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Abstract. J.-L. Loday has defined generalised bialgebras and proved
structure theorems in this setting which can be seen as general forms
of the Poincaré-Birkhoff-Witt and the Cartier-Milnor-Moore theorems.
It was observed by the present authors that parts of the theory of gen-
eralised bialgebras are special cases of results on entwined monads and
comonads and the corresponding mixed bimodules. In this article the
Rigidity Theorem of J.-L. Loday is extended to this more general cate-
gorical framework.
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1. Introduction

The introduction of entwining structures between an algebra and a coal-
gebra by T. Brzeziński and S. Majid in [2] opened new perspectives in the
mathematical treatment of quantum principal bundles. It turned out that
these structures are special cases of distributive laws treated in J. Beck’s
paper [1]. The latter were also used by D. Turi and G. Plotkin [16] in the
context of operational semantics.

These observations led to a revival of the investigation of various forms
of distributive laws. In a series of papers [13, 14, 15] it was shown how they
allow for formulating the theory of Hopf algebras and Galois extensions in
a general categorical setting.

On the other hand, generalised bialgebras as defined in J.-L. Loday [8,
Section 2.1], are vector spaces which are algebras over an operad A and
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coalgebras over a cooperad C . Moreover, the operad A and the cooperad C
are required to be related by a distributive law. Since any operad A yields
a monad TA and A -algebras are nothing but TA -modules, and similarly
any cooperad C yields a comonad GC and C -coalgebras are nothing but GC -
comodules, generalised bialgebras have interpretations in terms of bimodules
over a bimonad in the sense of [14].

The purpose of the present paper is to make this relationship more precise
(as proposed in [14, 2.3]). On the one hand, given a monad T and a comonad
G on a category A together with a mixed distributive law λ between them, we
provide in Theorem 4.1 conditions for which a functor from A to the category
of TG-bimodules in A is an equivalence of categories. In Theorem 5.8 we
concentrate on the special case when the monad and the comonad share the
same underlying functor. These are general theorems, which do not depend
on the shape of the functors underlying the monads and comonads. On the
other hand, when considering operads and cooperads the functors involved
are analytic in the sense of A. Joyal [7] and, in particular, are graded and
connected. In Section 6, we show that the general theory together with the
grading lead to the Rigidity Theorem [8, 2.5.1] as a special case (without
using idempotents as in [8]). In Corollary 6.9 we focus on the special case
when the operad and cooperad share the same underlying analytic functor
and prove (under mild conditions) that the category of generalised bialgebras
is equivalent to the category of vector spaces.

2. Comodules and adjoint functors

In this section we provide basic notions and properties of comodule func-
tors and adjoint pairs of functors. Throughout the paper A and B will denote
any categories.

2.1. Monads and comonads. Recall that a monad T on A is a triple
(T,m, e) where T : A → A is a functor with natural transformations m :
TT → T , e : 1 → T satisfying associativity and unitality conditions. A
T -module is an object a ∈ A with a morphism h : T (a) → a subject to
associativity and unitality conditions. The (Eilenberg-Moore) category of
T -modules is denoted by AT and there is a free functor

φT : A→ AT , a 7→ (T (a),ma),

which is left adjoint to the forgetful functor

UT : AT → A, (a, h) 7→ a.

Dually, a comonad G on A is a triple (G, δ, ε) where G : A→ A is a functor
with natural transformations δ : G → GG, ε : G → 1, and G-comodules are
objects a ∈ A with morphisms θ : a → G(a). Both notions are subject to
coassociativity and counitality conditions. The (Eilenberg-Moore) category
of G-comodules is denoted by AG and there is a cofree functor

φG : A→ AG , a 7→ (G(a), δa),
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which is right adjoint to the forgetful functor

UG : AG → A, (a, θ) 7→ a.

2.2. G-comodule functors. For a comonad G = (G, δ, ε) on A, a functor
F : B → A is a left G-comodule if there exists a natural transformation
αF : F → GF inducing commutativity of the diagrams

F

BB
BB

BB
BB

BB
BB

BB
BB
αF // GF

εF
��
F,

F
αF //

αF
��

GF

δF
��

GF
GαF

// GGF.

Symmetrically, one defines right G-comodules.

2.3. G-comodules and adjoint functors. Consider a comonad G =
(G, δ, ε) on A and an adjunction F a R : A→ B with counit σ : FR→ 1.

There exist bijective correspondences (see [3]) between

• functors K : B→ AG with commutative diagrams

B K //

F ��@
@@

@@
@@

@ AG

UG

��
A;

• left G-comodule structures αF : F → GF on F ;
• comonad morphisms from the comonad generated by the adjunction
F a R to the comonad G;
• right G-comodule structures βR : R→ RG on R.

In this case, K(b) = (F (b), αb) for some morphism αb : F (b) → GF (b),
and the collection {αb, b ∈ B} constitutes a natural transformation αF :
F → GF making F into a G-comodule. Conversely, if (F, αF : F → GF ) is
a G-comodule, then K : B→ AG is defined by K(b) = (F (b), (αF )b).

For any left G-comodule structure αF : F → GF , the composite

tK : FR
αFR // GFR

Gσ // G

is a comonad morphism from the comonad generated by the adjunction F a
R to the comonad G. Then the corresponding right G-comodule structure

βR : R→ RG on R is the composite R
ηR−−→ RFR

RtK−−−→ RG.
Conversely, given a right G-comodule structure βR : R→ RG on R, then

the comonad morphism tK : FR→ G is the composite

FR
FβR // FRG

σG // G,

while the corresponding left G-comodule structure αF : F → GF on F is

the composite F
Fη−−→ FRF

tKF−−−→ GF.
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The following result gives a necessary and sufficient condition on a functor
K : B→ AG with UGK = F to be an equivalence of categories.

2.4. Theorem. (see [11, Theorem 4.4]) A functor K : B→ AG with UGK =
F is an equivalence of categories if and only if

(i) the functor F is comonadic, and
(ii) tK is an isomorphism of comonads.

We shall need the following result, the dual version of E. Dubuc’s theorem
[4].

2.5. J. Dubuc’s Adjoint Triangle Theorem. For categories A, B and
C, let η, σ : F a R : A→ B and η′, σ′ : F ′ a R′ : A→ C be adjunctions and
let K : B→ C be such that F = F ′K. Define

β0 : KR
η′KR−−−→ R′F ′KR = R′FR

R′σ−−→ R′.

If B has equalisers of coreflexive pairs and the functor F ′ is of descent
type, then K has a right adjoint K which can be calculated as the equaliser

K // RF ′
RF ′η′ //

ηRF ′
QQQQQQ

((QQQQQ

RF ′R′F ′

RFRF ′ = RF ′KRF ′.

RF ′β0F ′kkkkk

55kkkkk

2.6. Right adjoint of K. Now fix a functor K : B → AG with UGK = F
and suppose that the category B has equalisers of coreflexive pairs. Then
UGβ0 = tK and thus βR = UGβ0 ·ηR. It then follows from Theorem 2.5 that
the functor K has a right adjoint K which is determined by the equaliser
diagram

(2.1) K
i // RUG

RUGηG //

βRU
G

// RGUG = RUGφGUG ,

where ηG : 1→ φGUG is the unit of the adjunction UG a φG .
An easy inspection shows that the value of K at (a, θ) ∈ AG is given by

the equaliser diagram

(2.2) K(a, θ)
i(a,θ) // R(a)

R(θ) //

(βR)a

// RG(a) .

3. Distributive laws

Distributive laws were introduced by J. Beck in [1]. Here we are mainly
interested in the following case (e.g. [6] or [17, 5.3]).

3.1. Mixed distributive laws. Let T = (T,m, e) be a monad and G =
(G, δ, ε) a comonad on the category A. A natural transformation

λ : TG→ GT
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is said to be a mixed distributive law or a (mixed) entwining provided it
induces commutative diagrams

TTG
mG //

Tλ
��

TG

λ
��

TGT
λT

// GTT
Gm

// GT,

TG
Tδ //

λ
��

TGG
λG // GTG

Gλ
��

GT
δT

// GGT,

G
eG //

Ge !!CC
CC

CC
CC

TG

λ
��

GT,

TG
Tε //

λ
��

T

GT.

εT

=={{{{{{{{

Recall (for example, from [18]) that if T is a monad and G is a comonad
on a category A, then there are bijective correspondences between

• mixed distributive laws λ : TG→ GT ;

• comonads Ĝ = (Ĝ, δ̂, ε̂) on AT that extend G in the sense that

UT Ĝ = GUT , UT ε̂ = εUT , and UT δ̂ = δUT ;

• monads T̂ = (T̂ , m̂, ê) on AG that extend T in the sense that

UG T̂ = TUG , UG ê = eUG , and UGm̂ = mUG .

From the definitions

Ĝ(a, h) = (G(a), G(h) · λa), ε̂(a,h) = εa, δ̂(a,h) = δa, for (a, h) ∈ AT ,

T̂ (a, θ) = (T (a), λa · T (θ)), ê(a,θ) = ea, m̂(a,θ) = ma, for (a, θ) ∈ AG ,

it follows that for a mixed distributive law λ : TG→ GT one may assume

(AG)T̂ = (AT )Ĝ .

We write AGT (λ) for this category whose objects, called TG-bimodules in [6],

are triples (a, h, θ), where (a, h) ∈ AT , (a, θ) ∈ AG with commuting diagram

T (a)
h //

T (θ)
��

a
θ // G(a)

TG(a)
λa

// GT (a).

G(h)

OO

Morphisms in this category are morphisms in A which are T -module as well
as G-comodule morphisms.

3.2. Entwined monads and comonads. Let T = (T,m, e) be a monad,
G = (G, δ, ε) a comonad on A, and consider an entwining λ : TG → GT

from T to G. Denote by T̂ = (T̂ , m̂, ê) the monad on AG lifting T and by

Ĝ = (Ĝ, δ̂, ε̂) the comonad on AT lifting G.
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Suppose there exists a functor K : A→ (AT )Ĝ with commutative diagram

(3.1) A K //

φT !!DD
DD

DD
DD

D (AT )Ĝ

U Ĝ

��
AT

and consider the corresponding right Ĝ-comodule structure on UT as in
Section 2.3,

β = βUT : UT → UT Ĝ = GUT .

Then, for any (a, h) ∈ AT , the (a, h)-component β(a,h) = (βUT )(a,h) of β is
a morphism a→ G(a) in A. Assuming that A admits coreflexive equalisers,
we obtain by Section 2.6 that the functor K admits a right adjoint K whose

value at ((a, h), θ) ∈ (AT )Ĝ appears as the equaliser

(3.2) K((a, h), θ)
i((a,h),θ) // a

θ //
β(a,h)

// G(a) .

Consider now the left Ĝ-comodule structure α = αφT : φT → ĜφT on
φT induced by the commutative diagram (3.1). As shown in [13, Theorem
2.4], for any (a, h) ∈ AT , the component (tK)(a,h) of the comonad morphism

tK : φT UT → Ĝ, corresponding to Diagram (3.1), is the composite

(3.3) T (a)
T (β(a,h))−−−−−→ TG(a)

λa−→ GT (a)
G(h)−−−→ G(a) .

4. Grouplike morphisms

Let G = (G, δ, ε) be a comonad on a category A. By [13, Definition 3.1], a
natural transformation g : 1→ G is called a grouplike morphism provided it
is a comonad morphism from the identity comonad to G, that is, it induces
commutative diagrams

1
g //

=
��>

>>
>>

>>
G

ε
��

1,

1
g //

gg !!CC
CC

CC
CC G

δ
��

GG.

The dual notion is that of an augmentation of a monad T = (T,m, e) on
A, that is, a monad morphism T → 1.

Let T = (T,m, e) and G = (G, δ, ε) be given on A with an entwining
λ : TG → GT . If G has a grouplike morphism g : 1 → G, then the above
conditions guarantee that the morphisms (ga : a→ G(a))(a,h)∈AT ) form the

components of a right Ĝ-comodule structure β = βUT : UT → UT Ĝ on the
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functor UT : AT → A. Observing that in the diagram

T (a)
T (ga) //

T (ea)
��

TG(a)
λa //

TG(ea)
��

GT (a)

GT (ea)
�� QQQQQQQQQQQQQ

QQQQQQQQQQQQQ

TT (a)
T (g(T (a))

// TGT (a)
λT (a)

// GTT (a)
G(ma)

// GT (a)

• the left-hand square commutes by naturality of g,
• the right-hand square commutes by naturality of λ,
• the triangle commutes since e is the unit for the monad T ,

and recalling that α is the composite φT
φT ηT−−−→ φT UT φT

tKφT−−−→ ĜφT , one
concludes by (3.3) that

(4.1) for every a ∈ A, αa = λa · T (ga).

This leads to a functor

Kg : A→ (AT )Ĝ , a 7−→ ((T (a),ma), λa · T (ga)),

and the commutative diagram

(4.2) A
Kg //

φT !!DD
DD

DD
DD

D (AT )Ĝ

U Ĝ

��
AT .

In this case we say that the comparison functor Kg is induced by the
grouplike morphism g : 1→ G.

Specialising now Theorem 2.4 to the present situation gives

4.1. Theorem. Let T = (T,m, e) be a monad and G = (G, δ, ε) a comonad
on A with an entwining λ : TG → GT . If g : 1 → G is a grouplike

morphism of the comonad G, then the induced functor Kg : A → (AT )Ĝ is
an equivalence of categories if and only if

(i) the functor φT is comonadic, and
(ii) the composite

(4.3) T (a)
T (ga)−−−→ TG(a)

λa−→ GT (a)
G(h)−−−→ G(a)

is an isomorphism for every (a, h) ∈ AT .

4.2. Remark. It follows from [15, Theorem 2.12] that condition (ii) of
Theorem 4.1 is equivalent to saying that the composite

TT (a)
T (gT (a))−−−−−→ TGT (a)

λT (a)−−−→ GTT (a)
G(ma)−−−−→ GT (a)

is an isomorphism for every a ∈ A.
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5. Compatible entwinings

Let H = (H,m, e) be a monad, H = (H, δ, ε) a comonad on A, and let
λ : HH → HH be an entwining from the monad H to the comonad H.
The datum (H,H, λ) is called a monad-comonad triple. The objects of the

category AHH(λ) are called (mixed) λ-bimodules.

5.1. Lemma. The triple (H(a),ma, δa) is a λ-bimodule for all a ∈ A if and
only if we have a commutative diagram

(5.1) HH
m //

Hδ
��

H
δ // HH

HHH
λH

// HHH.

Hm

OO

In this case, there is a functor

K : A→ (AH)Ĥ, a 7−→ ((H(a),ma), δa),

satisfying φH = U ĤK.

5.2. Definitions. Given a monad-comonad triple (H,H, λ), the entwining
λ : HH → HH is said to be compatible provided Diagram (5.1) is commu-
tative; then (H,H, λ) is said to be a compatible monad-comonad triple.

The triple (H,H, λ) is called a bimonad if it is a compatible triple with
additional commutative diagrams (see [14, Definition 4.1])

(5.2) HH

(i)

Hε //

m

��

H

ε
��

H
ε // 1,

1

(ii)

e //

e

��

H

δ
��

H
He

// HH,

1
e //

= ,,

H

(iii) ε

��
1.

Notice that for any monad-comonad triple (H,H, λ), to say that Diagram
(5.2)(i) commutes amounts to saying that ε : H → 1 is an augmentation
of the monad H , while to say that Diagram (5.2)(ii) commutes amounts to
saying that e : 1→ H is a grouplike morphism of the comonad H. Thus, for
any bimonad (H,H, λ), e is a grouplike morphism of the comonad H and ε
is an augmentation of the monad H.

5.3. Proposition. Let (H,H, λ) be a compatible monad-comonad triple. If
δ · e = He · e (i.e. e : 1→ H is a grouplike morphism of H), then δ = λ ·He
and the comparison functor K in Lemma 5.1 is induced by the grouplike
morphism e, that is K = Ke (see Diagram (4.2)).
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Proof. Assume that δ · e = He · e and that λ is compatible. Then, in the
diagram

H
He //

He
��

HH
m //

Hδ
��

H
δ // HH

HH

λ
**TTTTTTTTTTTTTTTTTT

HHe// HHH
λH // HHH

Hm

OO

HH

HHe

::uuuuuuuuu
,

the rectangles commute. Since the triangle is also commutative by naturality
of composition and since m ·He = 1, it follows that δ = λ ·He. From Section
4 and Relation (4.1), we conclude that the comparison functor K is induced
by the grouplike morphism e, that is K = Ke. tu

5.4. Remark. Note that if ε ·m = ε ·Hε (i.e. ε : H → 1 is an augmentation
of H) and λ is compatible, then post-composing Diagram (5.1) with the
morphism Hε implies m = Hε · λ.

In the next propositions we do not require a priori λ to be a compatible
entwining.

5.5. Proposition. Let (H,H, λ) be a monad-comonad triple.

(i) If δ = λ ·He, then δ · e = He · e;
(ii) if m = Hε · λ, then ε ·m = ε ·Hε.

Moreover, if one of these conditions is satisfied, then ε · e = 1, provided that
e : 1 → H is a (componentwise) monomorphism or ε is a (componentwise)
epimorphism.

Proof. (i) Assume δ = λ ·He. Since He · e = eH · e (by naturality) and
λ · eH = He (see Section 3.1),

δ · e = λ ·He · e = λ · eH · e = He · e.

(ii) Assume m = Hε · λ. Since ε · Hε = ε · εH and εH · λ = Hε (see
Section 3.1),

ε ·m = ε ·Hε · λ = ε ·Hε · λ = ε ·Hε.

To show the final claim, observe that δ = λ ·He implies

1 = εH · δ = εH · λ ·He = Hε ·He,

and m = Hε · λ implies

1 = m · eH = Hε · λ · eH = Hε ·He,
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so in both cases, 1 = Hε ·He. Naturality of e and ε imply commutativity
of the diagrams, respectively,

H
eH //

ε

��

HH

Hε
��

1 e
// H,

H
He //

ε

��

HH

εH
��

1 e
// H.

From the left-hand diagram one gets

e = Hε ·He · e = Hε · eH · e = e · ε · e,

thus if e is a (componentwise) monomorphism, ε ·e = 1, while the right-hand
diagram implies

ε = ε ·Hε ·He = ε · e · ε

and hence ε · e = 1 provided ε is a (componentwise) epimorphism. tu

5.6. Lemma. Let (H,H, λ) be a monad-comonad triple. If

m = Hε · λ or δ = λ ·He,
then λ is compatible, that is, Diagram (5.1) is commutative.

Proof. If δ = λ ·He, the triangle is commutative in the diagram

HH
Hδ //

HHe
��

HHH
λH // HHH

Hm
��

HHH

Hλ

99tttttttttt

mH
// HH

λ // HH,

whereas the trapezium is commutative by the entwining property of λ. The
left path of the outer diagram is

λ ·mH ·HHe = λ ·He ·m = δ ·m.

This shows that Diagram (5.1) is commutative.
In a similar way the claim for m = Hε · λ is proved. tu

To sum up, combining Propositions 5.3 and 5.5, Remark 5.4 and Lemma
5.6 yields

5.7. Proposition. Let (H,H, λ) be a monad-comonad triple.

(1) δ = λ ·He if and only if λ is compatible and δ · e = He · e;
(2) m = Hε · λ if and only if λ is compatible and ε ·m = ε ·Hε;
(3) if δ = λ · He, m = Hε · λ, and e : 1 → H is a (component-

wise) monomorphism or ε is a (componentwise) epimorphism, then
(H,H, λ) is a bimonad (see Definitions 5.2).
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If (H,H, λ) is a monad-comonad triple such that δ = λ·He, then (H,H, λ)
is a compatible monad-comonad triple by Lemma 5.6, and hence, by Propo-
sition 5.3, the assignment a 7−→ (H(a),ma, δa) yields the functor Ke : A→
AHH(λ) with commutative diagram

A
Ke //

φH %%KKKKKKKKKKKKK AHH(λ) = (AH)Ĥ

UĤ

��
AH .

Recall from [14] that a bimonad H is said to be a Hopf monad provided
it has an antipode, i.e., there exists a natural transformation S : H → H
such that m ·HS · δ = e · ε = m · SH · δ.

5.8. Theorem. Let (H,H, λ) be a monad-comonad triple on a Cauchy com-
plete category A. Assume that δ = λ·He and e : 1→ H is a (componentwise)
monomorphism. Then the following are equivalent:

(a) Ke : A→ AHH(λ) is an equivalence of categories;

(b) the composite H(a)
δa−→ HH(a)

H(h)−−−→ H(a) is an isomorphism for
every (a, h) ∈ AH;

(c) the composite HH
δH−−→ HHH

Hm−−→ HH is an isomorphism.

If, in addition, ε : H → 1 is an augmentation of the monad H, then H is a
Hopf monad.

Proof. Since δ = λ ·He, (a)⇒(b) is trivial by Theorem 4.1, while (b)
and (c) are equivalent by Remark 4.2.

Given (c), it follows from Theorem 4.1 that K is an equivalence of cat-
egories if and only if the functor φH is comonadic. But by [12, Corollary
3.17] this is always the case, since e : 1→ H is a monomorphism and hence
ε · e = 1 by Proposition 5.5. This proves the implication (c)⇒(a).

Finally, if ε : H → 1 is an augmentation of the monad H, then ε ·m =
ε · Hε, and since (H,H, λ) is compatible, m = Hε · λ by Proposition 5.7.
Since δ = λ ·He, δ ·e = He ·e again by Proposition 5.7. Thus H is a bimonad
and it now follows from [15, 3.1] that H is a Hopf monad. tu

6. Generalised bialgebras

In this section, we apply our results in the context of operads to recover
results of J.-L. Loday on generalised bialgebras in [8]. The Leitmotiv of the
section is that a (co)operad is a particular type of (co)monad. Let k denote
a field and A the category of k-vector spaces.

6.1. Schur functors. An S-module M in A (or vector species) is a collection
of objects M (n), for n ≥ 0, together with an action of the symmetric group
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Sn. To an S-module M one associates the functor

FM : A −→ A
V 7→

⊕
n>0

M (n)⊗k[Sn] V
⊗n .

Such a functor is called a Schur functor. A. Joyal proved in [7] that for two
S-modules M and N , the composite FM ·FN is a Schur functor of the form
FM ◦N with M ◦N being the S-module defined by

(M ◦N )(n) =
⊕

k>0,i1+···+ik=n
M (k)⊗k[Sk] IndSnSi1×···×Sik

N (i1)⊗· · ·⊗N (ik),

where IndSnSi1×···×Sik
denotes the induced representation functor. The prod-

uct ◦ is called the plethysm of S-modules, and the category of S-modules,
together with the plethysm is a monoidal category. The unit for the plethysm
is the S-module

1(n) =

{
k, if n = 1,

0, otherwise.

If N (0) = 0, then the plethysm has a nice expression (see [5, Lemma
1.3.9]). Let Xn,k be the set of surjections f : {1, . . . , n} → {1, . . . , k} such
that for any 1 ≤ i < j ≤ k the smallest element of the set f−1(i) is smaller
than the smallest element of the set f−1(j). Then

(6.1) (M ◦N )(n) =
⊕

k>0,f∈Xn,k

M (k)⊗N (|f−1(1)|)⊗ · · · ⊗N (|f−1(k)|).

For our purpose, we will always assume that any S-module M is reduced,
that is, it satisfies M (0) = 0 and M (1) = k.

We denote by eM : 1→ FM the natural transformation which maps V to
the summand V of FM (V ) and by εM : FM → 1 the projection of FM (V )
to the summand V , thus εM · eM = 1.

6.2. Operads, cooperads. A (reduced) operad A in A is a monoid in the
monoidal category of (reduced) S-modules. This amounts to saying that the
functor FA is the functor part of a monad TA = (FA ,mA , eA ).

An algebra over an operad A , or A -algebra, is a TA -module. Hence, the
free A -algebra generated by a vector space V is nothing but

(TA (V ), (mA )V , (eA )V ).

A (reduced) cooperad C in A is a comonoid in the monoidal category of
S-modules. This amounts to saying that the functor FC is the functor part
of a comonad GC = (FC , δC , εC ).

A coalgebra over a cooperad C , or C -coalgebra, is a GC -comodule.
With our definitions and assumptions, any coalgebra over a reduced co-

operad C is naturally conilpotent.
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We assume from now on that either the action of the symmetric group is
free or the field k has characteristic 0. We assume that all the operads and
cooperads considered are reduced.

6.3. Proposition. If A is a reduced operad, then εA is an augmentation for
the monad TA . If C is a reduced cooperad then eC is a grouplike morphism
for the comonad GC .

Proof. The unit for the plethysm forms a (co)operad and the associ-
ated (co)monad is the identity functor. Let m : A ◦ A → A denote the
operad composition. For every n ≥ 1, one has to prove commutativity of
the diagram

(A ◦A )(n)
A ◦εA //

m

��

A (n)

εA

��
A (n)

εA // 1(n).

If n > 1, then the diagram commutes because the top and bottom composi-
tions vanish. If n = 1, since A (1) = k then (A ◦A )(1) = k⊗k = k and m
is the identity as well as A ◦ εA and εA . So the diagram is commutative.
Furthermore, as pointed out in Section 6.1, εA · eA = 1. A similar proof
shows that eC is a grouplike morphism for the comonad GC . tu

6.4. Distributive laws and generalised bialgebras. Let A be an operad
and C be a cooperad in A.

(H0) A distributive law between A and C is a morphism of S-modules
A ◦C → C ◦A satisfying some relations (see [8, Section 2.1]) which amount
to saying that the corresponding natural transformation

λ : FA ◦C = FA FC −→ FCFA = FC ◦A

is an entwining (see Section 3.1). If such an entwining exists, we say, as
in [8], that Hypothesis (H0) is satisfied. Under this hypothesis, an object

(V, h, θ) in (ATA
)ĜC is called a (C ,A )-bialgebra.

(H1) Assume that there is a map α : A → C ◦ A making A a left
C -comodule, that is, every free A -algebra is endowed with a structure of
a C -coalgebra. This amounts to saying that there is a functor K : A −→
(ATA

)ĜC such that Diagram (3.1) is commutative. If such a functor exists,
we say, as in [8], that Hypothesis (H1) is satisfied. The corresponding left
GC -comodule structure on TA is given by α : FA → FCFA .

At the level of S-modules one gets that α1 : A (1) = k→ (C ◦A )(1) = k
is the identity, because (εC ◦A ) · α = 1, so that

α · eA = eCFA · eA = FC eA · eC ,
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that is, commutativity of the diagram

FA

α

))SSSSSSSSSSSSSSSSS

1

eA

66llllllllllllllllll
eA

//

eC
((RRRRRRRRRRRRRRRRRR FA

eCT
// FCFA

FC

FC eA

55kkkkkkkkkkkkkkkkkk .

As a consequence, if (V, h) ∈ ATA
, then

FC (h) · αV · (eA )V = FC (h) · (FC eA )V · (eC )V = (eC )V ,

and since the (V, h)-component β(V,h) of the right GC -comodule structure on

β : UTA
→ UTA

F̂C is just the composite FC (h) · αV · (eA )V , we get

(6.2) β(V,h) = (eC )V .

Thus, β is defined by the grouplike morphism eC : 1 → FC and hence

the comparison functor K : A −→ (ATA
)ĜC is induced by this grouplike

morphism, i.e., K = KeC (see Diagram (4.2)). So we can apply the results
of the previous sections to the present setting, in particular, Relation (4.1)
gives

(6.3) α = λ · FA eC .

Now assume the Hypotheses (H0) and (H1) to hold. Consider the C -co-
module map ϕ : A → C induced by the projection εA : A → 1. Since
ϕ = (C ◦ εA ) · α, where α : A → C ◦ A is the C -comodule morphism of
Hypothesis (H1), according to Formula (6.1),

(6.4) α(µ) = ϕn(µ)⊗ 1⊗n +
∑

k<n,f∈Xn,k

cµk,f ⊗α
µ
1,f ⊗ · · · ⊗α

µ
k,f , ∀µ ∈ A (n),

where ϕn is the component of ϕ on A (n), cµk,f ∈ C (k), and αµi,f ∈ A (|f−1(i)|).
(H2iso) When ϕ is an isomorphism, we say, as in [8], that Hypothesis

(H2iso) is satisfied.

In the sequel we will be interested in the link between ϕ and the comonad

morphism t : φTA
UTA

−→ F̂C as in Section 2.3. Recall that for every
module (V, h) ∈ ATA

, t(V,h) is the composite

FA (V )
αV−−→ FCFA (V )

FCh−−−→ FC (V ).

6.5. Lemma. Assume Hypotheses (H0) and (H1) to hold. Then the map ϕ
is an isomorphism if and only if t is an isomorphism.
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Proof. We use the natural arity-grading on S-modules. Given µ ∈
A (n), v ∈ V ⊗n, one has

t(V,h)(µ⊗ v) =

ϕn(µ)⊗ v +
∑

k<n,f∈Xn,k

cµk,f ⊗ h(αµ1,f ⊗ v
f
1)⊗ · · · ⊗ h(αµk,f ⊗ v

f
k),

where vf = vf1 ⊗ · · · ⊗ v
f
k ∈ V ⊗|f

−1(1)| ⊗ · · · ⊗ V ⊗|f−1(k)| is obtained from
v by permuting its variables according to the preimages of f . This is a
triangular system with dominant coefficient ϕn. As a consequence, we get
that if ϕ is an isomorphism so is t(V,h). The converse is immediate because
ϕV = t(V,(εA )V ) for all V ∈ A. tu

6.6. The primitive part of a (C ,A )-bialgebra. Since the category of
k-vector spaces admits equalisers, under Hypotheses (H0) and (H1), the

functor K admits a right adjoint K whose value at ((H,h), θ) ∈ (ATA
)ĜC

appears as the equaliser

K((H,h), θ)
i((H,h),θ) // H

θ //

(eC )H

// C (H) .

As a consequence,

K((H,h), θ) = {x ∈ H, θ(x) = 1⊗ x},
and thusK((H,h), θ) is just the primitive part PrimH of the (C ,A )-bialgebra
(H,h, θ) in the sense of [8].

We are now in the position to state and prove our main result.

6.7. Rigidity Theorem. ([8, Theorem 2.3.7]) Let A be a reduced operad,
C a reduced cooperad, and TA = (FA ,m, eA ) and GC = (FC , δ, εC ) the
corresponding monad and comonad on A. Suppose that Hypotheses (H0),
(H1) and (H2iso) are fulfilled. Then the comparison functor

KeC : A −→ (ATA
)ĜC

is an equivalence of categories. Hence, in particular, any (C ,A )-bialgebra
(H,h, θ) is a free A -algebra and a cofree conilpotent C -coalgebra generated
by PrimH.

Proof. Since Hypothesis (H2iso) is satisfied, it follows from Lemma
6.5 that t(V,h) is an isomorphism for all (V, h) ∈ AFA

. Moreover, since
εA · eA = 1 and A is clearly Cauchy complete, the functor φTA

: A→ ATA

is comonadic by [12, Corollary 3.17]. Applying now Theorem 4.1 yields the
result. tu

6.8. Remark. In [8], for the proof of this theorem J.-L. Loday builds idem-
potents to produce a projection onto the primitive part. An advantage of
our proof is that it does not need such a construction.
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The following corollary is a special case of the Rigidity Theorem which
does not need verification of Hypothesis (H2iso). Although we assume the
operad A and the cooperad C to have the same underlying functor, one has
to verify that the map ϕ : A → C is an isomorphism. Indeed, Hypothesis
(H2iso) implies that the underlying functors of A and C are isomorphic, so
the latter assumption is weaker than (H2iso).

6.9. Corollary. Let M be an S-module carrying a structure of an operad
A = (M ,m, eM ), a structure of a cooperad C = (M , δ, εM ), and let

λ : M ◦M →M ◦M

be an entwining between A and C . If one of the three equivalent conditions

(i) λ is compatible, (ii) δ = λ · (M ◦ eM ), (iii) m = (M ◦ εM ) · λ,

holds, then the compatible monad-comonad triple (TA ,GC , λ) is a Hopf monad.
Moreover, any (C ,A )-bialgebra is a free A -algebra and a cofree conilpotent
C -coalgebra.

Proof. Denote by H the monad-comonad triple (TA ,GC , λ). By Propo-
sition 6.3, the triple satisfies Relations (5.2), and since eM is a component-
wise monomorphism, H is a bimonad by Proposition 5.7. Thus there is a
comparison functor

K : A→ (ATA
)ĜC , V 7−→ ((M (V ),mV ), δV ),

and K = KeM .
By Theorem 5.8, the functor K is an equivalence of categories if and only

if the composite

M (V )
δV−→ (M ◦M )(V )

M (h)−−−→M (V )

is an isomorphism for every (V, h) ∈ ATA
. Now M (h) · δV = t(V,h), where

t(V,h) is the (V, h)-component of the comonad morphism t : φTA
UTA

→ F̂C

induced by K. It follows that ϕV = t(V, εV ) = M (εV ) · δV = 1 for every
V ∈ A. Thus ϕ is an isomorphism and so t is also an isomorphism by
Lemma 6.5. Hence K is an equivalence of categories. It now follows from
[15, 3.1] thatH is a Hopf monad. Furthermore, the Rigidity Theorem applies
to our case because (H2iso) is satisfied. tu

6.10. Example. As an example consider the case of infinitesimal bialgebras.
The functor V 7→ A (V ) = ⊕nV ⊗n forms a monad T = (A ,m, e) for the
concatenation product. One can formulate this as

mV : A1A2(V ) → A (V ) eV : V → A (V )
⊗1 7→ ⊗ v 7→ v ,
⊗2 7→ ⊗
v 7→ v
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where A1 denotes the “first copy” of A . It reads like this: any word in
A1A2(V ) is composed with letters in {⊗1,⊗2, v ∈ V } and the map indicates
how it acts on letters.

The functor A forms a comonad G = (A , δ, ε) with the deconcatenation

δV : A (V ) → A1A2(V ) εV : A (V ) → V
⊗ 7→ ⊗1 +⊗2 ⊗ 7→ 0
v 7→ v v 7→ v .

The infinitesimal distributive law reads

λV : A1A2(V ) → A1A2(V )
⊗1 7→ ⊗1 +⊗2

⊗2 7→ ⊗1

v 7→ v .

As easily seen, m is associative, δ is coassociative, and λ is an entwining.
As an example, we check one of the diagrams for λ (see Section 3.1),

A1A2A3
mA //

A λ
��

A1A2

λ
��

A1A2A3
λA

// A1A2A3
Am

// A1A2 .

The top arrows send ⊗1 7→ ⊗1 7→ ⊗1 + ⊗2, ⊗2 7→ ⊗1 7→ ⊗1 + ⊗2 and
⊗3 7→ ⊗2 7→ ⊗1, while the lower maps send ⊗1 7→ ⊗1 7→ ⊗1+⊗2 7→ ⊗1+⊗2,
⊗2 7→ ⊗2 +⊗3 7→ ⊗1 +⊗3 7→ ⊗1 +⊗2 and ⊗3 7→ ⊗2 7→ ⊗1 7→ ⊗1, proving
commutativity of this diagram.

We have clearly δ = λ · (A ◦ e) and m = (A ◦ ε) · λ and hence Corollary
6.9 applies. Hereby we recover the Rigidity Theorem of J.-L. Loday and M.
Ronco for infinitesimal bialgebras which says that any infinitesimal bialgebra
is freely and cofreely generated by its primitive part (see [9, Theorem 2.6]).
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[2] Brzeziński, T. and Majid, Sh., Comodule bundles, Commun. Math. Phys. 191, No.2,
467–492 (1998).
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