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We call an R-module M generalized co-semisimple ( GCO-module) if every
singular simple R-module is M-injective or M-projective. The generalized
V-modules of Hirano [12] are special cases of GCO-modules. For xR the two
notions coincide and define the GV-rings of Ramamurthi-Rangaswamy [15],
An s-unital ring is a left GCO-module exactly if it is a left V'-ring in the
sense of Tominaga [19]. ‘

Let o[ M| denote the category of R-modules whose objects are submodules
of M-generated modules. A module is M-singularifit is of the form L/K with
Lin o[M] and K < L. After recording general properties of these modules in
section 1 we characterize GCO-modules M in section 2 by the condition that
every simple M-singular module is M-injective or, equivalently, M /Soc M
is co-semisimple and every simple M-singular submodule of M is a direct
summand. A whole list of characterizing properties of GCO-modules is given
(in 2.2, 2.3) which extends corresponding results for GV-modules in [12],
GV-rings in [15] and left s-unital V'-rings in [19].

A finitely generated self-projective module M over a commutative ring is
a GCO-modules if it is co-semisimple or regular in o[M] or, equivalently, if
its endomorphism ring has the corresponding property {see 2.4).

In section 3 we are concerned with finiteness conditions on G:C'O-modules.
We obtain that a GCO-module M has acc on essential submodules if and only
if for every essential submodule K C M the factor module M /K has finite
uniform dimension (see 3.2). This implies related results on GV-modules in
[29] and [22]. Self-projective GCO-modules M with ace on essential submod-
ules are characterized by the facts that M has no M-singular stbmodules
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and that M/Soc M is noetherian and co-semisimple (see 3.5).

Special cases of GCO-modules with acc on essential submodules are mo-
dules M for which every self-injective M-singular module is M-injective or
for which every M-singular module is M-injective. Finitely generated self-
projective modules of the latter type are hereditary in o[M] (see 3.6, 3.8 and
3.10).

Finally we characterize (in 3.11) finitely generated self-projective GCO-
modules M with dec on essential submodules by the properties that M /SocM
is semisimple and Soc M is M -projective {or M has no M -singular submod-
ule).

For M = R the last mentioned results yield assertions on QI-rings and
81-rings {e.g. Faith [7}, Goodearl {10]).

We close with some remarks about the connection of our techniques with
torsion theoretic generalizations of V-rings as considered in Takehana (18],
Varadarajan [23], Ahsan-Enochs [2] and Page-Yousif [14].

1 M-singular modules

Let R be an associative ring with unity and R-Mod the category of unital
left R-modules. For M € R-Mod we denote by o[M] the full subcategory of
R-Mod whose objects are submodules of M-generated modules.

Soe M and Rad M denote the socle and the radical of the module M
respectively. If K C M is a proper essential submodule we write K <1 M.
The kernel of 2 homomorphism f is denoted by Ke f. Morphisms are written
on the opposite side of the scalars. For basic definitions see [1, 27},

The R-module M is called co-semisimple or V-module, if every simple
module (in ¢[M]) is M-injective ([8, 19, 24]). It is known that submod-
ules, factor modules and direct sums of co-semisimple modules are again
co-sernisimple (e.g. [27, § 23]).

Let M and N be R-modules. N is called singular in ¢[M] or M-singular
if N~ L/K for an L € o[M] and K 9 L (see {26]).

By definition every M-singular module belongs to o[M). For M = R the
notion R-singular is identical to the usual definition of singular for modules.
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Every M-singular module is of course R-singular but R-singular modules
need not be M-singular (see [26, § 2]).

It is elementary to see that the class of all M -singular modules is closed
under submodules, homomorphic images and direct sums (e.g. [11, 1.1],
{27, 17.3]). Hence every module N € o[M] contains a largest M -singular
submodule which we denote by Zu(N). In our notation Z{N) = Zx(N) is
just the largest singular submodule of N and Zy(N) C Z(N). For a non-
projective simple R-module M we always have Z(M) = M but Zp (M) = 0.

The follbwing basic observations on M-singular modules will be useful:

1.1 Proposition. Let M be an R-module.
(1) A simple R-module E is M-singular or M-projective.
(2) If Zye(M) O Soc M = 0 then Soc M is projective in aiM].
(8) If Zps (M) N Rad M = 0 then every M-singular simple submodule is o
direct summand of M.

Proof: (1) A simple module which does not belong to o[M] is trivially
M-projective. Assume the simple module E € ¢[M] is not M-singular and
consider an exact sequence

0—K—L—F—90

in o[M]. By assumption the maximal submodule K C L is not essential and
hence is a direct summand in I, i.e. the sequence splits and E is a projective
object in o[M].

(2) is an immediate consequence of (1).

(3) (see [12, 3.15]) Let E be an M-singular simple submodule in M. By
hypothesis E ¢ Rad M and hence there is ‘& maximal submodule L C M
with EN L = 0. This implies that E is a direct summand.

1.2 Proposition. Let M be an R-module.
(1) Every M-singular module is submodule of an M-generated M-singular
module.
(2) Buery finitely generated M-singular module belongs to o[M/L] for
some L <4 M.
(3) {M/K | K 4 MY} is o generating set for the M-generated M-singular

modules.
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Proof: (1) Consider L € o[M] and K < L. The M-injective hull I of L
is M-generated and

L/KcL/k, KaL<L.

(2) A finitely generated M-singular module is of the form N/K with a
finitely generated N € o[M] and K <4 N. N ig an essential submodule of a
finitely M-generated module N, i.e. we have an epimorphism @ : M* — N,
k € IN (compare (1)}, and U := (N)¢~! and V := (K)@™' are essential
submodules of M*.

With the canonical inclusions g; : M — M* we get that L 1= ;i (V)e™!
is an essential submodule of M and I* lies in the kernel of the composed
map ‘

v N-—N /K.

This implies N/K € o[M/L].
(3) is an immediate consequence of (2).

1.2 Proposition. Let M be an R-module.
(1) For every module N € o[M] we have N/Soc N € o[M/Soc M].
(2) Buery (simple) M-singular R-module belongs to o[M/Soc M].
(8) Every simple module in a[M/Saoc M| is M-singular.

Proof: (1) Let N denote the M-injective hull of N € o[M]. Since N
is M-generated there is an epimorphism ¢ : M®) — N for a suitable index
set A. Obviously L := {N)y~! is an essential submodule of ) and hence
Soc M) ¢ L. The kernel of the composed map

L % N— NfSocN

contains the socle of MM and this implies N/Soc N € o[M/Soc M].

(2) Consider an M-singular module N/K with K 9 N and N € a[M].
Then Soc N C K and N/K is a factor module of N/Soc N which belongs to
a{M/8oc M| by (1).

(3) Since every simple module E in a[M/Soc M] is a factor module of
an essential submodule of M/Soc M we find an essential submodule N C M
with an epimorphism

w: N —— NfSocM — E.
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In case E is not M-singular ¢ splits and N~ E' ¢ Kep. But E' ~ Eisin
the socle of N and hence also in Ke ¢, a contradiction.

1.4 Proposition. Let M be an R-module, N an M-singular module and
f € Hom(M,N).
(1) If M is self-projective and (M)f finitely generated then Ke f < M.
(2) If M is projective in o[M] then Ke f 4 M.

Proof: {1) Under the given conditions we may assume {(M)f = L/K
with L € o[M] finitely generated and K < L. Since M is self-projective it is
also L-projective and the diagram with the canonical projection p

M

Ly
L % L/K — 0

can be completed to a commutative diagram by g : M — L.
Then Ke f = {K)g™! is essential in M.
(2) The arguments in (1) apply without finiteness condition.

2 Generalized co-semisimple modules

We call an R-module M generalized co-semisimple or GCO-module if every
singular simple B-module is M-injective or M-projective.

M is a generalized V-module or G V-module in the sense of Hirano [12] if
every singular simple module is M-injective. Obviously, GV-modules are also
GCO-modules. The definition of GC'O-modules only refers to properties with
respect to the module M whereas the definition of GV-modules also refers to
the ring R (R-singular). After 2.2 we will give an example of & GCO-module
which is not a GV-module.

Since a singular simple R-module cannot be H-projective a ring R is a
left GV -ring, i.e. pR is a GV-module (see [15, 12]), if and only if R is a
GCO-module. )

The equivalence of the first three conditions in our next result was shown
in Yousif [29, Lemma, 4]. The remaining assertions easily follow from 1.3:




4240 WISBAUER

2.1 M/Soc M co-semisimple.
For an R-module M the following conditions are equivalent:
{a) MjSoc M is co-semisimple;
() M/K is co-semisimple for every K < M;
{c) every K < M is an intersection of mazimal submodules;
(d) for every N € a[M] the module N/Soc N is co-semisimple;
(e} every M-singular simple module is M/Soc M -injective;

every M-singular module is co-semisimple.
Ty g

For M = R the equivalence (a) < {d) yields Proposition 2.1 in Baccella

[4].

2.2 Characterization of GCO-modules.

For an R-module M the following conditions are equivalent:

(a) M is a GCO-module;

(b) every M-singular simple module is M-injective;

{c) for every module N € o[M)] we have Zy(N) N Rad N = 0;

(d) for every simple module E € a[M} with M -injective hull E we have
Zy{B) 1 Rad(E) = 0;

(e) M/K is co-semisimple for every K & M and Zp (M) N Rad M = 0;

(f) M/Soc M is co-semisimple and Zp (M) N Rad M = 0;

(g) M/Soc M is co-semisimple and every M-singular simple submodule
of M is a direct summand; ‘ '

(h) M/Soc M is co-semisimple and every finitely generated submodule of
Zy(M) N Soc M is a direct summand in M;

(i) every module in o[M] is a GCO-module.

Prooft (a) = (b) A simple singular module in o[M] cannot be M-
projective and hence has to be M-injective by (a).

(b) = (a) Let E be a simple singular B-module. If E is M-singular then
it is M-injective by (). Otherwise it is M-projective according to 1.1.

(8) = () (compare [12, 3.15], {23, 2.1}): For a module N € o{M] assume
0# me Zy(N)N Rad N. By Zorn’s Lemma there is a submodule L C N
which is maximal with respect to m ¢ L. Then (Rm + L)/L 4 N/L. Since
(Rm + L)/L is an M-singular simmple module it is M-injective by (b) and
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hence isomorphic to N/L. This implies that L is a maximal submodule of N
with m @ L which contradicts the choice of m.

(¢) = (d) is trivial.

(d) = (b) Let F be a simple module with M-injective hull E in o[M]
and Zu(E) N Rad(E) = 0. If B is M-singular then Zy(E) # 0. Since E is
uniform this implies Rad(ﬁ;‘) = 0 and E is cogenerated by simple modules,
ie. E = E and E is M-injective.

(b) = () If K < M then every simple module in ¢{M/K] is M-singular
and hence M-injective and M/K-injective, i.e. M/K is co-semisimple. The
condition Za(M) N Rad M = 0 was shown in (b} = (¢).

(e) & (f) is a consequence of 2.1. {f) => (g} is shown in 1.1,

(g) = (&) (see [12, 3.15]) Consider the diagram with exact line

0 - L — M

iy
E

with an M-singular simple E and L 4 M. Set K := Ke f.

If K is not essential in L then L ~ E' @ K where F' (~ E) is an M-
singular simple submodule and hence a direct semmand of M. This yields
the desired commutative extension of the above diagram.

If K < L then K < M. Since M/K is co-semisimple (see 2.1) the diagram

0 — L/K — M/K

Lr
E

can be compléted in the desired way.

(b) = (h) = (g) is readily verified,

() & {a) For every N € o[M] the N-singular modules in ¢[N] are also
M —singulir and hence the assertion is clear.

Example: GCO-modules need not be GV -modules.
Let § be a left GV-ring which is not a left V-ring (see [4] for examples) and
R the ring of lower triangular (2, 2)-matrices. Then the map

R:SO—>S, aO’__)a,
5 8 b ¢
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is a surjective ring homomorphism whose kernel is essential as left ideal in A.
Hence every (simple) $-module is singular as R-module and all S-singular
modules are S-injective, i.e. § is a GCO-module over R. Since not every
R-singular simple module is S-injective (8 is not a left V-ring) § is not a
GV-module over R.

For self-projective modules the properties (g} and (k) in 2.2 can be ex-
pressed differently: '

2.3 Self-projective GCO-modules.
For o self-projeciive R-module M the following assertions are equivelent:
(e} M is a GCO-module; ' :
(6) M/Soc M is co-semisimple and Soc M is M-projective;
(c) M/Soc M is co-semisimple and Zp (M) N Soc M = 0.

Prooft (¢) = (¢) By 2.2 (h) every finitely generated submodule of
Ey(M)N SocM is M-projective and M-singular and hence zero.

{e) & (&) follows from 1.1.

{c) = (a) is a special case of 2.2,

Our Theorem 2.2 extends the characterizations of GV-rings in {15, Theo-
rem 3.3] and [23, Theorem 4.2] as well as the characterization of GV-modules
in
[12, Theorem 3.15] to GCO-modules. For M = R the description of self-
projective GCO-modules in 2.3 yields Theorem 2,2 in [4].

It was pointed out after Corollary 4 in [21] that the left s-unital rings T
(without unity) of Tominaga [19] are self-generators as left modules and the
category of all s-unital left T-modules is just o[rT]. Now it is easy to see
that a left s-unital ring 7" is a left V'-ring in the sense of [19] if and only if
7T is a GCO-module. Hence 2.2 implies and extends the characterizations

of these rings in Theorem 4 of [19].

We already observed that for a ring R the module gR is a GV-module ex-
actly if it is a GCO-module. Hence a commutative ring R is (von Neumann)
regular if xR is a GCO-module (e.g. [15, Theorem 3.6]). This can be ex-
tended to certain modules over commutative rings and their endomorphism

rings.
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Recall the a finitely generated self-projective module M is reguler in o8]
if every finitely generated submodule is a direct summand in M (e.g. {27,
37.4)).

2.4 Self-projective modules over commutative rings,
For a finitely generated and self-projective module M over a commutative ring
R and § = End(M) the subsequent assertions are equivalent:
(a) M is e« GCO-module;
(b) M is co-semisimple;
(¢} M is regular in o[M];
{d) sS is a GCO-module;
fe) §8 is co-semisimple;
{f) S is (von Newmann} regular;
(8) R = R/An(M) is (von Neumann) regular.

Proof: Under the given conditions ¢{M] = R-Mod, M is a projective
generator in R-Mod, and the functor Hom(M, ) ; o[M] — S-Mod is an
equivalence. Hence the assertions are readily verified (see {27, 37.11], {24,
Theorem 1.8]).

The equivalences in 2.4 can be applied to establish a similar result for

lacally projective modules as given in [12, Theorem 4.8],

3 GCO-modules with finiteness conditions

Recall that a module is locally noetherian if its finitely generated submodules

are noetherian.

8.1 M/Soc M locally noetherian and co-semisimple,
For an R-module M the following conditions are equivalent:
(a) M/Soc M is co-semisimple and locally noetherian;
(b) every M-singular module in o[M] is co-semisimple and locally
noetherian;
(c) every M-singular semisimple module in o[M] is M/Soc M -injective,
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Proof: (a} = (b) follows immediately from 1.3,

(b) = (a) Consider a finitely generated submodule N/SoeM C M/SocM
{with Soe M C N C M). Then for every K < N the factor module N/K is
noetherian and co-semisimple according to () and we know from [20, Lemma
2] that N/SoecM is noetherian, Hence M/SocM is co-semisimple and locally
noetherian.

(@) = (c) The simple M-singular modules are M/Soc M-injective by 2.1.
Since M/Soc M is locally noetherian the direct sum of of these modules is
also M/Soc M-injective.

(¢} = (b} We obtain from (¢) that every M-singnlar module N € o[M]
is co-semisimple and every semisimple module in #{N] is N-injective. This
implies that every finitely generated M-singular module is noetherian.

3.2 GCO-modules with acc on essential submodules.
For an R-module M the following conditions are egquivelent:
{a} M is a GCO-module with acc on essential submodules;
(6) M is a GCO-module and M/K has finite uniform dimension for every
K< M;
(c) M/Soc M is co-semisimple noetherian and Zp(M)N Rad M = 0.

Proof: (a) < (b) is obtained with the same proof as Theorem 2 in {22},
{e) © {¢) This equivalence follows from 2.2.

The modules in the preceding theorem are obviously noetherian if they
have finitely generated socles. Applying 3.2 we can extend the characteriza-
tion of noetherjan G'V-modules in [22, Corollary 3] to GCO-modules:

3.3 Noetherian GCO-modules,
For a GCO-module M the following assertions are equivelent:
{v) M is noctherian;
(b} M has Krull dimension;
(c) every factor module of M has finite uniform dimension;
(d) M has acc on essential submodules and Soc M is finitely generated.
In this case Zy (M) Soc M is a direct summand in M.

The next result is motivated by Lemma 2.13 in Page-Yousif [14]:
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3.4 Proposition. Let M be a self-projective R-module with M/Soc M
finitely generated. Assume that Zu(M)N Rad M = 0 and that M salisfies

acc on essentiol kernels of endomorphisms. Then Zy (M) = 0.

Proof: Consider f € Hom(M, Zy(M)). We know from 1.1 that the
simple M-singular submodules of M are direct summands and hence
Zy(MYN Soc M =0 and Soc M C Ke f.
This implies that (M)f is finitely generated and by 1.4 Ke f < M and

KefcKef*CKefic -

is an ascending chain of essential kernels of endomorphisms. By our chain
condition we find a k € IN with Ke f* = Ke f?. Assume f* #£ 0. Then
there is an m € M with 0 # (m)f* € Ke f*. This implies (m)f? = 0 and
hence (m)f* = 0, a contradiction. Therefore Hom(M, Zy(M)) is a nil left
ideal in End(M) and hence contained in the Jacobson radical of End{M),
i.e. (see [27, 22.2]) B

Hom(M, Zy(M)) C Jac(End(M)) C Hom{M, Red M).

By our assumptions this means Hom(M, Zy(M)) = 0.

Zp(M) N Rad M = 0 also tells us that Zy (M) is not a small submodule
of M if it is not zero. In this case there is a non-trivial submodule L C M
with Zy(M)+L = M and we get an epimorphism Zy (M) — M/L. Now the
self-projectivity of M implies that Hom{M, Zax{M)} # 0 which contradicts

our above observation.

Our next theorem extends the characterization of left GV-rings with ace
on essential left ideals in [14, Corollary 2.16] from rings to self-projective

modules:

3.5 Self-projective GCO-modules with acc on essentials.
For a self-projective R-module M the following assertions are equivalent:
(2) M is a GCO-module and M/Soc M is locally noetherian;
(b) M[SocM is co-semisimple, locally noetherian and Zy(M)NSocM = 0
(or: Sec M is M-projective);
(¢) every M-singular semisimple module is M-injective.
If M/Soc M is finilely generated, then there are also equivalent:
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{d) M is a GCO-module with ace on essential submodules;

{e) M/Soc M is co-semisimple noetherian and Zn(M) = 0.
In this case the endomorphism ring of the M-injective hull M of M is {von
Newmann) regular and left self-injective,

Proof: {a) <> {b) This is evident from 2.3

(€) = (a) Of course, (¢) implies that M is a GCO-module. The finiteness
condition is obtained in 3.1.

(b) = (¢) We know from 3.1 that every M-singular semisimple module F
is M/Soc M-injective. We have to show that F is even M-injective:

For an essential submodule K 4 M let f: K — F be a homomorphism.
Then Ke f is an essential submodule of K: Assume thereis anon-zero L C K
with LNKe f = 0. Then the restriction map fir : L — F is a monomorphism
and hence L C Zp (M) N Soc M = 0, a contradiction. Hence Soe M C Ke f

and we get the diagram

0 — K/SocM — M/SocM

br
F

which can be completed in the desired way by 3.1.

(a) & (d) Since M/Soc M is finitely generated this assertion follows from
[20, Lemma, 2|.

(b) & (e) is a consequence of 3.4,

For modules M with Za (M) = 0 it was shown in Theorem 3.4 of [26]
that End(M) has the indicated properties.

A ring R for which all self-injective modules are R-injective is called QI-
ring {in [5]). We call an R-module M a QI—module if every self-injective
module in o[M] is M-injective,

Evidently, a @I-module is locally noetherlan and co-semisimple.

The TQI-rings in [2] can be described as rings whose singular self-injective
modules are R-injective (see {14, Corollary 3.3]}. Generalizing this notion we
look at modules M for which all self-injective M -singular modules are M-
injective. These are obviously special GCO-modules for which M/Soc M is
locally noetherian. Our techniques provide straightforward proofs for char-

acterizing properties of these modules:
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3.8 Self-injective M-singular modules are M-injective,
Let M be a self-projective R-module and M/Soc M finitely generated. Then
the following assertions are equivalent:
(o) every self-injective M -singular module is M -injective;
(b) M/K is a QI-module for every K 4 M and Zp(M) = 0;
(c) Zy(M) =0 and M/Soc M is ¢ QI-module.

Proof: (a) => (b) If K < M then every self-injective module in o[M/K]

is M-singular and hence M-injective. Also, every M-singular semisimple
_module is M-injective and hence Zn (M) = 0 by 3.5.

(8) = (¢) M = M/Soc M is self-projective and noetherian co-semisimple
by 3.2. Hence it is a generator in o[M] and this category is equivalent to the
category S-Mod with § = End(M).

Condition (b) also implies that every M-singular self-injective module in
o[M] is M-injective and therefore the ring § is left noetherian co-semisimple
{e.g. [27, 23.8]) and every singular self-injective left S-module is S-injective.
By Corollary 9 in [6] this implies that § is a left @I-ring. Again referring to
the equivalence between o[M) and S-Mod we deduce that M is a QI-module.

(¢) = (a) Since every M-singular self-injective module N € o[M] belongs
to o[M/Soc M] it is clear that N is M/Soc M-injective.

Applying the condition Zz(M) = 0 we can use the proof (b) = (c) in 3.5
to show that N is also M-injective. '

Considering further finiteness conditions we get as a special case of 3.1:

3.7 Every M-singular module semisimple.
The following conditions are equivalent for an R-module M:
(a) every M-singular module is semisimple;
(b) every {cyclic) M-singular module is M/Soc M -injective;
(c) M/K is semisimple for every K 4 M;
(d) M/SoeM is co-semisimple and locally noetherian and Soc(M[/K) # 0
for every K 4 M.
If M/Soc M is finitely generated then (a)-(d) are also equivalent to:
{e) M/Soc M is co-semisimple and M/K is finitely cogenerated for every
K4 M. '
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Proof: (e) = (b) Applying 3.1 we get from (a) that every M-singular
semisimple module is M/Soc M-injective.

() = (c) Assume that every cyclic M-singular module is M/Soc M-
injective and K < M. Then M/K has the property that every quotient of
a cyclic submodule is M/K-injective. By Corollary 2 of Osofsky-Smith [13]
this implies that M/K is semisimple.

{c) = (a) We know from 1.3 that every finitely generated M-singular mo-
dule is contained in ¢{M/K) for a suitable K < M and hence is semisimple
by (c).

(b) = (d) is a consequence of 3.1 and the equivalences already shown.

(d) = (¢) Since M-singular semisimple modules are M/Soec M-injective
by 3.1 it is easily seen from (d) that M /K has an essential and M/ K-injective
socle, i.e. it is semisimple.

(¢) ¢ (e) is obvious by 2.1.

We now want to see how self-projective modules of the above type are
related to GC'O-modules, This leads us to a generalization of the description
of §I-rings in Corollary 2.20 of [14]:

3.8 Every M-singular module M-injective.

For a self-projective R-module M the following conditions are equivalent:

(a) every M-singular module is semisimple, Zp(M) = 0 and M/Soc M
18 finitely generated;

{(b) every (cyclic) M-singular module is M-injective and M/Soc M is
finitely generated;

{(c) M{K is finitely generated semisimple for every K A M and Zp(M) =
0;

(d}) M is a GCO-module with acc on essential submodules and
Soc{M/K) # 0 for every K 4 M;

{e) M is a GCO-module and M /K is finitely cogenerated for every K4 M;

(f) M/Soc M is o finitely generated QI-module, Zy(M) = 0 and
Soc(M/K) # 0 for every K 4 M.

Proof: The equivalences from (a} to (e) are readily obtained combining
the assertions in 3.6 and 3.7.
(b) = (f) = (d) is easily derived from 3.6 and 3.5.



i

GENERALIZED CO-SEMISIMPLE MODULES ) 4249

3.9 Self-projective GCO-modules with M/Rad M semisimple.
For a self-projective R-module M with M/Rad M semisimple the subsequent
properties are equivalent:

{a) M is o« GCO-module;
(b) every (cyclic} M-singular module is M-injeclive.

Proof: (b) = (a) is trivial (see 3.7).

(a) = (b) We know from 2.2 that Zy (M) Rad M = 0. Since M/Rad M
is semisimple this implies that Z (M) is semisimple. By 2.2 the simple
summands of Z3r(M} are direct summands in M and hence M-projective,
ie. Zy(M)=0.

For every K <1 M we have Rad M/K = 0. Hence M/K is generated by
M /Rad M and therefore semisimple. Now we know from 3.7 that every M-
singular module is M/Soc M-injective. Since Zp(M) = 0 we can conclude
as in (b) = (c) of 3.5 that the M-singular modules are even M-injective.

A corresponding result for locally projective GV-modules was shown
(with a similar proof) in Proposition 2.9 of Yousif [28]. For M = R the
above result implies that semilocal TQI-rings are SI-rings, a refinement of
Theorem 4 in Ahsan-Enochs {2].

An R-module M is called heredifary in o{M)] if every submodule of M is
projective in o[M]. It was shown in Satz 2.6 of {25] that M is hereditary in
ofM} if and only if every factor module of an M-injective module in o[M]
is again M-injective (also [27, 39.6]). This definition generalizes the heredi-
tery modules of Shrikhande [17] which are B-modules whose submodules are
projective in R-Mod.

'According to Yousif [28] SI-modules M are defined by the property that
all singular left R-modules are M-injective.” Since M-singular modules are
singular these modules have the property that all M-singular modules are
M-injective (compare 3.8). Hence 3.8 is an extension of the description of
locally projective SI-modules in [28, Proposition 2.4].

It was proved in Proposition 1.11 of {14] that projective $T-modules are
hereditary in the sense of Shrikhande. Essentially the same proof yields a

more general result:
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8.10 Proposition.
. Let M be an R-module which is projective in o[M] and assume that ell
M -singular modules are M-injective. Then M is hereditary in o[M)].

Proof: (compare (14, 1.11]) Let L be an M-injective module in ¢[A] and
N C L. There is an M-injective hull N of N in L and we have L = NokK
for an M-injective submodule K C L. Since L/N ~ N/N @ K and the
M-singular module N/N is M-injective by assumptions we see that L/N is
also M-injective. Hence M is hereditary in o[M] by our remark above.

This Proposition tells us that finitely generated modules M of the type
considered in 3.8 are hereditary in o[M}. As a very special case, every finitely
generated, self-projective @I-module M for which Sec M/K # 0 for K 4 M
is hereditary in ¢{M]. For M = R this means that a left Qf-ring with the
restricted left socle condition is left hereditary. This was proved in Theorem
18 of Faith (7).

Finally we want to consider the descending chain condition (dcc) on es-
sential submodules in cornection with GCO-modules.

3.11 GCO-modules with dec on essential submodules,
For an R-module M with M/Soc M finitely generated the subsequent condi-
tions are eguivalent:
(a) M is a GCO-module with dcc on essential submodules;
() M/Soc M is semisimple and Zp (M) N Rad M = 0.
If M is self-projective then (2) and (c) are are also equivalent to:
(c) every (cyclic) M-singular module is M-injective and Soc M Q4 M;
{d) M/Soc M is semisimple and Zy(M) = 0;
{e) M/Soc M is semisimple and Soc M is M -projective.

Proof: {a) <> (b) It was observed in 3, Proposition 2] that a module M
has dcc on essential submodules if and only if M/Soc M is artinian,
The other implications are a straightforward application of 3.5 and 3.8.

For M = R we obtain from the above results the characterization of
SI-rings with essential socle in [4, Lemma 2.6).



i

* GENERALIZED CO-SEMISIMPLE MODULES 4251

Remarks: Let 7" be a hereditary (pre-)torsion class in B-Mod. Following
Takehana [18] we may call R a left T-V-ring if every simple 7-torsion module
is T-injective. Since every hereditary pretorsion class T is of the form o{N ]
for a suitable R-module N the ring R is a 7-V-ring exactly if this N is
co-gemisimple. This was observed in the introduction of Garcia Herndndez-
Gémez Pardo [9].

In Varadarajan [23] left 7-V -rings are studied for stable hereditary torsion
classes T (i.e. 7 is closed under R-injective hulls). In this case T-injective
implies R-injective (see [23, Remark 1.1]) and hence 7-V-rings are just the
rings R for which simple T-torsion modules are R-injective.

As a special case of this setting in Ahsan-Enochs [2] rings are investigated
for which the self-injective modules in the Goldie torsion cless are R-injective,
We extend some of their results in 3.6 and 3.9,

Investigations in Page-Yousif [14] can also be interpreted in this setting.
For example, in Proposition 2.15 they describe rings for which semisimple
modules in a certain hereditary pretorsion class T are T-injective. Their
condition that the ideal in R which defines 7 is pure as a right ideal ensures
that again T-injective implies H-injective.

Our methods allow to study more generally injectivity properties of simple
or semisimple modules in hereditary pretorsion classes in any category o[M].
In fact, for the class of M-singular modules this is done in section 2 and 3.
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