliser is preserved by T a

Recall that any functor is called conservative provided it reflects isomorphisms. The pre-
ceding propositions allow a refinement of [7, Theorem 4.6]:

5.11 Theorem. Let T be an opmonoidal monad on a right autonomous category with a right
antipode. Then the functor K : V. — V% is an equivalence of categories if and only if the
functor T is conservative and for any (X, hx,¥x) € VE, the pair of morphisms (9x, X ® er)
has an equaliser and this equaliser is preserved by T.

Proof. According to the previous proposition it is enough to show that the fully faithful
functor R is an equivalence of categories if and only if T" is conservative. But since any fully
faithful functor with a left adjoint is an equivalence of categories if and only if the left adjoint
Is conservative, it is sufficient to prove that T'is conservative if and only if the functor K is,

which is indeed the case since T' = Up¢ppr = UrUCK and the functors Ur and Ué are both
conservative. O

Recall (e.g. [19]) that a monad T on an arbitrary category A is of effective descent type if
the functor ¢ : A — Ap is comonadic.

5.12 Theorem. Let T = (T,m,e) be an opmonoidal monad with right antipode on a right
autonomous Cauchy complete monoidal category V.
(1) K :V — VE is an equivalence if and only if T is of effective descent type. In this case,
(i) the natural transformation tx : ¢rUr — G is an isomorphism of comonads;
(ii) ep: I — T(I) is a Galois grouplike morphism;
(iii) the monad TY is (isomorphic to) the identity monad.

(2) Ife: I — T a split monomorphism, the functor K : V — Vg s an equivalence
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Proof. (1) If K is an equivalence of categories, then the functor ¢ is comonadic by
Proposition 1.2.

Conversely, suppose that T is of effective descent type. Since V is Cauchy complete,
it follows from [19, Proposition 3.11] that T is of effective descent type if and only if T
is conservative and V has equalisers of T-split pairs and these equalisers are preserved by
T. Now, if (X,hx,9x) € VE, then the pair of morphisms (T'(¥x),T(X ® eg)) is split by
Proposition 5.9 and thus there exists an equaliser (X,ix) of the pair (Jx,X ® e;) and this
equaliser is preserved by T'. The preceding theorem completes the proof.

(1)(i) and (ii) follow by Proposition 1.2 and Corollary 5.8.

(1)(iii) is a consequence of Proposition 3.5.

(2) Any monad on a Cauchy complete category whose unit is a split monomorphism is of
effective descent type (see [19]). Thus the assertion follows from (1). O

5.13. Bimonads in braided categories. As before, let (V,®,I) be a strict monoidal
category and T = (T,m,e) an opmonoidal monad on V, and consider the corresponding
mixed distributive law (entwining)

A= (T(_) & mH) “X—,T(@) * TG — GT,

from the monad T to the comonad G = — ® T'(I). It is pointed out in [7] that, when V is a
braided monoidal category with braiding 7xy : X ® Y — Y ® X, then for any bialgebra A =
(A,e,m,e,0) in V, the monad A® — is a comonoidal monad, where the natural transformation
Xxy AX QY - A X ® AQY is the composite

ART QY
Ao XYy —22% 4o AeXeY 4x

ARX®ARY.
Then, for any X € V, Ax is the composite

ARTA x®X m
A A9 XA A X e X @ A.

AeX oA 49 A0 XA
Consider now the diagram

ART ®RX
A XA X Ao Ao XA 20 Ao XA 40X ® A

(1) (2)
TA,x®A TARA,X®A f
T;1X®A®A

in which the diagrams (1) and (2) commute by naturality of 7, while diagram (3) commutes by
naturality of composition. Since each component of 7 is an isomorphism, \x is an isomorphism
if and only if the composite (X ® A@m)(X ® § ® A) is so. Since (X @ A@m)(X ®6® A) =
X ® (A®@m)(d ® A)) and since (A ® m)(d ® A) is an isomorphism if and only if A has
an antipode, it follows that the composite (X ® A @ m)(X ® § ® A) - and hence Ax- is an
isomorphism for all X € V if and only if A has an antipode.

6 Categories with finite products and Galois objects
In the category Set of sets, for any object G, the product G x — defines an endofunctor. This is
always a comonad with the coproduct given by the diagonal map, and it is a monad provided

G is a semigroup. In this case G x — is a (mixed) bimonad and it is a Hopf monad if and only
if G is a group. We refer to [28, 5.19] for more details.
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In this final section we study similar operations in more general categories and this leads
eventually to the Galois objects in such categories as studied in Chase and Sweedler [11].

Let A be a category with finite products. In particular, A has a terminal object, which is
the product over the empty set. Then (A, x, 1) is a symmetric monoidal category, where a x b
is some chosen product of @ and b, and 1 is a chosen terminal object in A, while the symmetry
Tap : @ X b — b X a is the unique morphism for which the diagram

2

a
1
Ta,b
axb——=bxa
b

commutes. The associativity and unit constraints are defined via the universal property for
products. Such a category is called a cartesian monoidal category.

Similarly, a cocartesian monoidal category is a monoidal category whose monoidal structure
is given by the categorical coproduct and whose unit object is the initial object. Any category
with finite coproducts can be considered as a cocartesian monoidal category.

Given morphisms f :a — z and g : a — y in A, we write < f,g >: a — z X y for the
unique morphism making the diagram

a
f ‘ g
<f.g>
x T Xy Y

P1 D2

commute. In particular, A, =< I, I, >: a — a X a is the diagonal morphism.

It is well known that every object ¢ of A has a unique (cocommutative) comonoid structure
in the monoidal category (A, x,1). Indeed, the counit € : ¢ — 1 is the unique morphism !, to
the terminal object 1, and the comultiplication ¢ : ¢ — ¢ X ¢ is the diagonal morphism A..
This yields an isomorphism of categories Comon(A) ~ A. Given an arbitrary object ¢ € A,
we write € for the corresponding comonoid in (A, x,1).

6.1 Proposition. The assignment
(a,0q:a—axc)— (p2-04:a— c)
yields an isomorphism of categories B
CA~A]|c,

where A = A.x_, while A | ¢ is the comma-category of objects over c, that is, objects are
morphisms f : a — ¢ with codomain ¢ and morphisms are commutative diagrams

a %h a/
N
c .
If the category A has pullbacks, then for any morphism f : ¢ — d in A, the functor
f« i Alc— A d given by the composition with f has the right adjoint f* : A |d — A | ¢
given by pulling back along the morphism f. Now, identifying f : ¢ — d with the morphism
f : € — d of the corresponding comonoids in A, one can see the functors f* and f. as the

induction functor A —9A and the coinduction functor 4¢A —%A, respectively. Given an object
c € A, we write P, and U, for the functors (!.)* and (I¢)s.
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Given a symmetric monoidal category V = (V,®,1), the category Mon(V) of monoids in
V is again a monoidal category. For two V-monoids A = (A, ma,e4) and B = (B,mp,ep),
their tensor product is defined as

ARB=(A®B,(ma®@mp)(10T45R1),ea Qep),

where 7 is the symmetry in V. The unit object for this tensor product is the trivial V-monoid
I= (I, Iy, Ir). Similarly, the category Comon(V) of V-comonoids inherits, in a canonical way,
the monoidal structure from V making it a monoidal category.

It is well-known that one can describe bimonoids in any symmetric monoidal category V as
monoids in the monoidal category of comonoids in V. Thus, writing Bimon (V) for the category
of bimonoids in V, then Bimon(V) = Mon(Comon(V)). In particular, since Comon(A) ~ A for
any cartesian monoidal category A, one has Bimon(A) = Mon(Comon(A)) ~ Mon(A). Thus,
for any monoid b = (b, myp, €p) in (A, x, 1), the 6-tuple

b = ((byma, en), (b, Ay, 1))

is a bimonoid in (A, X, 1). In particular, then the functor bx — : A — A is a (7, X —)-bimonad
(in the sense of [21]).

Fix now a monoid b = (b,my,ep) in (A, x,1). Since b is a bimonoid in (A, x,1), the
category nbA := Ayy_ of b-modules is monoidal. More precisely, if (z, o), (v, o) € bA, then
their tensor product is the pair (x X y, azxy), Where agx, is the composite

ApXTXY bXTy z Xy Qg Xty

bxzxy bxbxaxxy———bxazxbxy

T X y.

It is easy to see that this monoidal structure is cartesian and coincides with the cartesian
structure on LA which can be lifted from A along the forgetful functor ,bA — A.

Suppose now that (c,a. : b x ¢ — ¢) € pbA. Applying the previous proposition to the
comonoid (¢, a.) in the cartesian monoidal category pA gives

6.2 Proposition. If (¢c,a.) € bA, then the assignment

((.T, Oéw), a(m,az)) — ((.Z‘, aw)7p2 : e(m,az))

yields an isomorphism of categories
(@ac)(LA) ~ pA | (c, ).

We have seen that the data

b=(b=(bx—,myx—ex—), b=({bx— A x—,1x =) Top X —)

define a (755 x —)-bimonad on A and, considering b as an object of ,A via the multiplication
my : bx b — b, one obtains easily that the categories Al := AP(7,;, x —) (compare 4.1)
and m(bA) are isomorphic. Thus, by the previous proposition, the categories Ag and
pA | (b,my) are also isomorphic.
6.3 Theorem. Assume that

(i) A has small limits, or

(ii) A has colimits and the functor b x — preserves them, or

(ili) A admits equalisers and b x — has a right adjoint, or

(iv) A admits coequalisers and b x — has a left adjoint.
Then the functor

K:A—pA] (bymp), ar— (bxa,p:bxa—D),

is an equivalence of categories if and only if b is a group.
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Proof. It is easy to see that, modulo the isomorphism AZ ~pbA | (b,my), the functor
K : A — pA|(b,mp) can be identified with the comparison functor K : A — A’g, which by 4.5

is an equivalence of categories if and only if the bimonad b has an antipode, which is the case
if and only if the A-bimonoid b has one, i.e., b is a Hopf monoid in (A, x,1). Now the result
follows from the fact that in any cartesian monoidal category, a Hopf algebra is nothing but
a group (see, for example, [28, 5.20]). O

Consider now an object (¢, a.) € pA. Since (¢, a.) is a comonoid in the cartesian monoidal
category (pA, X, 1), the composite

ApXeX— bXTp,eX— Qe XbX —
bxeXx ——>bxbxex ————bXxexbx ———cXxbx —

is an erltvwining from the monad Ty = b x — to the comonad Gg = ¢ x —. Then one has a
lifting T, of the monad Ty, along the forgetful functor A = A | ¢ — A. It is easy to see that
if (,f 2 —¢) € Alc, then

To(z, f) = (bxz,00- (bX f) 1 bxz— c).
We write (A | ) for the category (A ]c)g . It is also easy to see that the functor
K:A—yp(Alc)
that takes an object a € A to the object
(cxXa,acxa:bxexa—cXa),

makes the diagram

b(Alc)

b
U
A Alc

PC

commute, where U is the evident forgetful functor. Then the corresponding ﬁ—module struc-
ture on P. is given by the morphism a, x — : b x ¢ Xx — — ¢ x —. Since the forgetful
functor U, : A | ¢ — A that takes f : © — ¢ to z is left adjoint to the functor P, and
since the (f :  — c¢)-component of the unit of the adjunction U. - P, is the morphism
< f,I; > — ¢ x x, the (f :  — ¢)-component ¢; of the monad morphism ¢ : 'ﬂ — P.U. is
the composite

bx < f,Iy> e X1y
bxg———bxecxax——cXuzx.

We write v, for the morphism ¢;, : b xc—c xec.
One says that a morphism f : a — b in A is an (effective) descent morphism if the
corresponding functor f*: A|b — A a is precomonadic (resp. monadic).

6.4 Theorem. Let b = (b, my, ep) be a monoid in A and let (c,a.) € bA. Suppose that
(i) A admits all small limits, or

(i) A admits coequalisers of reflexive pairs and the functorsbx —: A — A andcx —: A — A
both have left adjoints.

Then the functor K : A — p(A ] ¢) is an equivalence of categories if and only if y. : bxc — cxc
is an isomorphism and . : ¢ — 1 is an effective descent morphism.

Proof. According to Proposition 1.15, the functor K is an equivalence of categories if and
only if the functor P, is comonadic (i. e. if the morphism !, : ¢ — 1 is an effective descent

morphism) and ¢ : T, — P.U, is an isomorphism of monads. Since the functors bx — : A — A
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and ¢ X — : A — A both preserve those limits that exist in A, it follows from 2.8 that if A
satisfies (i) or (ii), ¢ is an isomorphism if and only if its restriction on free P.U, -algebras is so.
But any free P.U.-algebra has the form (¢ x z,p1) for some x € A and it is not hard to see that
the (c x @, p1)-component f(.x g p,) of ¢ is the morphism 7. x x. It follows that # ¢y, p,) is an
isomorphism for all x € A if and only if the morphism ~, is an isomorphism. This completes
the proof. a

We say an object a € A is faithful if the functor a x — : A — A is conservative. Note
that an arbitrary a € A for which the unique morphism !, : @ — 1 is a descent morphism is
necessarily faithful.

Following Chase and Sweedler [11] we call an object (¢, a.) € pbA a Galois b-object if ¢ is
a faithful object in A such that the morphism ~. : b X ¢ — ¢ X ¢ is an isomorphism. Using this
notion, we can rephrase the previous theorem as follows.

6.5 Theorem. In the situation of the previous theorem, if (c,a.) € bA is a Galois b-object,
then the functor K : A — w(A | c) is an equivalence of categories if and only if I, : ¢ — 1 is an
effective descent morphism.

If any descent morphism in A is effective (as surely it is when A is an exact category in
the sense of Barr, see [15]), then one has

6.6 Corollary. If every descent morphism in A is effective, then for any Galois b-object
(¢, a.), the functor K : A — (A | c) is an equivalence of categories.

Note that if g : I — Gg is a grouplike morphism for the comonad Gg, then the composite
12 (1) =cx1 22, 1 is the identity morphism, implying that the morphism !, : ¢ — 1
is a split epimorphism. It is then easy to see that the counit of the adjunction U, 4 P, is a
split epimorphism, and it follows from the dual of [19, Proposition 3.16] that the functor P,
is monadic (i.e., !. : ¢ — 1 is an effective descent morphism) provided that the category A is
Cauchy complete. In the light of the previous theorem, we get:

6.7 Theorem. In the situation of Theorem 6.4, if A is Cauchy complete and if there exists a
grouplike morphism for the comonad Gg, then the functor K : A — (A | c) is an equivalence
of categories if and only if (¢, a.) € bA is a Galois b-object.

Recall from [11] that an object a € A is (faithfully) coflat if the functor
ax —:A—A
preserves coequalisers (resp. preserves and reflects coequalisers).

6.8 Theorem. Let A be a category with finite products and coequalisers, and b = (b,my, ep)
a monoid in the cartesian monoidal category A with b coflat and let (¢, ) € pA be a b-Galois
object with !, : ¢ — 1 an effective descent morphism. Assume

(i) A admits all small limits, or
(ii) the functors bx —: A — A and ¢ x —: A — A both have left adjoints.
Then c is (faithfully) coflat.

Proof. Note first that since A | ¢ ~®A and since the category A admits coequalisers, the
category A | ¢ also admits coequalisers and the forgetful functor U, : A | ¢ — A creates them.
Now, if b is coflat, then the functor b x — : A — A preserves coequalisers, and it follows from
the commutativity of the diagram

Ale—o A e

Ucl lUC

_—
Tb:be
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that the functor ﬁ: also preserves coequalisers. As in the proof of 6.4, one can show that the
morphism ¢ : Ty, — P.U, is an isomorphism of monads. Thus, in particular, the monad P.U,
preserves coequalisers. Since the morphism !. : ¢ — 1 is an effective descent morphism by our
assumption on ¢, the functor P, is monadic. Applying now the dual of [19, Proposition 3.11],
one gets that the functor U.P, = ¢ X — also preserves coequalisers. Thus c is coflat. a

As a consequence, we have:

6.9 Theorem. Let A be a category with finite products and coequalisers in which all descent
morphisms are effective. Suppose that b = (b, myp, ep) is a monoid in the cartesian monoidal
category A with b coflat and that (¢, a.) € pA is a b-Galois object. If

(i) A admits all small limits, or
(i) the functors b x —: A — A and ¢ x — : A — A both have left adjoints,
then ¢ is (faithfully) coflat.

6.10. Opposite category of commutative algebras. Let k be a commutative ring (with
unit) and let A be the opposite of the category of commutative unital k-algebras.

It is well-known that A has finite products and coequalisers. If A = (A, ma,e4) and B =
(B,mp,ep) are objects of A (i.e. if A and B are commutative k-algebras), then A®y B with the
obvious k-algebra structure is the product of A and B in A: the projections p; : AQx B — A
and py : A®p B — B are given by [4 Qpep: A — A®, B and eg ® Ig : B — AR®y B,
respectively. Furthermore, if f,g : A — B are morphisms in A, then the pair (C,7), where
C ={be B|f(b) =g(b)} and i : C — B is the canonical embedding of k-algebras, defines a
coequaliser in A. The terminal object in A is k.

An object A in A (i.e. a commutative k-algebra) is (faithfully) coflat if and only if A is a
(faithfully) flat k-module (see, [11]). Moreover, a monoid in the cartesian monoidal category
A is a commutative k-bialgebra, which is a group in A if and only if it has an antipode, and
if B is a commutative k-bialgebra, then (C,ac) € gA if and only if C is a commutative
B-comodule algebra.

Note that in the present context, (C,ac) € BA is a Galois B-object if C' is a faithful
k-module and the composite

ac®rlc B®rmc

Yo : CQ® C B®,C®,C B®, C,

where m¢ : C ®; C' — C is the multiplication in C, is an isomorphism.

Since the category A admits all small limits and since in A every descent morphism is
effective (see [20]), one can apply Theorem 6.9 to deduce the following

6.11 Theorem. Let B be a commutative k-bialgebra with B a flat k-module. Then any Galois
B-object in A is a faithfully flat k-module.

Note finally that when B is a Hopf algebra which is finitely generated and projective as a
k-module, the result was obtained by Chase and Sweedler, see [11, Theorem 12.5].
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