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Generalizing the notion of Galois corings, Galois comodules were introduced as
comodules P over an A-coring € for which P, is finitely generated and projective
and the evaluation map py : Hom?% (P, ®) ®g P — € is an isomorphism (of corings)
where S =End®(P). It has been observed that for such comodules the functors
—®,4 € and Hom, (P, —) ®g P from the category of right A-modules to the category
of right B-comodules are isomorphic. In this note we use this isomorphism related to
a comodule P to define Galois comodules without requiring P, to be finitely generated
and projective. This generalises the old notion with this name but we show that
essential properties and relationships are maintained. Galois comodules are close to
being generators and have common properties with tilting (co)modules. Some of our
results also apply to generalised Hopf Galois (coalgebra Galois) extensions.
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1. INTRODUCTION

Let € be a coring over the ring A and put S = End“(A). A grouplike element
g € € makes A a right ‘€-comodule by the coaction p?: A > A®, €, a~ 1 ® ga.
The notion of Galois corings (€, g) was introduced in Brzeziriski (2002) by requiring
the canonical map,

1:AQsA— €, a®ad +— agd,

to be an isomorphism (of corings). It was pointed out in Wisbauer (2004) that this
can be seen as the evaluation map

p : Hom“(4,, €) @ A — €,
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2684 WISBAUER
and that it implies bijectivity of
py : Hom“(A,, N) ® A — N,

for every (€, A)-injective comodule N.

The notion of Galois corings was extended to comodules by El Kaoutit and
Gomez-Torrecillas (2003), where to any bimodule ¢P, with P, finitely generated and
projective, a coring P* ®; P was associated and it was shown that the canonical map

i, : Hom, (P, A) @4 P — €

is a coring morphism provided P is also a right ¢-comodule and § = End“(P).
In Brzeziiski and Wisbauer (2003, 18.25) such comodules P were termed Galois
comodules provided i, was bijective, and it was proven in Brzeziiiski and Wisbauer
(2003, 18.26) that this condition implies that the functors Hom,(P, —) ®¢ P and
— ®4 6 from the right A-modules to the right ‘6-comodules are isomorphic.

In a recent article, Brzeziriski (2005) further investigated these Galois
comodules and pointed out their relevance for descent theory, vector bundles, and
noncommutative geometry. Related questions are, for example, also considered by
Caenepeel et al. (to appear). In this note we concentrate on comodule properties
and we want to free the notion from the condition that P, has to be finitely
generated and projective. This is done by taking the above mentioned isomorphism
of functors as definition. Although some symmetry is lost those properties which to
us seem to be essential, are preserved. From this point of view Galois comodules are
somehow similar to tilting (co)modules, or modules M for which all M-generated
modules are M-static: they all share the property that they are generators in their
respective categories provided they are flat over their endomorphism rings. Hence
the presentation is partly motivated by Wisbauer (1998, 2000) on tilting and static
modules. Some results from Brzeziriski (2005) and Caenepeel et al. (to appear) are
obtained in a more general setting (e.g., 5.10, 5.8).

Relative injectivity of comodules is of special interest in the context of our
investigations and leads to category equivalences. In particular, a strongly (€, A)-
injective (equivariantly injective) Galois comodule P that is finitely generated and
projective as A-module, induces an equivalence between the category of comodules
and the End“(P)-modules (see 5.7).

Given a commutative ring R, an entwining structure (A, C,y) consists of
an R-algebra A, an R-coalgebra C, and an R-linear map ¥ : CQr A > A®;,; C
satisfying certain compatibility conditions which ensure that A ®, C allows for an
A-coring structure (see Brzezinski and Wisbauer, 2003, Section 32). If A is a right
A ®p C-comodule (equivalently, there exists a grouplike element in A ®, C), then
Hom"®*“(A, A®; C) ~ A and A is a Galois A ®,; C-comodule if and only if A is
a C-Galois extension over End*®*“(A) = A“C (see Brzeziriski and Wisbauer, 2003,
34.10). Hence a number of results on generalized Hopf Galois (coalgebra Galois)
extensions in Schauenburg and Schneider (2005) can be seen as special cases of our
results (see 5.10).

The symmetry for Galois comodules that are finitely generated and projective
A-modules mentioned above can be maintained for comodules which are direct sums
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of comodules of this type. In this context, the infinite comatrix corings, as introduced
by El Kaoutit and Gémez-Torrecillas (2004), find a natural application (Section 6).

2. PRELIMINARIES

Throughout we will essentially follow the notation in Brzeziriski and Wisbauer
(2003). For convenience we recall some basic notions.

2.1. Corings. Let A be an associative ring with unit and € an A-coring with
coproduct and counit

A:€— ECQ, E, £:€— A.

Associated to this, there are the right and left dual rings €* = Hom, (¢, A) and
*¢ = ,Hom(€, A) with the convolution products.

2.2. Comodules. A right A-module M is a right ‘6-comodule provided there is an
A-linear ‘6-coaction

M:M—>M®,€  written as ¢ (m) =Y m,®m, for me M,

satisfying the coassociativity and counital condition.

We denote the category of right A-modules by M, and the category of right
%-comodules by M*?. The corresponding left versions are denoted by ,M and
“M, respectively. The category M is additive, has coproducts and cokernels, and
epimorphisms are surjective maps. The functor— ® , € : M, — M is right adjoint
to the forgetful functor by the isomorphisms, for M € M*, X € M,,

¢:Hom“(M, X ®, €) - Hom,(M,X), fr (Iy®¢)of,

with inverse map h > (h ® I,,) o oM.

Notice that for any monomorphism (injective map) f: X — Y in M,, the
colinear map f® I, : X ®, € — Y ®, € is a monomorphism in M* but need not
be injective. In case ,€ is flat, monomorphisms in M are injective maps and in this
case M* is a Grothendieck category (see Brzezifiski and Wisbauer, 2003, 18.14).

2.3. The Subcategory ¢[M]. Let M € M*. Homomorphic images of direct sums
of copies of M are called M-generated comodules. The full subcategory of MY,
whose objects are subcomodules K of M-generated comodules N (i.e., there is an
injective colinear map K — N), is denoted by o[M]. Notice that this does not imply
that morphisms in ¢[M] have kernels unless ,€ is flat.

Cokernels of morphisms M®) — M®_  with any sets A’, A, are called
M-presented comodules. Notice that the image of the functor — @4 M : Mg — M*
lies in o[ M], in fact, comodules of the form X ® ; M with X € My are M-presented.

2.4. The a-Condition. Defining the convolution product on *€ = ;Hom(%4, A) as
in Brzezinski and Wisbauer (2003), any right €-comodule (M, ¢™) allows a left
*®-module structure by putting f — m = (I}, ® f) o o™ (m), for any f € *€, m € M.
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This yields a faithful functor ® : M — ..M which is a full embedding if and only
if the map

og : K®, € — Hom, ("6, K), nQ® cr [f > nflo)],
is injective for any K € M,. This holds if and only if ,% is locally projective and is
called left a-condition on €. In this case M* can be identified with ¢[.. €], the full
subcategory of ..M whose objects are subgenerated by €.
Symmetrically the right a-condition is defined and if it holds M can be
identified with the category ¢[%6.] where €* = Hom, (€, A).

2.5. Morphism Groups. The comodule morphisms between M, N € M? is
characterised by the exact sequence of Z-modules

0 — Hom“(M, N) — Hom,(M, N) —> Hom,(M, N ® , €),

where y(f) = o" o f = (f ® I)) 0 0".

2.6. Cotensor Product. For two comodules M € “M and L € “M the cotensor
product is defined by the exact sequence of Z-modules

0 — > ML —— M®, N —~ M®,¢®,L
where w,,;, = o” 1, — I, ®" ¢.

2.7. M, Finitely Generated Projective. Let M € M® such that M, is finitely
generated and projective. Then for M* = Hom,(M, A) the map

¢: 6, M* — Hom,(M, ), c®hr>c® h(—),
is an isomorphism and induces a left ‘¢-comodule structure on M* (see Brzeziriski
and Wisbauer, 2003, 19.19). With a dual basis m,, ..., m, € M, =, ..., n, € M*, the
inverse map of ¢ is given by sending g € M* to >_; g(m;) ® =;, and the coaction on

M* is

MM > €M, g (§R )M > Y (g®1,)0" (m) ® 7.

There is a canonical anti-isomorphism between “End(M*) and § = End“ (M)
and by this M* is a right S-module.
For any N € M?, there exists an isomorphism (natural in M)

N ®“ M* —> Hom"(M, N).

This follows from the proof of Brzeziriski and Wisbauer (2003, 10.11). With
the defining sequences for Hom* and ®“ we have the commutative diagram with
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exact rows

0——> NM —— Ne,M 2% N, eQ,M

l 1: 1:

0 — Hom“M, N\ —— Hom,(M, N) —— Hom,(M, N ® , €),

where oy e = 0" ® Iy — Iy ® 0y« and y(f) := 0" o f — (f ® I,,) 0 ¢". From this
diagram lemmata imply the existence and bijectivity of the required morphism.

Notice that this isomorphism is also proven in Caenepeel et al. (to appear,
Proposition 2.4).

2.8. Cointegrals. An (A, A)-bilinear map 6 : € ®,, € — A is called a cointegral in
G if

(Ie ®0)0(A® 1) = (0Q 1) o (I, @ A).
Cointegrals are characterised by the fact that for any M € M, the map
v=U,®0)0(@"QIL,): M®,€— M

is a comodule morphism, or by the corresponding property for left ‘€-comodules.
This follows from the proof of Brzeziriski and Wisbauer (2003, 3.29). In
Caenepeel et al. (to appear, Section 5) these maps are related to the counit for
the adjoint pair of functors — ® , € and the forgetful functor. For R-coalgebras C
over a commutative ring R with C, locally projective, a cointegral is precisely a
C*-balanced R-linear map C ®, C — R (e.g., Brzeziiiski and Wisbauer, 2003, 6.4).

2.9. Relative Injectivity. Let M be a right ¢-comodule and S = End“(M).

M is (6, A)-injective provided the structure map o : M — M ®, € is split by
a G-morphism 1: M ®, € — M.

We call M strongly (€, A)-injective if this 1 is ‘€-colinear and S-linear. Given
a subring B C S, M is said to be B-strongly (€, A)-injective if 1 is ‘€-colinear and
B-linear.

We call M fully (¢, A)-injective if there exists a cointegral 0,, : € ®, € — A
such that ¢ is split by (I, ® d,,) o (0" ® I,).

The notions for left ‘6-comodules are defined symmetrically.

Obviously, fully (6, A)-injective comodules are strongly (¢, A)-injective and
for a B-strongly (€, A)-injective comodule M and any X € M, X ®,; M is (€, A)-
injective.

For coalgebras B-strongly (€, A)-injective comodules are named B-
equivariantly “G-injective (see Schauenburg and Schneider, 2005, Definition 5.1).
Cointegrals 6 making M fully (€, A)-injective are said to be M-normalized in
Caenepeel et al. (to appear, Proposition 5.1).

The fact that under projectivity conditions comodule properties may be
considered as module properties has the following implication.
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2.10. € Strongly (6, A)-Injective. Assume €, to be locally projective. Then the
following are equivalent:

(a) € is strongly (6, A)-injective;
(b) € is a coseparable coring.

Proof. One implication is obvious. Recall that End“(%) ~ ¢* and assume € to be
strongly (€, A)-injective with a €*-splitting right ‘€-colinear map v: € ® , € — €.
By the right a-condition this means that v is also left ‘G-colinear and hence € is
coseparable. O

2.11. Properties of Fully (€, A)-Injective Comodules. Ler M € M® with S =
End“(M).

(1) M is fully (6, A)-injective if and only if
(I, ®0,)00" =1, whered,, =08, 0A:€— A.

(2) € is a fully (6, A)-injective left (right) comodule if and only if € is a coseparable
coring.
(3) Let M be fully (€, A)-injective. Then:

(1) Every comodule in c[M] is fully (€, A)-injective;
(i) If M is a subgenerator in M, then € is a coseparable coring;
(iii) For any subring B C S and X € My, X Q5 M is fully (6, A)-injective;
(iv) If M, is finitely generated and projective, then M* is a fully (€, A)-injective
left “G-comodule.

Proof.
(1) The assertion follows from the equalities
(Ly ® 0y) 00" = (1yy ® 6yy) 0 (" @ 1) 0 0" = I
(2) This is shown in Brzeziriski and Wisbauer (2003, 26.1). In this case d, = &.

(3) (i) Obviously any direct sum M® is fully (€, A)-injective. For every
¢-comodule epimorphism f: M — N and m € M,

(Iy ® 0)) (f(m)y ® f(m),) = (Iy ® 0),)(f(mg) ® my) = f(mydy(my)) = f(m).

This proves that factor comodules of M are fully (¢, A)-injective. For
subcomodules similar arguments apply.

(ii) This follows from (2) and (3)(i).

(iv) With the dual basis (m;, ;) for M, the coaction of € on g € M* is given by
" (8) = Xi(g ® I)¢" (m;) ® m;, and

Z(éM ® IM*)(g(miQ)mzl® m) = Zg(migéM(mzl)) m = Zg(mi) m =g,

proving that M* is a fully (6, A)-injective comodule. a
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2.12 Splitting of Hom- and ®-Sequences.

(1) Let M e M¥, B C End“(M) a subring, and assume M to be B-strongly (€, A)-
injective. Then for any N € M¥, the sequence

0 — > ML —— MR, L — M®,¢®, L
is splitting in ;M, and for any L € “M the sequence
0 — Hom“(N, M) ——> Hom,(N, M) —— Hom,(N, M ® , €)
is also splitting in zM.

(2) Let L € “M, D C “End(L) a subring, and assume L to be D-strongly (€, A)-
injective. Then for any M € M, the sequence

0 — > ML —— MR, L — M®,¢®, L
is splitting in M,,, and for any K € “M, the sequence
0 — “Hom(K, L) — Hom, (K, L) ——> Hom,(K, €®, L)
is also splitting in M.

Proof. (1) Letv:M ®, € — M be a comodule splitting of o".
As in the proof of Brzeziiiski and Wisbauer (2003, 21.5)(4) it is easy to see that

B=0®IL)o(Il, ®")  M®, N> MQ*N

is an End“(L)-linear retraction. If v is B-linear then obviously f§ is a B-linear
retraction and the proof of Brzeziiiski and Wisbauer (2003, 21.5)(4) applies.

For the second sequence we can follow the proof of Brzeziriski and Wisbauer
(2003, 3.18). The inclusion is split by

Hom (N, M) — Hom“(N, M) : f > vo (f ® I,,) o ",
and y is split modulo Hom“(N, M) by
Hom,(N, M ® , €) - Hom,(N, M), g vog.

This is clearly a right End“(N)-linear splitting. If v is B-linear, the splitting maps are
also left B-linear.

(2) The assertions can be seen by symmetry. |

For convenience we list the following conditions.

2.13. Associativity Conditions for the Cotensor Product. Consider two co-
modules M € M® and L € *M.
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(1) For a subring B C End“(M) and X € M,,
X, MR L)~ (X®;,M)Q°L

provided that:

(1) X is a flat B-module, or
(i) —®% L is right exact or L is (€, A)-injective, or
(ill) M is B-strongly (6, A)-injective.

(2) For a subring D C “End(L) and Y € M,
MR (LR, V) =M L)®,Y

provided that:

(1) Y is a flat D-module, or
(i) M®®-is a right exact or M is (€, A)-injective, or
(iii) L is B-strongly (€, A)-injective.

Proof. The conditions (i) and (ii) are sufficient to imply the assertion by Brzeziriski
and Wisbauer (2003, 21.4 and 21.5). The sufficiency of (iii) follows from 2.12. O

2.14. Hom-Tensor Relation. For M € M?, L € “M, a subring B C End“(M), and
any right B-module X, there is a map

Yy 1 X ®p Hom“(N, M) - Hom“(N, X ®, M), x®@hr x® h(—),

and this is an isomorphism provided that:

(1) X is a flat B-module and N, is finitely presented, or
(i) M is B-strongly (6, A)-injective and N, is finitely generated and projective, or
(iil) N is projective in M® and N, is finitely generated.

Proof. Consider the commutative diagram with canonical maps

0 —— X ®;Hom“(N, M) —— X ®; Hom,(N, M) —— X ®, Hom,(N, M ®, €)

l l l

0 —— Hom“(N, X ®3; M) —— Hom, (N, X @y M) ——— Hom,(N, X ®,; M ®, €),

where the bottom sequence is exact. If (i) holds, then the top sequence is also exact,
and by 2.12, this is also true if (ii) holds. In both cases the two right vertical maps
are isomorphisms, and hence the first one is also an isomorphism.

Now assume (iii) and consider an exact sequence F; - F, - X — 0 in ;M
where F;, F, are free B-modules. With — ®, M and Hom“(N, —) we construct
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the commutative diagram with exact rows
F, ® Hom“(N, M) —— F, ®,; Hom®%(N, M) —— X ®, Hom*(N, M) —— 0
lw, lwpz ll//x
Hom®(N, F;, @ M) ——— Hom“(N, F, ®,; M) ——— Hom®(N, X ® ; M) —— 0,

where Y and Y are isomorphisms (since Hom“(N, —) commutes with direct
sums) and hence ¥/, is an isomorphism.

Notice that projectivity of the comodule N implies projectivity of N, (see
Brzeziriski and Wisbauer, 2003, 18.20). Hence Hom“(N, M) ~ M ®“ N* and N* is
coflat. So the assertion also follows from 2.13(1)(ii). |

3. ADJOINT FUNCTORS AND STATIC COMODULES

3.1. Adjoint Pair of Functors. For any right €-comodule P with endomorphism
ring S = End“(P), the functors (see Brzeziriski and Wisbauer, 2003, 18.21).

—~®;P:M; — M*  Hom“P,—):M* — Mg,
form an adjoint pair by the functorial isomorphism (for N € M* and X € My),
Hom“(X ®; P, N) - Homg(X, Hom“(P,N)), g~ [x+— g(x® —)],

with inverse map & +— [x ® p — h(x)(p)]. Counit and unit of this adjunction are
given by

uy : Hom“(P,N)®s P — N, f®p+> f(p),
vy : X > Hom“(P, X ®5P), x+ [pr x® pl,
and each of the following compositions of maps yields the identity,

VHom(P,N) Hom(P, puy)

Hom“(P, NN —— Hom“(P, Hom“(P, N) ®; P) ———> Hom"“(P, N),

Hxepr

X &P 2", Hom®(P, X @5 P) @5 P —5 X @ P.

A “6-comodule N is called P-static if p, is an isomorphism, and an S-module X
is called P-adstatic if vy is an isomorphism. Clearly, P is P-static and for any index
set A,

o : Hom“ (P, PYV) @ P — P,

is a comodule epimorphism with splitting map g — Y, €, ® 7,(g), where €, and =,
denote the canonical inclusions and projections of the coproduct P,

3.2. P, Finitely Generated and Projective. Let P € M* with P, finitely generated
and projective and S = End“(P).
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(1) For any N € M?, Hom“(P, N) ~ N ®° P*, in particular S ~ P ®° P*.
(2) A module X € My is P-adstatic, provided

(X®sP) Q" P* >~ X @ (PR P).

(3) (1) Every flat X € My is P-adstatic.
(ii) If P* is coflat or (G, A)-injective, or P is strongly (€, A)-injective, then every
X € M is P-adstatic.
(4) For a subring B C S and Y € My,

Hom“(P,Y @, P) ~Y ®; S

provided Yy is flat, or P is B-strongly (€, A)-injective, or P* is coflat or
(€, A)-injective.

Proof. (1) This is shown by the proof of Brzeziriski and Wisbauer (2003, 21.8).

(2) Recall that X € My is P-adstatic if vy : X — Hom“(P, X ®, P) is an
isomorphism. Under the given condition, (1) implies

Hom“(P, X @, P) ~ X ®5 (P ®° P*) ~ X.
(3) As shown in 2.13, each of the conditions implies the isomorphism
required.
(4) From (1) we get Hom“(P, Y ®, P) ~ (Y ®, P) ®° P*, and by 2.13, under
each of the conditions required,

(Y®pP)® P ~Y @y (PR P)=Y®,S. 0

3.3. P as Generator in M®. Recall that P is a generator in M? if and only if
the functor Hom“(P, —) : M® — My is faithful and that faithful functors reflect
epimorphisms (e.g., Wisbauer, 1991, 11.3). Since, for any N € M?,

Hom“(P, uy) : Hom“(P, Hom*(P, N) ® P) — Hom*(P, N)

is an epimorphism (surjective), we conclude that p, is an epimorphism (that is
surjective) in M?, provided P is a generator in M*. Taking A = Hom*(P, N), the
canonical epimorphism ¢, : P — N remains an epimorphism under Hom“(P, —).

Now assume ,€ to be flat. Then K = Ke ¢ is a comodule, and we have the
commutative diagram with exact rows

Hom®(P, K) ®s P — Hom®(P, P")) ¢ P — Hom®(P,N) g P —> 0

] 5

0 K pW) N 0,

where p, is surjective and the central vertical map is an isomorphism (e.g.,
Wisbauer, 2000, Corollary 3.4). By diagram lemmata, this implies that u, is injective
(hence an isomorphism).
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3.4. Properties of Generators. Assume ,€ to be flat.

(1) If P generates the (finitely generated) subcomodules of P™, then, for every
P-generated ‘G-comodule L, u, is an isomorphism, and for every N € M?, u, is
injective.

(2) P is a generator in M if and only if uy is an isomorphism for any N € MY, i.e.,
every right ‘6-comodule is P-static.

Proof. (1) Clearly, the condition implies that P generates the subcomodules of
any direct sum of copies of P and bijectivity of u,; follows from the considerations
above. The image of u, is the trace Tr(P, N) of P in N (sum of all P-generated
subcomodules) and Hom“(P, N) = Hom®(P, Tr(P, N)). Since sy, is bijective, sy
has to be injective.

(2) is a special case of (1). |

Semisimple right comodules P are defined by the fact that any monomorphism
U — P is a coretraction, that is subcomdules are direct summands. If ,€ is flat this
is equivalent to P being a (direct) sum of simple subcomodules and then any direct
sum of copies of P is semisimple.

3.5. Semisimple Comodules. Ler ,€ be flat, P € M¢ and S = End“(P).
(1) The following are equivalent:

(a) P is semisimple; )
(b) for any set A, End“(P™) is a von Neumann regular ring and, for any
N e M¥?,

wy : Hom“(P,N)®¢ P — N s injective;
(c) for any set A, End®(P™) is a regular ring, and for any L € o[P],
u, : Hom“(P, L) ®5 P — L is an isomorphism.

(2) If P is finitely generated (in M), then the following are equivalent:

(a) P is semisimple;
(b) S is a right (left) semisimple ring, and for any N € M?,

wy : Hom“(P,N)®@¢ P — N s injective;
(c) S is a right (left) semisimple ring, and for any L € a[P],
u, : Hom“(P,L) ®, P — L is an isomorphism.

(3) The following are equivalent:

(a) P is simple;
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(b) S is a division ring, and for any N € M?,
ty : Hom“(P,N) @4 P — N s injective;
(c) S is a division ring, and for any L € ¢[P],
1, : Hom“(P, L) ®y P — L is an isomorphism.

Proof. (1) (a) = (b) & (c) For any s € S, the image and the kernel are direct
summands in P. This implies that S is von Neumann regular (e.g., Wisbauer, 1991,
37.7). Since P™ is also semisimple the same argument shows that End“(P™) is von
Neumann regular. Since P generates all subcomodules of any P the remaining
assertions follow from 3.4(1).

(b) = (a) Let N C P be any subcomodule and construct the commutative
diagram

0 — Hom®(P, N) ®s P —— Hom¥(P, P) s P —— Hom®(P, P/N) ®s P

lm lg luw

0 N P P/N 0,

in which the top row is exact by regularity of § (;P is flat). Clearly, wupy
is an epimorphism and is injective by assumption. This implies that p, is an
epimorphism and hence N is P-generated. So there is some epimorphism /4 : PV —
N. Considering 4 as an endomorphism of P, the fact that End“(P™) is regular
implies that the image of h is a direct summand in P and hence in P (see
Wisbauer, 1991, 37.7). This shows that P is semisimple.

(2) The endomorphism ring of a finite direct sum of simple comodules is
right (left) semisimple, and this implies that End“(P™") is von Neumann regular.
Hence the proof of (1) applies.

(3) By Schur’s Lemma, the endomorphism ring of a simple comodule is a
division ring and again the proof of (1) applies. O

Note that assertion (3) is also proven in Brzeziriski (2005, Theorem 3.1).

If ,% is flat, a generator in M? is characterized by the fact that all comodules
are P-static. This suggests the study of comodules P by the classes of P-static
modules. Transferring observations from module theory, we may consider the
following cases.

3.6. Some Classes P-Static. Consider the following conditions for P € M*:

(1) All comodules in M are P-static;

(2) The class of P-generated modules is P-static;

(3) The class of P-presented comodules is P-static;

(4) The class of injective comodules in M is P-static;

(5) The class of (€, A)-injective comodules in M* is P-static.
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The first case was handled in 3.4 for ,€ flat. In module categories, the second
case describes an important property of self-tilting modules; for those, an additional
projectivity condition is required (see Wisbauer, 1998, 4.2; Wisbauer, 2000, 4.4). The
third case generalizes tilting modules (see Wisbauer, 2000, 4.3). For a module P, the
corresponding property (4) essentially means that all P-injective modules in o[ P] are
P-static and—if P is a balanced bimodule—this can be seen as descending chain
condition on certain matrix subgroups of P (see Wisbauer, 1998, 5.4; Zimmermann,
1997). In all these cases, the functor Hom“(P, —) induces equivalences between the
P-static classes and the corresponding adstatic classes. Properties of these classes
correspond to properties of the module P. For example, if the class of P-adstatic
comodules is closed under infinite coproducts, then P has to be self-small, i.e.,
Hom*(P, PV) ~ Hom*(P, P)M.

If ,€ is flat, monomorphisms are injective maps and kernels exist in M?,
and hence most of the proofs for module categories can be transferred to M*. In
particular, if ,€ is locally projective, M can be identified with ¢[.. €] and the
results mentioned immediately apply to comodules. Without such restrictions, all the
properties listed are also of interest and deserve to be investigated elsewhere. Here
we will investigate the comodules characterized by the condition required in (5).

4. GALOIS COMODULES

Throughout this section, let € be an A-coring, P € M?, and put S = End“(P),
T = End,(P). With the evaluation map u:Hom®(P, N)®;P — N, there is a
functorial morphism between the functors — ® ,€ and Hom, (P, —) ®¢ P from M,
to M¥,

i :Hom,(P, —) ®¢ P —> Hom“(P, — ®, €) ®s P -,

4.1 Galois Comodules. We call P a Galois comodule if the following equivalent
conditions hold:

(a) t: Hom,(P, —) ®s P — — ®4 € is an isomorphism;
(b) for any K € M, there is a functorial isomorphism of comodules

fig : Hom, (P, K) ® P > K ®, €, g®p (g®1)a" (p);
(c) every (€, A)-injective N € M? is P-static, i.e.,
py : Hom“(P,N)®s P —> N,  f®pr— f(p),
is an isomorphism (in M%),

Proof. We prove the equivalence of the conditions.
(a) & (b) is clear from the definition.

(b) = (c) (see proof of Brzeziriski and Wisbauer, 2003, 18.26) Assume
N € M? to be (€, A)-injective. Then, by Brzeziiski and Wisbauer (2003, 18.18), the
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canonical sequence
0 —s Hom“(P, N) — Hom, (P, N) —> Hom (P, N ®, ©)

is (split and hence) pure in Mg, where y(f) = ¢" o f — (f ® I,,) o o*. Hence tensoring
with (P yields the commutative diagram with exact rows,

0 —> Hom¥P,N) ®5 P — Homy (P, N) ®s P —> Homa (P, N ®4%6) ®s P

0 N N®4€ N®sERAE,

where the [i’s are isomorphisms and so is .
(c) = (b) Since K ®, € is (€, A)-injective, the assertion follows from the
commutative diagram of right ‘¢-comodule maps

Hom®(P, K ©,%) ®s P> K®44  f®@p—> f(p)

I ;

Homa(P,K) ®s P—5 > K ®,% (I®e)of @p—s S (I ®¢)o f(pg) ®py.

O

4.2. Properties of Galois Comodules. Let P € M? be a Galois comodule. Then:

(1) For any (6, A)-injective N € MY, there is an isomorphism
Viom®(p.y © Hom (P, N) - Hom“(P, Hom“ (P, N) ®; P),

that is, Hom®(P, N) is P-adstatic.
(2) For any K € M, there is an isomorphism

Vitom, (p.x) | Hom, (P, K) — Hom“(P, Hom,(P, K) ®; P).
(3) There are right “G-comodule isomorphisms
Hom“(P, €) ®, P ~ € ~ Hom (P, A) ® P.
(4) Since T = End“(P, P ®, €), there is a T-linear isomorphism

TR®:P— PR, € tpr (t®I1,)0"(p), and
PR, PRUIECEP @ TQgP>P Q;P>EC.

(5) For any K € M, and index set A,
Hom“(P, (K ®, €)*) ®; P ~ Hom, (P, K)" @ P ~ K" ®, €.
(6) There are isomorphisms

Hom, (€, A) ~ Hom,(P* ® P, A) >~ End(P*),
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Hom“(€, P) = Hom*(P* ®; P, P) = Homg(P*, ),  and
Hom“(P ®, ¢, P) >~ Hom (T & P, P) ~ Homy(T, S).

Proof. (1), (2) follow from the fact that the composition Hom“(P, uy) o VHom®(P.N)
yields the identity.

(3), (4) Put N=<€or N=P®, € in the characterizing relations.

(5) This follows from the fact that the product of A copies of K ®, € in M*
is isomorphic to K* ®, €.

(6) Apply isomorphisms from (3), (4) and properties of adjoint functors
(see 3.1). O

4.3. (8, A)-Injective Modules. Let P be a Galois comodule.
(1) For N € M? the following are equivalent:

(a) N is (€, A)-injective;
(b) Hom“(P, ¢") : Hom“(P, N) - Hom“(P, N ® , €) is a coretraction in M.

(2) For P the following are equivalent:

(a) P is (6, A)-injective;
(b) the inclusion i : S — T is split by a right S-linear map.

(3) For P the following are equivalent:

(a) P is strongly (€, A)-injective;
(b) the inclusion i : S — T is split by an (S, S)-bilinear map.

In this case every P-static comodule is (6, A)-injective.
(4) For P the following are equivalent:

(a) P is fully (6, A)-injective;
(b) € is a coseparable A-coring.

In this case every comodule in M is P-static and fully (6, A)-injective.

Proof. (1) By (a), ¢" splits in M and hence Hom“(P, ¢") splits in M. In turn,
(b) yields a splitting of ¢" by tensoring with — ®; P.

(2) follows from (1) since T ~ Hom“(P, P ® , €) as right S-module.

(3) By 2.12, the inclusion Hom*(P, P) - Hom“(P, P ®, €) ~ T is split as
an (S, S)-bilinear map.

If P is strongly (6, A)-injective, then for any X € My, the tensor product is
(€, A)-injective. So in particular P-static comodules are (€, A)-injective.
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(4) (a)= (b) Since P is a subgenerator this follows from 2.11.

(b) = (a) Over a coseparable coring all comodules are fully (€, A)-injective.
(]

Notice that the Assertions (2) and (3) in 4.3 are shown in Brzeziriski (2005,
Theorem 7.2) for f.g. projective A-modules. The arguments in Brzeziriski (2005) can
also be adapted to general Galois comodules.

4.4. Galois Comodules Under the a-Condition. If € satisfies the left «-
condition, M* can be identified with the *&-module category o[.,. €] (see 2.4) and
Galois comodules may be explained in these terms.

By the ring antimorphism A — *€ (see Brzeziriski and Wisbauer, 2003, 17.7)
any left *¢-module has a right A-module structure. It follows from the functorial
isomorphisms on ..M for K € M,

Hom,(—, K) ~ Hom ,(*€ ®.¢ —, K) ~ ..Hom(—, Hom,(*€¢, K)),

that Hom,(*€, K) is (*€, A)-injective, that is, injective with respect to short exact
sequences in ..M which split in M,. Moreover, since the canonical map

vk - K = Hom,("6,K), ki [f+— fkl],

is A-split by f +— f(e), it follows that a left *¢-module K is (*€, A)-injective if and
only if y, splits in .,M. For any P € M* and K € M, there are morphisms

Hom, (P, K)~Hom“(P,K ®,€) —> ..Hom(P,K®, €)

Hom(P,a)

— . Hom(P, Hom ,(*€, K)) ~ Hom, (P, K),

where i is the inclusion and « is the canonical map from 2.4. It is straightforward to
prove that the composition of these maps yields the identity on Hom , (P, K). Hence
injectivity of o implies that Hom(P, o) is an isomorphism and leads to the following
statement.

4.5. Proposition. Ler P € M( be a Galois comodule, assume € to satisfy the left
a-condition, and put S = End”(P) = .,End(P). Then for any K € M,,

«Hom(P, Hom,(*%, K)) @ P ~ Hom“(P, K ®, €) ®, P ~ K ®, €,
implying K ® , ¢ >~ Tr(P, Hom,(*¢, K)).
Proof. Combine the observations above with isomorphisms for Galois comodules.
Notice that Hom,(*€, K) need not be a ‘6-comodule but the trace of P yields a *é-
submodule lying in M®. The last isomorphism is a special case of the corresponding

observation for modules in Wisbauer (1996, 20.4). O

4.6. Semisimple Base Ring. If the ring A is left semisimple (Artinian
semisimple), then all A-modules are projective, and injective, and (¢, A)-injective
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comodules are in fact ‘¢-injective. Moreover, the a-condition is satisfied, and M*
corresponds to the category o[.€]. In this case, Galois comodules are just the
comodules P for which all injectives in o[.,€] are P-static. Such modules were
considered in Wisbauer (2000).

4.7. Remarks. The ideas outlined in 4.4 can be used as guideline to study modules
M of Galois type for module categories over ring extensions B — A by the condition
that all (A, B)-injective A-modules are M-static.

Notice that so far we did not make any assumptions either on the A-module
or on the S-module structure of P. Of course, properties of this type influence the
behaviour of Galois comodules and we look at the S-module structure first.

4.8. Module Properties of sP. Let P € M be a Galois comodule.

(1) If 4P is finitely generated, then ,€ is finitely generated.

(2) If 4P is Mittag-Leffler, then ,€ is Mittag-Leffler.

(3) If 4P is finitely presented, then ,€ is finitely presented.

(4) If 4P is projective, then ,€ is projective.

(5) If ;P is finitely generated and (P is locally projective, then ,€ is locally projective.
(6) If 4P is flat, then ,€ is flat and P is a generator in M*.

(7) If P is faithfully flat, then ,€ is flat and P is a projective generator in M®.

Proof. (1), (2), (3) Putting K = A in 4.2(6) we have the commutative diagram

Hom, (P, A @, P ——— A'®, €

l“’*’ lgp

(Hom, (P, A) ® P)» ——  €*,
where the ¢’s denote the canonical maps. Then (e.g., Wisbauer, 1991, 12.9)

P is fin. gen. = ¢, surjective = ¢ surjective < ,€ fin. gen.,
sPis ML = ¢, injective = ¢ injective < ,€ ML,
¢Pis fin. pres. = ¢, bijective = ¢ bijective <& %€ fin. pres.

Recall that by definition € is Mittag-Leffler (ML) if ¢, is injective.

(4) Let (P be projective. Then T ®3 P ~ P ®, ¢ is projective as left 7-
module. Consider any epimorphism F — ¢ where F is a free module in ;M. Then
I, ® f is a splitting epimorphism in ;M, and in the commutative diagram with exact
rows

IRIRQ
Pror P s F 8 prorPoyse—s0

PRy

F ® 0,
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where the first vertical map is the evaluation and the right isomorphism is from
4.2(4), the top row is splitting in ,M and hence f also splits showing that ,€ is
projective.

(5) Let (P be locally projective. To check local projectivity of ,€ consider
the diagram in ;M with k € N and exact bottom row,

AL g

¢

L N 0.

Applying P® ,—we obtain the diagram

Ip®i

Pt L P,

J«]®g
1®

Po, L —Ls Po, N — 0.

Since P®, €>~T QP is a locally projective T-module (by Brzeziiski and
Wisbauer, 2003, 42.11) and ,P* is finitely generated by assumption, there is some
T-morphism & : P®, € - P ®, L with

I®f)oho(l,0)=1I®g.

Applying P* ®, — and the evaluation map, we obtain f o ([p. ® h) oi = g. This
shows that ,€ is locally projective.

(6) We have —®, 6 ~ Hom,(P, —) ®¢ P. Clearly, Hom,(P, —) (always)
preserves injective maps. If (P is flat, then — ®¢ P also preserves injectivity of
morphisms and hence — ®, € preserves injective maps, i.e., , is flat.

For any M € M* we have an exact sequence of comodules

QM

0 M M®, € —> M®,€®, €.

By left exactness of Hom(g(P, —) and — ® P, we obtain the exact commutative
diagram

0 — Hom®(P, M) ® s P — Homy (P, M) ® s P —— Homa (P, M ®4%) ®s P

PR |

0 M M®46 M®4A6R4%6

from which we see that the first vertical map is also an isomorphism. This shows
that P is a generator.
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(7) By (6), ,€ is flat and P is a generator. Consider any epimorphism f':
M — N in M®. From this we obtain the commutative diagram

Hom(P,f)®I
Hom®(P, M) ®s P HonBheTE Hom®(P,N) s P ——=0

: i:

M N 0,

where the vertical maps are isomorphisms by 3.4 and hence the exactness of the bottom
row implies exactness of the top row. Now faithfulness of the functor — ® P implies
that Hom“ (P, f) is an epimorphism and hence P is projective in M*. |

4.9. Remark. Notice that the condition ;P finitely generated is satisfied if P is a
generator in M,. For Galois comodules P, this is the case provided € : € — A is
surjective.

4.10. Corollary. Let P € M® be a Galois comodule.
(1) If (1) P is projective or
(i1) P is locally projective and P is finitely generated,

then M is equivalent to the full category of ..M subgenerated by the *€-module
P, i.e., M = g[.,,P].
(2) If (P is finitely generated and projective, then M = ..M.

Proof. (1) Under the given conditions, ,€ is locally projective (see 4.8(3), (4)) and
M? = ¢[.,,€]. Since P subgenerates €, it is a subgenerator in M“ and hence the
assertion follows.

(2) The condition implies that ,€ is finitely generated and projective and
hence M* = ..M (by Brzeziniski and Wisbauer, 2003, 19.6). O

4.11. Semisimple Galois Comodules. Assume ,€ to be flat. For a semisimple
right ‘€-comodule P, the following are equivalent:

(a) P is a Galois comodule;
(b) P is a generator in M*;
(¢) py : Hom“(P, €) ® P — € is surjective.

In this case, € is a right semisimple coring (and ,€ is projective).

Proof. Since P is semisimple it is a generator in o[P] (see 3.5).
(a) = (c) This is trivial.

(c) = (b) Surjectivity of u, means that € is P-generated. Since € is a
subgenerator in M? (see Brzeziiski and Wisbauer, 2003, 18.13(1)) this implies
o[P] = M*.

(b) = (a) follows from 3.4(2). O
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4.12. Simple Galois Comodules. [f ,€ is flat the following are equivalent:

(a) There is a simple Galois comodule in M*;

(b) every nonzero comodule in M* is a Galois comodule;

(c) € is homogeneously semisimple as right comodule;

(d) 6 is right semisimple and all simple right comodules are isomorphic.

Proof. This follows by the characterizations of simple right semisimple corings in
Brzeziiski and Wisbauer (2003, 19.15) and the fact that each nonzero comodule is
a generator in this case. |

5. GALOIS COMODULES f.g. PROJECTIVE AS A-MODULES

Some of the results in the preceding section were proven in Brzeziriski and
Wisbauer (2003, 18.27) for the special case when P, is finitely generated and
projective. As already observed (in 3.2) the latter condition provides nice properties
of the functor Hom*(P, —) which will lead to a left right symmetry of the Galois
comodules. If P, will be finitely generated and projective, we denote a dual basis of
Pbyp,....,p, € Pand &y, ..., mw, € P~

5.1. ue Splitting in M%. Let P € M* with P, finitely generated and projective and
S = End“(P). Assume that

(P*®5P)®° P* ~ P* @4 (PR P¥)

canonically. Then the following are equivalent:

(a) The map . : Hom“(P, €) @ P — € is a splitting epimorphism in M?;
(b) wy is an isomorphism.

The condition is satisfied provided P is strongly (¢, A)-injective, or P is flat, or P* is
coflat or (C, A)-injective.

Proof. We only have to prove (a) = (b). It follows from 3.2 that P* is P-adstatic.
By assumption, there is a splitting exact sequence in M?,

0 K Hom“(P, €) ®; P © 0.

Since P* is P-adstatic by 3.2(3), applying Hom“(P, —) yields an exact sequence
0 — Hom“(P, k) —— Hom“(P, Hom“(P, €) ® P) ——> Hom"(P, ).

From this we see Hom“(P, K) = 0 and—since K is a P-generated comodule—this
implies K = 0. O

5.2. Lemma. Let P e M® with P, finitely generated and projective. Then the
following are equivalent:

(a) € is P-static as right ‘€-comodule;
(b) € is P*-static as left ‘G-comodule.
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Proof. The canonical map ¢ : P — *(P*), ¢(p)(f) = f(p) for pe P, f € P*, is
bijective and the diagram

PrRgP—>% g pr——>> g(po)p,
PO
P*®g*(P*) —>% 9®h—(Is ® h)o"" (g),

is commutative by the equalities

(I, ® ¢(p))e” () = Z(g ® I)e" () $(p)(m;)
=(g® Icg)QP(ZPiTCi(P)) = Zg(PQ)PL-

By definition, € is P-static provided the map in the top row is an isomorphism of
right ‘6-comodules, and € is P*-static as left ‘6-comodule provided the map in the
bottom row of the diagram is an isomorphism of left ‘€-comodules. |

Recall that for any bimodule ,P, with P, finitely generated and projective
(with dual basis as above), the (A, A)-bimodule P*®, P is an A-coring with
coproduct and counit defined by

A:P @z P — (P"®5P)®, (P ®;p P), f@p—> X f®p,®m®p,
e:P*QzP—> A, fQpr f(p).

For a Galois comodule this coring is isomorphic to €.

5.3. Galois Comodules with P, f.g. Projective. Let P € M® with P, finitely
generated and projective and S = End“(P). Then the following are equivalent:

(a) P is a Galois right ‘G-comodule;

(b) € is P-static as right ‘€-comodule;

(c) P* is a Galois left €-comodule;

(d) € is P*-static as left €-comodule;

(e) ity : P* ®g P — € is an A-coring isomorphism.

Proof. (a) < (b) This is shown in Brzeziriski and Wisbauer (2003, 18.26).
(c) © (d) The assertion is the left hand version of (a) < (b).

(b) & (d) This is proven in 5.2.

(b) & (e) It remains to show that Ji, is a coring morphism. Proofs for this are
given in El Kaoutit and G6émez-Torrecillas (2003, Proposition 2.7) and Brzeziriski
and Wisbauer (2003, 18.26). With our notation it is seen by the following argument.
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Forany pe Pand f € P*, p= Y, p;mi(p),
i (f ®p) = Zf(l’g)l’l = ZZf(piQ)pilni(p)9 and
(iy ® i) o A(f @ p) = Z Zf([’ig)l’il ® ”i([’g)l’;

= f(Po)ro ® P1
= Zf(Pg)PQ‘@ P12
= Ao, (f®p),

and it is easy to see that eo i, = &. a

5.4. Remark. It was shown in 4.8(5) that for a Galois comodule P € M?, (P
locally projective and P finitely generated, implies that ,¢ is locally projective.
In case P, is finitely generated and projective, (P locally projective implies ,€

locally projective without the additional assumption that , P is finitely generated (see
Brzeziniski and Wisbauer, 2003, 19.7).

In the special situation that A is a ‘¢-comodule, i.e., there is a grouplike
element g € €, and S = End“(A), it is a Galois (right) comodule ((€, g) is a Galois
coring) if and only if the map (compare introduction)

AQsA— €, a®d  agd

is an isomorphism. Under the given conditions, A ®; A has a canonical coring
structure (Sweedler coring) and the map is a coring isomorphisms (see Brzeziriski
and Wisbauer, 2003, 28.18).

At various places we have observed nice properties of strongly (€, A)-injective
comodules. For Galois comodules this notion is symmetric in the following sense—
an observation also proven in Brzeziriski (2005, Theorem 7.2).

5.5. Strongly (€, A)-Injective Galois Comodules. Let P be a Galois comodule
with P, finitely generated and projective and S = End®(P). Then the following are
equivalent:

(a) P is strongly (€, A)-injective;

(b) P* is strongly (6, A)-injective;

(c) the inclusion i : S — T is split by an (S, S)-bilinear map.

Proof. This follows from 4.3 and symmetry. d

5.6. P-Static Comodules. Let P € M? with P, finitely generated and projective and
assume € to be P-static. Then N € M® is P-static, provided

(N®“P)®,P~NQ®°(P*®;P)
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canonically. This holds if N is (€, A)-injective, or N®“—is right exact, or P is strongly
(€, A)-injective, or P is flat as S-module.

Proof. The first claim follows by the isomorphisms
Hom“(P,N) ®, P~ (N ®“ P*)®; P~ N ®° (P* ® P) ~ N.
The remaining assertions are derived from 2.13. |

The relevance of the isomorphism in 5.6 was also observed in Caenepeel et al.
(to appear, Proposition 2.4). Notice that 5.6 shows again - in this special case—that
P is a Galois comodule provided € is P-static (see 5.3), and that Galois comodules
are generators provided they are flat over their endomorphism rings (see 4.8).

5.7. Equivalences. Let P € M? be a Galois comodule with P, finitely generated and
projective. Then

Hom“(P, =) : M* — M

is an equivalence with inverse functor — @¢ P provided that

(1) P is strongly (6, A)-injective, or

(ii) P* is (6, A)-injective and ¢P is flat, or
(iii) P* is coflat and ¢P is flat, or
(iv) € is a coseparable coring.

Proof. Under each of the conditions (i)—(iii), all right S-modules are P-adstatic by
3.2 and the right ‘¢-comodules are P-static by 5.6.

(iv) For a coseparable coring, all comodules are strongly (¢, A)-injective and
hence (i) holds. |

Parts of the preceding theorem are proven in Brzeziiski (2005,
Proposition 7.3). Here we offer alternative proofs and do not require ,€ to be flat
in the first case.

5.8. Remarks. In Caenepeel et al. (to appear, Proposition 5.6), the coring € is
required to be coseparable, finitely generated, and projective as right A-module,
and p, : Hom“(P, €) ®3 P — ¢ should be surjective. These conditions immediately
imply that u, splits in M*® and that P* is coflat. Hence P is a Galois comodule
by 5.1 and the claim of Caenepeel et al. (to appear, Proposition 5.6)—namely that
Hom“(P, —) is an equivalence—follows from 5.7.

5.9. Splitting Over a Subring of End®(P). Let P € M? with P, finitely generated
and projective, S = End“(P) and B C S a subring. Assume P* to be flat as a right B-
module, or P to be B-strongly (6, A)-injective. Then the following are equivalent:

(a) The canonical map i, : Hom“(P, €) ®, P — € is a splitting epimorphism in M¢;
(b) P* is a Galois comodule and is (S, B)-projective as right module.
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Proof. (a) = (b) Cotensoring with — ®° P*, 1/, yields the splitting epimorphism
in Mg,

PrRS~(P"®,P)®°P" - €®° P* ~ P,

where the first isomorphism is due to the conditions on P* or P (see 2.14). This
shows that P* is (S, B)-projective (see Wisbauer, 1996, 20.3). In particular, P* is flat
as S-module.

Furthermore, u/, factors over a splitting epimorphism p : Hom®(P, €) — €
in M. By Corollary 5.1, this implies that u, is an isomorphism, i.e., P is a Galois
module.

(b) = (a) By assumption, the map P*®,; S — P* splits in My. Since P*
(hence P) is a Galois comodule, tensoring with — ®¢ P yields a splitting comodule
epimorphism

PrRyP>~P' ®;SQP— P"®; P~€C. 0

5.10. Remarks. (1) In case A is an algebra over a field (or a commutative von
Neumann regular ring) B, then in 5.9, P* is always a flat B-module and the assertion
yields Brzeziriski (2005, Theorem 4.4) as a special case.

(2) As pointed out in the introduction, entwining structures can be considered
as corings and hence the assertions in 3.2 and 4.3 may be compared with Lemma 4.1
and Remarks 4.2 and 5.3 in Schauenburg and Schneider (2005). Furthermore, the
splitting properties considered in 5.9 are related to Remark 4.4, Theorem 2.2, and
results of Section 5 in Schauenburg and Schneider (2005).

6. DIRECT SUMS OF f.g. PROJECTIVE A-MODULES

For any direct sum P = &, P, of finitely generated €-comodules P, and any
‘¢-comodule N, recall the definition (see Wisbauer, 1991, Section 51)

Hom®(P, N) = {f € Hom“(P, N) | f(P,) = 0 for almost all Z € A},
and put T = End%(P). Then I’-\Iom""’(P, N) is a right T-module and

Hom“(P, N) ~ @ Hom*(P;, N) ~ Hom“(P, N) & T,
A

where § = End“(P) (see Wisbauer, 1991, 51.2).

6.1. Lemma. With the notation above,

(@Hom%(Pi, N)) ®; P~ (Hom“(P, N) ®¢ T) ®, P ~ Hom“(P, N) ® P.
A

Proof. By associativity of the tensor product we only need to recall the
isomorphism 7 ®; P >~ P. O



ON GALOIS COMODULES 2707

With this isomorphism, the special structure of comodules that are finitely
generated as A-modules can be extended to direct sums of modules of this type.

6.2. P* @ P as Left Comodule. Consider a family {P;}, of comodules P, € M*
such that each P, is finitely generated and projective as A-module. Then P =, P,
is in M. Since all P; are left ‘€-comodules, their direct sum @, P; is a left
¢-comodule. For S = End“(P), 6.1 yields the identification P* ®; P ~ (& N
P which makes P* ®; P to a left ‘6-comodule.

The following are equivalent:

(a) € is P-static as right ‘€-comodule;
(b) € is @, P;-static as left €-comodule.

Proof. Applying 6.1 repeatedly yields isomorphisms
rour=(@r) o (Or)
A A
= (@®r)e (&)
A A
= (@r) o5 (@)
A A

where S = “End(€, P;). With this isomorphisms the proof of 5.2 applies. O

The construction of corings for finitely generated projective A-modules can
also be extended to direct sums of modules of this type.

6.3. Coring Structure on Direct Sums. Consider a family {P,}, of €-comodules
with S, = End“(P,) that are finitely generated and projective as right A-modules
with dual basis p;, € P,, ¢, € P}, 2; € I,. For each / € A, we have a coring with
coproduct

A P;®s P,— P®s P,®,P; Qs P,  [,®p, = > [iOp, ®¢, ®p;,

and the evaluation as counit.

Put P =@, P,, S = End“(P),and S, = @, S,. Then S, is a ring without unit
and P is a left S, module by componentwise multiplication. This means in particular
that we can identify

P:®S,;P/1:P:®SAP’

and so, by the universal property of the coproduct, the A, yield an (A, A)-bilinear
map

A: <@P;k> Qg, P~ <@P/*) g, P ®,y (@RT) ®s, P
A A A
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By construction, this is just the coring coproduct of the P} ®g, P, (e.g., Brzezifiski
and Wisbauer, 2003, 17.18). '

Clearly, S, €T =End“(P) and the epimorphism f: (P, P}) ®s, P —
(B, P;) @7 P yields the diagram

0 —— (GBPI) ®5, P —— <eA9P;f> ®;, P ®, P* @, P
l/f lﬁ@ﬁ
(or)sr = (ar)ouros(r)orr
where A’ exists provided Ke € Ke (8 ® f) o A. To show this take any

f®s pe (@P}‘) ®;, P suchthat ) f®; p;®, 71 & p=0.
A i

Then 0 =3, f ®; p;m:(p) = f ®7 p proving that f ®g p € Kef. It is easy to see
that a similar argument works for finite sums of elements of the form f ®g, p. This
shows that our condition on Ke f is satisfied and that A" exists making (P, P}) ®;
P an A-coring with the evaluation map as counit.

By 6.1, P* ®3 P = (D, P;) ®; P and thus A’ defines an A-coring structure on
P* ® P with the evaluation as counit.

The coring structure on P* ® P as given here was introduced in El Kaoutit
and Gémez-Torrecillas (2004) (along a different line of arguments) and these corings
are called infinite comatrix corings there.

With this preparation we are now able to extend the characterization of Galois
comodules which are finitely generated and projective to those which are direct sums
of such comodules.

6.4. P, Direct Sum of f.g. Projectives. Consider a family {P,}, of ‘€é-comodules
that are finitely generated and projective as right A-modules (with dual basis as in 6.3)
and put S, = End“(P,). Then for P =@, P, and S = End“(P), the following are
equivalent:

(a) P is a Galois right €-comodule;

(b) € is P-static as right ‘€-comodule;

(c) D, P; is a Galois left €-comodule;

(d) € is @, P;-static as left €-comodule;

(e) ity : P*®g P — € is an A-coring isomorphism.

Proof. (a) < (b) One implication is trivial. Assume € to be P-static. Then for any
K € M,, the isomorphisms from 6.1 yield

Hom, (P, K) ®; P ~ P Hom,(P,, K) ®; P
A

~PK,P® P
A
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~K®, (@P;k> ®r P
A
~ K@, P @ P~K®, €.

Now the assertion follows from 4.1(b).
(c) < (d) is the left hand version of (a) < (b).

(b) & (d) This is shown in 6.2.

(b) & (e) It remains to show that i, is a coring morphism. As mentioned in
the proof of 5.3, the maps P; ®;, P, — € are coring morphisms. Hence P* ®;, P — €
is a coring morphism and so is the factorisation P* @ P — ‘€. Notice that this is
also proven in El Kaoutit and Gémez-Torrecillas (2004, Lemma 3.7). O

6.5. The Functor ﬁom%(P, —). Given P=, P, as a direct sum of finitely
generated ‘€-comodules, we put S = End“(P) and T = Hom®(P, P) (see beginning
of this section). 7 is a ring with enough idempotents and we denote by M, the
category of all right T-modules X with XT = X. Then we have a functor

Hom“(P, =) : M* > M,
and for any N € M* the isomorphisms

Hom“(P, N) ®, P ~ Hom“(P, N) ®; T ®; P ~ Hom“ (P, N) ®; P

Thus N is P-static if and only if Hom*(P, N) ®r P>~ N.
If the P, are finitely generated and projective as A-modules, then

Hom“(P, —) ~ @Hom (P;, — (@P*)

So in this case the functor — ®“ (P, P;) is right adjoint to the functor — ®; P (thus
yielding El Kaoutit and Gémez-Torrecillas, 2004, Proposition 4.5).

6.6. P-Static Comodules. Let P = @, P, where the P, € M are finitely generated
and projective as A-modules and assume € to be P-static. Then N € M is P-static,

provided
(v (r)orr=ver (@)
A A

canonically. This holds if N is (€, A)-injective, or N ®°© — is right exact, or the P,’s
are strongly (G, A)-injective, or P is flat as S-module.

Proof. The first claim follows by the isomorphisms

Hom“(P, N) ®, P ~ (@Homrg(ﬂ, N)> Q7 P
A
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~PIN® P)® P
A

~N®° ((@P}j) ® P> ~ N.
A

The remaining assertions are derived from 2.13. a

6.7. Equivalences. Let P = @, P, be a Galois comodule, where the P, € M? are
finitely generated and projective as A-modules. Then

Hom“(P, =) : M* > M,
is an equivalence with inverse functor — @, P provided that

(1) P is strongly (6, A)-injective, or

(it) each P; is (€, A)-injective and P is flat, or
(ii) each Pj is coflat and P is flat, or
(iv) € is a coseparable coring.

Proof. The same arguments as for the proof of 5.7 apply. O

By the isomorphisms Hom“(P;, —) ~ — ®° P, P} is coflat if and only if P,
is projective in M. Hence, by 4.8, the condition (iii) in 6.7 implies that ,€ is flat
and that P is a projective generator in the Grothendieck category M®. With familiar
arguments from module theory (see Wisbauer, 1991, 51.11), this situation can be
described in the following way.

6.8. Projective Generators in M. Let P = @, P,, where the P, € M® are finitely
generated and projective as A-modules. Then the following are equivalent:

(@) A€ is flat and P is a projective generator in M¢;

(b) P is a Galois comodule and 1P is faithfully flat;

(c) 4€ is flat and Hom® (P, —) : M® — M, is an equivalence;
(d) ,€is flat and — @, P: M, — M is an equivalence.

Notice that similar characterizations are also proven in El Kaoutit and
Gomez-Torrecillas (2004, Theorem 4.7).

Finally, we ask when % is a right Galois comodule. For this, recall that
End“(€) ~ €* and that—in our notation—%* acts on € from the right. Then the
evaluation map

Ly : € @ Hom (€, €) > €
is an isomorphism and hence we conclude from 4.5, 5.3, and 6.4 the following.

6.9. € as Galois Comodule.

(1) If €, is finitely generated and projective, then € is a Galois right “G-comodule, €*
is a Galois left €-comodule, and K ® , € >~ Hom ,(*¢, K), for any K € M.
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(2) If € = B, €, with right subcomodules €, that are finitely generated and projective
as right A-modules, then € is a Galois right ‘€-comodule and @, €; is a Galois
left “G-comodule.

Notice that in (2), €* is not a left ¢-comodule unless the sum is finite
(finiteness theorem, Brzeziniski and Wisbauer, 2003, 19.12). For further properties of
€ as Galois comodule we refer to Caenepeel et al. (to appear, Section 7).
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