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Abstract. The purpose of this paper is to develop a theory of bimonads and Hopf monads
on arbitrary categories thus providing the possibility to transfer the essentials of the theory
of Hopf algebras in vector spaces to more general settings. There are several extensions
of this theory to monoidal categories which in a certain sense follow the classical trace.
Here we do not pose any conditions on our base category but we do refer to the monoidal
structure of the category of endofunctors on any category A and by this we retain some
of the combinatorial complexity which makes the theory so interesting. As a basic tool
we use distributive laws between monads and comonads (entwinings) on A: we define a
bimonad on A as an endofunctor B which is a monad and a comonad with an entwining
λ : BB → BB satisfying certain conditions. This λ is also employed to define the category
AB

B of (mixed) B-bimodules. In the classical situation, an entwining λ is derived from the
twist map for vector spaces. Here this need not be the case but there may exist special
distributive laws τ : BB → BB satisfying the Yang-Baxter equation (local prebraidings)
which induce an entwining λ and lead to an extension of the theory of braided Hopf algebras.

An antipode is defined as a natural transformation S : B → B with special properties.
For categories A with limits or colimits and bimonads B preserving them, the existence of
an antipode is equivalent to B inducing an equivalence between A and the category AB

B of
B-bimodules. This is a general form of the Fundamental Theorem of Hopf algebras.

Finally we observe a nice symmetry: If B is an endofunctor with a right adjoint R,
then B is a (Hopf) bimonad if and only if R is a (Hopf) bimonad. Thus a k-vector space
H is a Hopf algebra if and only if Homk(H,−) is a Hopf bimonad. This provides a rich
source for Hopf monads not defined by tensor products and generalises the well-known
fact that a finite dimensional k-vector space H is a Hopf algebra if and only if its dual
H∗ = Homk(H, k) is a Hopf algebra. Moreover, we obtain that any set G is a group if and
only if the functor Map(G,−) is a Hopf monad on the category of sets.
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1. Introduction

The theory of algebras (monads) as well as of coalgebras (comonads) is well understood
in various fields of mathematics as algebra (e.g. [8]), universal algebra (e.g. [12]), logic or
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operational semantics (e.g. [27]), theoretical computer science (e.g. [22]). The relationship
between monads and comonads is controlled by distributive laws introduced in the seventies
by Beck (see [2]). In algebra one of the fundamental notions emerging in this context are
the Hopf algebras. The definition is making heavy use of the tensor product and thus
generalisations of this theory were mainly considered for monoidal categories. They allow
readily to transfer formalisms from the category of vector spaces to the more general settings
(e.g. Bespalov and Brabant [3] and [20]).

A Hopf algebra is an algebra as well as a coalgebra. Thus one way of generalisation is to
consider distinct algebras and coalgebras and some relationship between them. This leads
to the theory of entwining structures and corings over associative rings (e.g. [8]) and one
may ask how to formulate this in more general categories. The definition of bimonads on a
monoidal category as monads whose functor part is comonoidal by Bruguières and Virelizier
in [7, 2.3] may be seen as going in this direction. Such functors are called Hopf monads
in Moerdijk [21] and opmonoidal monads in McCrudden [17, Example 2.5]. In 2.2 we give
more details of this notion.

Another extension of the theory of corings are the generalised bialgebras in Loday in
[15]. These are Schur functors (on vector spaces) with a monad structure (operads) and a
specified coalgebra structure satisfying certain compatibility conditions [15, 2.2.1]. While in
[15] use is made of the canonical twist map, it is stressed in [7] that the theory is built up
without reference to any braiding. More comments on these constructions are given in 2.3.

The notions of monads and comonads were formulated in the setting of 2-catgeories in
Lack and Street [14]. Based on this point of view, elements of a Hopf theory were developed
(e.g. [9]) and eventually a formal Hopf algebra theory in (monoidal) Gray categories was
presented in López Franco [16]. Similar to Loday’s approach, the central notions are built
up on the tensor product in the base category. This allows for a rich structure theory and
a deep study of Hopf algebras and comprises (co)quasi-Hopf algebras over base fields.

The purpose of the present paper is somewhat different. Our intention is to formulate
the essentials of the classical theory of Hopf algebras for any (not necessarily monoidal)
category, thus making it accessible to a wide field of applications. We employ the fact that
the category of endofunctors (with the Godement product as composition) always has a
tensor product given by composition of natural transformations but no tensor product is
required for the base category.

Compatibility between monads and comonads are formulated as distributive laws whose
properties are recalled in Section 2. In Section 3, general categorical notions are presented
and Galois functors are defined and investigated.

As suggested in [29, 5.13], we define a bimonad H = (H,m, e, δ, ε) on any category A as
an endofunctor H with a monad and a comonad structure satisfying certain compatibility
conditions (see 4.1). The latter do not refer to any braiding but in special cases they can be
derived from a local prebraiding τ : HH → HH (see 6.3). In this case the bimonad shows
the characteristics of braided bialgebras (Section 6).

Related to a bimonad H there is the (Eilenberg-Moore) category AH
H of bimodules with

a comparison functor KH : A → AH
H . An antipode is defined as a natural transformation

S : H → H satisfying m · SH · δ = e · ε = m · HS · δ. It exists if and only if the natural
transformation γ := Hm · δH : HH → HH is an isomorphism. If the category A admits
limits or colimits and H preserves them, the existence of an antipode is equivalent to the
comparison functor being an equivalence (see 5.6). This is a general form of the Fundamental
Theorem for Hopf algebras. Corresponding theorems are provided in Bruguières-Virelizier
[7] and Loday [15] as well as in López Franco [16].

Of course, bialgebras and Hopf algebras over commutative rings R provide the prototypes
for this theory: on R-Mod, the category of R-modules, one considers the endofunctor B⊗R
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− : R-Mod→ R-Mod where B is an R-module with algebra and coalgebra structures, and
an entwining derived from the twist map (braiding) M ⊗R N → N ⊗RM (e.g. [5, Section
8]).

More generally, for a comonad H, the entwining λ : HH → HH may be derived from
a local prebraiding τ : HH → HH (see 6.7) and then results similar to those known for
braided Hopf algebras are obtained. In particular, the composition HH is again a bimonad
(see 6.8) and, if τ2 = 1, an opposite bimonad can be defined (see 6.10).

In case a bimonad H on A has a right (or left) adjoint endofunctor R, then R is again
a bimonad and has an antipode (or local prebraiding) if and only if so does H (see 7.5).
In particular, for R-modules B, the functor HomR(B,−) is right adjoint to B ⊗R − and
hence B is a Hopf algebra if and only if HomR(B,−) is a Hopf monad. This provides a
rich source for examples of Hopf monads not defined by a tensor product and extends a
symmetry principle known for finite dimensional Hopf algebras (see 7.8). We close with
the observation that a set G is a group if and only if the endofunctor Map(G,−) is a Hopf
monad on the category of sets (see 7.9).

Note that the pattern of our definition of bimonads resembles the definition of Frobenius
monads on any category by Street in [24]. Those are monads T = (T, µ, η) with natural
transformations ε : T → I and ρ : T → TT , subject to suitable conditions, which induce
a comonad structure δ = Tµ · ρT : T → TT and product and coproduct on T satisfy the
compatibility condition Tµ · δT = δ · µ = µT · Tδ.

2. Distributive laws

Distributive laws between endofunctors were studied by Beck [2], Barr [1] and others in
the seventies of the last century. They are a fundamental tool for us and we recall some
facts needed in the sequel. For more details and references we refer to [29].

2.1. Entwining from monad to comonad. Let T = (T,m, e) be a monad and G =
(G, δ, ε) a comonad on a category A. A natural transformation λ : TG → GT is called
a mixed distributive law or entwining from the monad T to the comonad G if it induces
commutativity of the diagrams

G
eG

~~||||||||
Ge

!!CCCCCCCC

TG
λ

// GT,

TG

Tε !!CCCCCCCC
λ // GT

εT}}{{{{{{{{

T ,

TG

λ
��

Tδ // TGG
λG // GTG

Gλ
��

GT
δT

// GGT,

TTG

mG
��

Tλ // TGT
λT // GTT

Gm
��

TG
λ

// GT.

It is shown in [30] that for an arbitrary mixed distributive law λ : TG → GT from a
monad T to a comonad G, the triple Ĝ = (Ĝ, δ̂, ε̂), is a comonad on the category AT of
T-modules (also called T-algebras), where for any object (a, ha) of AT,

• Ĝ(a, ha) = (G(a), G(ha) · λa), • (δ̂)(a,ha) = δa, • (ε̂)(a,ha) = εa.

Ĝ is called the lifting of G corresponding to the mixed distributive law λ.
Furthermore, the triple T̂ = (T̂ , m̂, ê) is a monad on the category AG of G-comodules,

where for any object (a, θa) of the category AG,

• T̂ (a, θa) = (T (a), λa · T (θa)), • (m̂)(a,θa) = ma, • (ê)(a,θa) = ea.
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This monad is called the lifting of T corresponding to the mixed distributive law λ. One
has an isomorphism of categories

(AG) bT ' (AT ) bG,
and we write AG

T (λ) for this category. An object of AG
T (λ) is a triple (a, ha, θa), where

(a, ha) ∈ AT and (a, θa) ∈ AG with commuting diagram

(2.1) T (a)
ha //

T (θa)
��

a
θa // G(a)

TG(a)
λa

// GT (a).

G(ha)

OO

We consider two examples of entwinings which may (also) be considered as generalisations
of Hopf algebras. They are different from our approach and we will not refer to them later
on.

2.2. Opmonoidal functors. Let (V,⊗, I) be a strict monoidal category. Following Mc-
Crudden [17, Example 2.5], one may call a monad (T, µ, η) on V opmonoidal if there exist
morphisms

θ : T (I)→ I and χX,Y : T (X ⊗ Y )→ T (X)⊗ T (Y ),
the latter natural in X,Y ∈ V, which are compatible with the tensor structure of V and the
monad structure of T .

Such functors can also be characterised by the condition that the tensor product of V can
be lifted to the category of T -modules (e.g. [29, 3.4]). They were introduced and named
Hopf monads by Moerdijk in [21, Definition 1.1] and called bimonads by Bruguières and
Virelizier in [7, 2.3]. It is mentioned in [7, Example 2.8] that Szlachányi’s bialgebroids in
[25] may be interpreted in terms of such ”bimonads”. It is preferable to use the terminology
from [17] since these functors are neither bimonads nor Hopf monads in a strict sense but
rather an entwining (as in 2.1) between the monad T and the comonad T (I)⊗− on V:

Indeed, the compatibility conditions required in the definitions induce a coproduct χI,I :
T (I)→ T (I)⊗ T (I) with counit θ : T (I)→ I. Moreover, the relation between χ and µ (e.g.
(15) in [7, 2.3]) lead to the commutative diagram (using X ⊗ I = X)

TT (X)
µ //

T (χI,X)

��

T (X)
χI,X // T (I)⊗ T (X)

T (T (I)⊗ T (X))
χT (I),T (X) // TT (I)⊗ TT (X)

µI⊗TT (X) // T (I)⊗ TT (X)

T (I)⊗µX

OO

This shows that T (X) is a mixed (T, T (I)⊗−)-bimodule for the entwining map

λ = (µI ⊗ T (−)) ◦ χT (I),− : T (T (I)⊗−)→ T (I)⊗ T (−).

The antipode of a classical Hopf algebra H is defined as a special endomorphism of H. Since
opmonoidal monads T relate two distinct functors it is not surprising that the notion of an
antipode can not be transferred easily to this situation and the attempt to do so leads to an
”apparently complicated definition” in [7, 3.3 and Remark 3.5]. Hereby the base category
C is required to be autonomous.

2.3. Generalized bialgebras and Hopf operads. The generalised bialgebras over fields
as defined in Loday [15, Section 2.1] are similar to the mixed bimodules (see 2.1): they are
vector spaces which are modules over some operad A (Schur functors with multiplication
and unit) and comodules over some coalgebras Cc, which are linear duals of some operad C.
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Similar to the opmonoidal monads, the coalgebraic structure is based on the tensor product
(of vector spaces). The Hypothesis (H0) in [15] resembles the role of the entwining λ in
2.1. The Hypothesis (H1) requires that the free A-algebra is a (CC ,A)-bialgebra: this is
similar to the condition on an A-coring C, A an associative algebra, to have a C-comodule
structure (equivalently the existence of a group-like element, e.g. [8, 28.2]). The condition
(H2iso) plays the role of the canonical isomorphism defining Galois corings and the Galois
Coring Structure Theorem [8, 28.19] may be compared with the Rigidity Theorem [15, 2.3.7].
The latter can be considered as a generalisation of the Hopf-Borel Theorem (see [15, 4.1.8])
and of the Cartier-Milnor-Moore Theorem (see [15, 4.1.3]). In [15, 3.2], Hopf operads are
defined in the sense of Moerdijk [21] and thus the coalgebraic part is dependent on the
tensor product. This is only a sketch of the similarities between Loday’s setting and our
approach here. It will be interesting to work out the relationship in more detail.

Similar to 2.1 we will also need the notion of mixed distributive laws from a comonad to
a monad.

2.4. Entwining from comonad to monad. A natural transformation λ : GT → TG is a
mixed distributive law from a comonad G to a monad T, also called an entwining of G and
T, if the diagrams

G
Ge

~~||||||||
eG

!!DDDDDDDD GT

εT   BBBBBBBB
λ // TG

Tε~~||||||||

GT
λ

// TG , T ,

GTT

Gm
��

λT // TGT
Tλ // TTG

mG
��

GGT
Gλ // GTG

λG // TGG

GT
λ

// TG, GT

δT

OO

λ
// TG

Tδ

OO

are commutive.

For convenience we recall the distributive laws between two monads and between two
comonads (e.g. [2], [1], [29, 4.4 and 4.9]).

2.5. Monad distributive. Let F = (F,m, e) and T = (T,m′, e′) be monads on the category
A. A natural transformation λ : FT → TF is said to be monad distributive if it induces
commutativity of the diagrams

T
eT

~~||||||||
Te

!!BBBBBBBB

FT
λ // TF,

F
Fe′

}}{{{{{{{{ e′F

!!CCCCCCCC

FT
λ // TF.

FFT
mT //

Fλ
��

FT

λ
��

FTF
λF // TFF

Tm // TF,

FTT
Fm′ //

λT

��

FT

λ
��

TFT
Tλ // TTF

m′F // TF.

In this case λ : FT → TF induces a canonical monad structure on TF .

2.6. Comonad distributive. Let G = (G, δ, ε) and T = (T, δ′, ε′) be comonads on the
category A. A natural transformation ϕ : TG→ GT is said to be comonad distributive if it
induces the commutative diagrams
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TG

Tε !!CCCCCCCC
ϕ // GT

εT}}{{{{{{{{

T ,

TG

ε′G !!CCCCCCCC
ϕ // GT

Gε′}}{{{{{{{{

G ,

TG
Tδ //

ϕ

��

TGG
ϕG // GTG

Gϕ
��

GT
δT // GGT,

TG
δ′G //

ϕ

��

TTG
Tϕ // TGT

ϕT

��
GT

Gδ′ // GTT.

In this case ϕ :TG→ GT induces a canonical comonad structure on TG.

3. Actions on functors and Galois functors

The language of modules over rings can also be used to describe actions of monads on
functors. Doing this we define Galois functors and to characterise those we investigate the
relationships between categories of relative injective objects.

3.1. T-actions on functors. Let A and B be categories. Given a monad T = (T,m, e) on
A and any functor L : A→ B, we say that L is a (right) T-module if there exists a natural
transformation αL : LT → L such that the diagrams

(3.1) L

AAAAAAAA

AAAAAAAA
Le // LT

αL

��
L,

LTT
Lm //

αLT
��

LT

αL

��
LT αL

// L

commute. It is easy to see that (T,m) and (TT, Tm) both are T-modules.
Similarly, given a comonad G = (G, δ, ε) on A, a functor K : B→ A is a left G-comodule

if there exists a natural transformation βK : K → GK for which the diagrams

K

CCCCCCCC

CCCCCCCC
βK // GK

εK
��
K,

K
βK //

βK

��

GK

δK
��

GK
GβK

// GGK

commute.
Given two T-modules (L,αL), (L′, αL′), a natural transformation g : L → L′ is called

T-linear if the diagram

(3.2) LT
gT //

αL

��

L′T

αL′

��
L g

// L′

commutes.

3.2. Lemma. Let (L,αL) be a T-module. If f, f ′ : TT → L are T-linear morphisms from
the T-module (TT, Tm) to the T-module (L,αL) such that f · Te = f ′ · Te, then f = f ′.
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Proof. Since f · Te = f ′ · Te, we have αL · fT · TeT = αL · f ′T · TeT. Moreover, since f
and f ′ are both T-linear, we have the commutative diagrams

TTT

Tm
��

fT // LT

αL

��
TT

f // L,

TTT

Tm
��

f ′T // LT

αL

��
TT

f ′ // L.

Thus αL · fT = f · Tm and αL · f ′T = f ′ · Tm, and we have f · Tm · TeT = f ′ · Tm · TeT .
It follows - since Tm · TeT = 1 - that f = f ′. tu

3.3. Left G-comodule functors. Let G be a comonad on a category A, let UG : AG → A
be the forgetful functor and write φG : A → AG for the cofree G-comodule functor. Fix a
functor F : B→ A, and consider a functor F : B→ AG making the diagram

(3.3) B F //

F ��>>>>>>> AG

UG
~~}}}}}}}}

A

commutative. Then F (b) = (F (b), αF (b)) for some αF (b) : F (b) → GF (b). Consider the
natural transformation

(3.4) ᾱF : F → GF,

whose b-component is αF (b). It should be pointed out that ᾱF makes F a left G-comodule,
and it is easy to see that there is a one to one correspondence between functors F : B→ AG

making the diagram (3.3) commute and natural transformations ᾱF : F → GF making F a
left G-comodule.

The following is an immediate consequence of (the dual of) [10, Propositions II,1.1 and
II,1.4]:

3.4. Theorem. Suppose that F has a right adjoint R : A → B with unit η : 1 → RF and
counit ε : FR→ 1. Then the composite

tF : FR ᾱFR // GFR
Gε // G

is a morphism from the comonad G′ = (FR,FηR, ε) generated by the adjunction η, ε : F a
R : A→ B to the comonad G. Moreover, the assignment

F −→ tF

yields a one to one correspondence between functors F : B→ AG making the diagram (3.3)
commutative and morphisms of comonads tF : G′ → G.

3.5. Definition. We say that a left G-comodule F : B→ A with a right adjoint R : B→ A is
G-Galois if the corresponding morphism tF : FR→ G of comonads on A is an isomorphism.

As an example, consider an A-coring C, A an associative ring, and any right C-comodule
P with S = EndC(P ). Then there is a natural transformation

µ̃ : HomA(P,−)⊗S P → −⊗A C
and P is called a Galois comodule provided µ̃X is an isomorphism for any right A-module
X, that is, the functor −⊗S P : MS →MC is a −⊗A C-Galois comodule (see [28, Definiton
4.1]).
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3.6. Right adjoint functor of F . When the category B has equalisers, the functor F has
a right adjoint, which can be described as follows: Writing βR for the composite

R
ηR // RFR

RtF // RG,

it is not hard to see that the equaliser (R, e) of the following diagram

RUG
RUGηG //

βRU
G

// RGUG = RUGφGUG,

where ηG : 1→ φGUG is the unit of the adjunction UG a φG, is right adjoint to F .

3.7. Adjoints and monads. For categories A, B, let L : A → B be a functor with right
adjoint R : B→ A. Let T = (T,m, e) be a monad on A and suppose there exists a functor
R : B→ AT yielding the commutative diagram

B R //

R ��@@@@@@@@ AT

UT}}||||||||

A.

Then R(b) = (R(b), βb) for some βb : TR(b) → R(b) and the collection {βb, b ∈ B} con-
stitutes a natural transformation βR : TR → R. It is proved in [10] that the natural
transformation

tR : T
Tη // TRL

βL // RL

is a morphism of monads. By the dual of [20, Theorem 4.4], we obtain:
The functor R is an equivalence of categories if and only if the functor R is monadic and

tR is an isomorphism of monads.

4. Bimonads

The following definition was suggested in [29, 5.13]. For monoidal categories similar
conditions were considered by Takeuchi [26, Definition 5.1] and in [20]. Notice that the
term bimonad is used with a different meaning by Bruguières and Virelizier (see 2.2).

4.1. Definition. A bimonad H on a category A is an endofunctor H : A → A which has a
monad structure H = (H,m, e) and a comonad structure H = (H, δ, ε) such that

(i) ε : H → 1 is a morphism from the monad H to the identity monad;
(ii) e : 1→ H is a morphism from the identity comonad to the comonad H;
(iii) there is a mixed distributive law λ : HH → HH from the monad H to the comonad

H yielding the commutative diagram

(4.1) HH
m //

Hδ
��

H
δ // HH

HHH
λH

// HHH.

Hm

OO

Note that the conditions (i), (ii) just mean commutativity of the diagrams

(4.2) HH
Hε //

m

��

H

ε
��

H
ε // 1,

1
e //

e

��

H

δ
��

H
eH
// HH

, 1
e //

=
��???????? H

ε

��
1.
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4.2. Hopf modules. Given a bimonad H = (H,H, λ) on A, the objects of AH
H(λ) are

called mixed H-bimodules or H-Hopf modules. By 2.1, they are triples (a, ha, θa), where
(a, ha) ∈ AH and (a, θa) ∈ AH with commuting diagram

(4.3) H(a)
ha //

H(θa)

��

a
θa // H(a)

HH(a)
λa

// HH(a).

H(ha)

OO

The morphisms in AH
H(λ) are morphisms in A which are H-monad as well as H-comonad

morphisms.

4.3. Comparison functors. Given a bimonad H = (H = (H,m, e), H = (H, δ, ε), λ) on a
category A, the mixed distributive law λ induces functors

KH : A→ (AH)
bH , a 7→ ((H(a),ma), δa),

KH : A→ (AH) bH , a 7→ ((H(a), δa),ma),

where Ĥ is the lifting of the comonad H and Ĥ is the lifting of the monad H corresponding
to the mixed distributive law λ. Moreover, there are commutative diagrams

(4.4) A
KH //

φH

  AAAAAAAAAAAAAAAAAA (AH)
bH

U
bH

��
AH ,

A
KH //

φH

  AAAAAAAAAAAAAAAAAA (AH) bH
U bH
��

AH .

(i) The functor φH . The forgetful functor UH : AH → A is right adjoint to the free
functor φH and the unit ηH : 1 → UHφH of this adjunction is the natural transformation
e : 1 → H. Since ε : H → 1 is a morphism from the monad H to the identity monad,
ε · e = 1, thus e is a split monomorphism.

The adjunction φH a UH generates the comonad φHUH on AH . Recall that for any

(a, ha) ∈ AH , φHUH(a, ha) = (H(a),ma) and Ĥ(a, ha) = (H(a), H(ha) · λa).
As pointed out in [20], for any object b of A, KH(b) = (H(b), αH(b)) for some α : H(b)→

HH(b), thus inducing a natural transformation

αKH
: φH → ĤφH ,

whose component at b ∈ A is αH(b), we may choose it to be just δb, and we have a morphism
of comonads

tKH
: φHUH

αKH
UH

// ĤφHUH

bHεH // Ĥ,

where εH is the counit of the adjunction φH a UH , and since (εH)(a,ha) = ha, we see that
for all (a, ha) ∈ AH , (tKH

)(a,ha) is the composite

(4.5) H(a)
δa // HH(a)

H(ha) // H(a).
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(ii) The functor φH . The cofree H-comodule functor φH has the forgetful functor
UH : AH → A as a left adjoint. The unit η : 1 → φHUH and counit σ : UHφH → 1 of the
adjunction UH a φH are given by the formulas:

η(a, θa) = θa : (a, θa)→ φHUH(a, θa) = (H(a), δa)

and
σa = εa : H(a) = UHφH(a)→ a.

Since ε is a split epimorphism, it follows from [19, Corollary 3.17] that, when A is Cauchy
complete, the functor φH is monadic.

Since KH(a) = ((H(a), δa),ma), it is easy to see that the a-component of

αKH
: ĤKH → KH

is just the morphism ma : HH(a)→ H(a), and we have a monad morphism

tKH
: Ĥ

bHη // HφHUH
αK

H
UH

// φHUH .

It follows that for any (a, θa) ∈ AH , (tKH
)(a, θa) is the composite

(4.6) H(a)
H(θa) // HH(a)

ma // H(a) .

Commutativity of the diagram (4.1) induces a functor

KH : A→ AH
H(λ), a 7→ (H(a),ma, δa).

We know that the categories (AH)
bH , (AH) bH and AH

H(λ) are isomorphic. This allows us
to identify, module these isomorphisms, the functors KH , KH and KH . As noticed in [30,
5.13], the comparison functor KH (and hence also KH and KH) is full and faithful by the
isomorphism

MorHH(H(a), H(b))→ MorA(a, b), f 7→ εb ◦ f ◦ ea.

4.4. The comparison functor as reflection and coreflection. Let H = (H,m, e, δ, ε, λ)
be a bimonad on an arbitrary category A with comparison functor

KH : A→ AH
H(λ).

(1) If A admits coequalisers, KH makes A (isomorphic to) a reflective subcategory of
AH
H(λ).

(2) If A admits equalisers, KH makes A (isomorphic to) a coreflective subcategory of
AH
H(λ).

Proof. (1) Since the functor KH is full and faithful, it suffices to show that it has a
left adjoint. By assumption the category A admits coequalisers. Since the functor U bH :

(AH) bH → AH is (pre)monadic and the functor φH has a left adjoint, one can apply the
Adjoint Triangle Theorem of Dubuc (see, for example, [10]) to the second commutative
diagram of (4.4) to conclude that the functor KH : A → (AH) bH (and hence also KH) has
a left adjoint, proving that A is (isomorphic to) a reflective subcategory of the category
AH
H(λ).
(2) Similar to the above arguments, apply the dual of Dubuc’s Adjoint Triangle Theorem

to the first commutative diagram of (4.4). tu
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Recall that a morphism q : a→ a in a category A is an idempotent when qq = q, and an
idempotent q is said to split if q has a factorization q = i· q̄ with q̄ ·i = 1. This happens if and
only if the equaliser i = Eq(1a, q) exists or - equivalently - the coequaliser q̄ = Coeq(1a, q)
exists (e.g. [6, Proposition 1]). The category A is called Cauchy complete provided every
idempotent in A splits.

4.5. The comparison functor as an equivalence. Let A be a Cauchy complete category.
For a bimonad H = (H = (H,m, e), H = (H, δ, ε), λ), the following are equivalent:

(a) KH : A→ AH
H(λ), a→ (H(a), δa,ma), is an equivalence of categories;

(b) tKH
: φHUH → Ĥ is an isomorphism of comonads;

(c) for any (a, ha) ∈ AH , the composite H(ha) · δa is an isomorphism;

(d) tKH
: Ĥ → φHUH is an isomorphism of monads;

(e) for any (a, θa) ∈ AH , the composite ma ·H(θa) is an isomorphism.

Proof. We still identify the functors KH , KH and KH .
(a)⇔(b) Since A is Cauchy complete and since the unit ηH : 1→ UHφH of the adjunction

φH a UH is a split monomorphism, the functor φH is comonadic by the dual of [18, Theorem
6]. Now, by [20, Theorem 4.4.], KH is an equivalence if and only if tKH

is an isomorphism.
(b)⇔(c) and (d)⇔(e). By 4.3, the morphisms in (b) come out as the morphisms in (c),

and the morphisms in (d) are just those in (e).

(a)⇔(d) Since ε is a split epimorphism, it follows from [19, Corollary 3.17] that (since A
is Cauchy complete) the functor φH is monadic and hence K is an equivalence by 3.7. tu

5. Antipode

We consider a bimonad H = (H,m, e, δ, ε, λ) on any category A.

5.1. Canonical maps. Define the composites

(5.1)
γ : HH

δH // HHH
Hm // HH,

γ′ : HH
Hδ // HHH

mH // HH.

In the diagram

HHH
δHH //

Hm
��

HHHH
HmH //

HHm
��

HHH

Hm
��

HH
δH // HHH

Hm // HH,

the left square commutes by naturality of δ, while the right square commutes by associativity
of m. From this we see that γ is left H-linear as a morphism from (HH,Hm) to itself. A
similar diagram shows that γ′ is right H-linear as a morphism from (HH,mH) to itself.
Moreover, in the diagram

H
He //

δ
��

HH
δH // HHH

Hm
��

HH

HHe

55kkkkkkkkkkkkkkkk
HH,

the top triangle commutes by functoriality of composition, while the bottom triangle com-
mutes because m ·He = 1. Drawing a similar diagram for Hδ and mH, we obtain

(5.2) γ ·He = δ, γ′ · eH = δ.
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5.2. Definition. A natural transformation S : H → H is said to be
• a left antipode if m · (SH) · δ = e · ε;
• a right antipode if m · (HS) · δ = e · ε;
• an antipode if it is a left and a right antipode.

A bimonad H is said to be a Hopf monad provided it has an antipode.

Following the pattern of the proof of [8, 15.2] we obtain:

5.3. Proposition. We refer to the notation in 5.1.
(1) If γ has an H-linear left inverse, then H has a left antipode.

(2) If γ′ has an H-linear left inverse, then H has a right antipode.

Proof. (1) Suppose there exists an H-linear morphism β : HH → HH with β · γ = 1.
Consider the composite

S : H
He // HH

β // HH
εH // H.

We claim that S is a left antipode of H. Indeed, in the diagram

H
δ // HH

HeH //

PPPPPPPPPPPPPP

PPPPPPPPPPPPPP HHH
(1)

βH //

Hm
��

HHH
(2)

Hm
��

εHH // HH

m
��

HH
β

// HH
εH

// H ,

the triangle commutes since e is the unit for the monad H, rectangle (1) commutes by
H-linearity of β, and rectangle (2) commutes by naturality of ε. Thus

m · SH · δ = m · εHH · βH ·HeH · δ = εH · β · δ,

and using (5.2), we have

εH · β · δ = εH · β · γ ·He = εH ·He = e · ε.

Therefore S is a left antipode of H.
(2) Denoting the left inverse of γ′ by β′, it is shown along the same lines that S′ =

Hε · β′ · eH is a right antipode. tu

5.4. Lemma. Suppose that γ is an epimorphism. If f, g : H → H are two natural transfor-
mations such that

m · fH · δ = m · gH · δ or m ·Hf · δ = m ·Hg · δ,

then f = g.

Proof. Assume m · fH · δ = m · gH · δ. Since γ ·He = δ by (5.2), we have

m · fH · γ ·He = m · gH · γ ·He,

and, since γ is also H-linear, it follows by Lemma 3.2 that

m · fH · γ = m · gH · γ.

But γ is an epimorphism by our assumption, thus

m · fH = m · gH.
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By naturality of e : 1→ H, we have the commutative diagrams

H

He
��

f // H

He
��

HH
fH // HH,

H

He
��

g // H

He
��

HH
gH // HH.

Thus, since m ·He = 1,

f = m ·He · f = m · fH ·He = m · gH ·He = m ·He · g = g.

If m ·Hf · δ = m ·Hg · δ similar arguments apply. tu

5.5. Characterising Hopf monads. Let H = (H,m, e, δ, ε, λ) be a bimonad. The following
are equivalent:

(a) γ = Hm · δH : HH → HH is an isomorphism;
(b) γ′ = mH ·Hδ : HH → HH is an isomorphism;
(c) H has an antipode.

Proof. (c)⇒(a) The proof for [20, Proposition 6.10] applies almost literally.
(a)⇒(c) Write β : HH → HH for the inverse of γ. Since γ is H-linear, it follows that

β also is H-linear. Then, by Proposition 5.3, S = εH · β ·He is a left antipode of H. We
show that S is also a right antipode of H. In the diagram

H
δ //

δ

  BBBBBBBBBBBBBBBBB HH

(1)

δH // HHH

(2)

HSH // HHH

(3)

mH //

Hm

��

HH

m

��
HH

Hδ

<<yyyyyyyyyyyyyyyyyy Hε // H
He // HH

m // H,

• (1) commutes by coassociativity of δ,
• (2) commutes because S is a left antipode of H,
• (3) commutes by associativity of m.

Since m ·He = 1 = m · eH and Hε · δ = 1 = εH · δ, it follows that

m · (m ·HS · δ)H · δ = m ·mH ·HSH · δH · δ = m ·He ·Hε · δ
= m · eH · εH · δ = m · ((e · ε)H) · δ.

γ being an epimorphism, Lemma 5.4 implies m ·HS · δ = e · ε, proving that S is also a right
antipode of H.

(b)⇔(c) can be shown in a similar way. tu

Combining 5.5 and 4.5, we get:

5.6. Antipode and equivalence - 1. Let H = (H,m, e, δ, ε, λ) be a bimonad on a category
A and assume that A admits colimits or limits and H preserves them. Then the following
are equivalent:

(a) H has an antipode;
(b) γ = Hm · δH : HH → HH is an isomorphism;
(c) γ′ = mH ·Hδ : HH → HH is an isomorphism;

(d) KH : A→ AH
H(λ), a→ (H(a), δa,ma), is an equivalence.
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Proof. (a)⇔(b)⇔(c) (in any category) is shown in 5.5.
If A admits colimits and H preserves them, then we claim that (b) and (d) are equivalent.

Indeed, since H preserves colimits, the category AH admits colimits and the functor UH :
AH → A creates them (see, for example, [23]). Thus
• the functor φHUH preserves colimits;

• any functor L : B→ AH preserves colimits if and only if the composite UHL does; so, in

particular, the functor Ĥ preserves colimits, since UHĤ = HUH and since the functor
HUH , being the composite of two colimit-preserving functors, is colimit-preserving.

The full subcategory of AH given by the free H-modules is dense and since the functors

φHUH and Ĥ both preserve colimits, it follows from [23, Theorem 17.2.7] that the natural
transformation (see 4.5)

tKH
: φHUH → Ĥ

is an isomorphism if and only if its restriction to the free H-modules is so; i.e. if (tKH
)φH(a)

is an isomorphism for all a ∈ A. But since φH(a) = (H(a),ma), tKH
is an isomorphism if

and only if the composite

HH(a)
δH(a) // HHH(a)

H(ma)// HH(a)

is an isomorphism for all a ∈ A, that is, the isomorphism

γ : HH
δH // HHH

Hm // HH .

Now, if instead A admits limits and H preserves them, then (c) and (d) are equivalent.
Indeed, since the functor H preserves limits, the category AH admits and the functor UH

creates limits. Since φH , being right adjoint, preserves limits, the functor φHUH also pre-
serves limits. Moreover, since the monad Ĥ is a lifting of the monad H along the functor
UH , UHĤ = HUH , implying that the functor Ĥ also preserves limits. Now, since the full
subcategory of AH spanned by cofree H-comodules is codense, it follows from the dual of [23,
Theorem 17.2.7] that the natural transformation tKH

(see 4.5) is an isomorphism if and only
if its restriction to free H-comodules is so. But for any a ∈ A, (tKH

)(H(a),δa) = mH(a) ·H(δa).
Thus tKH

is an isomorphism if and only if the composite γ′ is an isomorphism. tu

6. Local prebraidings for Hopf monads

For any category A we now fix a system H = (H,m, e, δ, ε) consisting of an endofunctor
H : A → A and natural transformations m : HH → H, e : 1 → H, δ : H → HH and
ε : H → 1 such that the triple H = (H,m, e) is a monad and the triple H = (H, δ, ε) is a
comonad on A.

6.1. Double entwinings. A natural transformation τ : HH → HH is called a double
entwining if

(i) τ is a mixed distributive law from the monad H to the comonad H;

(ii) τ is a mixed distributive law from the comonad H to the monad H.
These conditions are obviously equivalent to
(iii) τ is a monad distributive law for the monad H;

(iv) τ is a comonad distributive law for the comonad H.
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Explicitely (i) encodes the identities

(6.1) He = τ · eH

(6.2) Hε = εH · τ

(6.3) δH · τ = Hτ · τH ·Hδ

(6.4) τ ·mH = Hm · τH ·Hτ,

and (ii) is equivalent to the identities

(6.5) eH = τ ·He

(6.6) εH = Hε · τ

(6.7) Hδ · τ = τH ·Hτ · δH

(6.8) τ ·Hm = mH ·Hτ · τH.

6.2. τ-bimonad. Let τ : HH → HH be a double entwining. Then H is called a τ -bimonad
provided the diagram

(6.9) HH

δδ
��

m // H
δ // HH

HHHH
HτH

// HHHH

mm

OO

is commutative, that is

δ ·m = mm ·HτH · δδ = Hm ·mHH ·HτH ·HHδ · δH,

and also the following diagrams commute

(6.10) HH
Hε //

m

��

H

ε
��

H
ε // 1,

1
e //

e

��

H

δ
��

H
eH
// HH,

1
e //

=
��???????? H

ε

��
1.

6.3. Proposition. Let H be a τ -bimonad. Then the composite

τ̃ : HH
δH // HHH

Hτ // HHH
mH // HH

is a mixed distributive law from the monad H to the comonad H. Thus H is a bimonad (as
in 4.1) with mixed distributive law τ̃ .

Proof. We have to show that τ̃ satisfies

(6.11) He = τ̃ · eH

(6.12) Hε = εH · τ̃

(6.13) δH · τ̃ = Hτ̃ · τ̃H ·Hδ

(6.14) τ̃ ·mH = Hm · τ̃H ·Hτ̃
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Consider the diagram

H

(1)

eH //

eH

��

HH

(2)

τ //

eHH

��

HH

eH

�� FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

HH
δH

// HHH
Hτ // HHH

mH // HH ,

which is commutative since square (1) commutes by (6.10), square (2) commutes by functo-
riality of composition, the triangle commutes since e is the identity of the monad H. Thus
τ̃ · eH = mH ·Hτ · δH · eH = τ · eH, and (6.1) implies τ̃ · eH = He, showing (6.11).

Consider now the diagram

HH
δH // HHH

Hτ //

HHε %%KKKKKKKKKK

εHH

��

HHH
(1)

mH //

HεH
��

HH

εH
��

HH
εH // H

HH

(2)

Hε

44iiiiiiiiiiiiiiiiiiii

in which square (1) commutes because ε is a morphism of monads and thus ε ·m = ε ·Hε,
the triangle commutes because of (6.2), diagram (2) commutes because of functoriality of
composition.

Thus εH · τ̃ = εH ·mH ·Hτ · δH = Hε · εHH · δH = Hε, showing (6.12).
Constructing suitable commutative diagram we can show

τ̃ ·mH = mH ·Hτ · δH ·mH
= mH ·HHm ·HmHH ·HHτH ·HτHH ·HHHτ · δδH,

Hm · τ̃H ·Hτ̃ = Hm ·mHH ·HτH · δHH ·HmH ·HHτ ·HδH
= mH ·HHm ·HmHH ·HHτH ·HτHH ·HHHτ · δδH.

Comparing these two identities we get the condition (6.14).
To show that (6.13) also holds, consider the diagram

HHH
δHH //

δHH

��3
333333333333333333333

(1)
HHHH

HτH //

HδHH
��

HHHH
mHH //

HHδH
��

(3)
HHH

HδH
��

HHHHH
(2)

HHτH

��

HHHHH

HHHτ

��

mHHH
//

(4)

HHHH

HHτ

��
HH

δδ
//

Hδ

OO

HHHH

δHHH

>>|||||||||||||||||
HHHHH

HτHH

==zzzzzzzzzzzzzzzzz
HHHHH

mmH ))SSSSSSSSSSSSSSS
mHHH // HHHH

HmH
��

HHH,

in which the triangles and diagrams (1) and (3) commute by functoriality of composition;
diagram (2) commutes by (6.7); diagram (4) commutes by naturality of m.
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Finally we construct the diagram

HH

δδ
��

δH // HHH
(1)

HHδttjjjjjjjjjjjjjjjj
Hτ // HHH

(2)

HδH
��

mH // HH

δH
��

HHHH

(3)

HτH
//

δHHH

��

HHHH

(4)
δHH

��

HHτ // HHHH

δHHH

��

HHH

HHHHH
HHτH

// HHHHH

HτHH **TTTTTTTTTTTTTTT
HHHτ // HHHHH

HτHH //

(5)

HHHHH

mmH

OO

HHHHH

HHHτ

44jjjjjjjjjjjjjjj

in which diagram (1) commutes by (6.3), diagram (2) commutes by (6.9) because δHHH ·
HδH = δδH, the triangle and diagrams (3), (4) and (5) commute by functoriality of com-
position.

It now follows from the commutativity of these diagrams that

δH · τ̃ = δH ·mH ·Hτ · δH
= mmH ·HHHτ ·HτHH ·HHτH · δHHH · δδ
= (HmH ·HHτ ·HδH) · (mHH ·HτH · δHH) ·Hδ
= Hτ̃ · τ̃H ·Hδ.

Therefore τ̃ satisfies the conditions (6.11)-(6.14) and hence is a mixed distributive law from
the monad H to the comonad H. tu

6.4. Corollary. In the situation of the previous proposition, if (a, θa) ∈ AH , then (H(a), θH(a)) ∈
AH , where θH(a) is the composite

H(a)
H(θa) // HH(a)

δH(a) // HHH(a)
Hτa // HHH(a)

mH(a) // HH(a) .

Proof. Write Ĥ for the monad on the category AH that is the lifting of H corresponding
to the mixed distributive law τ̃ . Since θH(a) = τ̃a · H(θa), it follows that (H(a), θH(a)) =
Ĥ(a, θa), and thus (H(a), θH(a)) is an object of the category AH . tu

6.5. τ-Bimodules. Given the conditions of Proposition 6.3, we have the commutative
diagram (see (4.1))

HH
m //

Hδ
��

H
δ // HH

HHH
τ̃H

// HHH,

Hm

OO

and thus H is a bimonad by the entwining τ̃ and the mixed bimodules are objects a in A
with a module structure ha : H(a) → a and a comodule structure θa : a → H(A) with a
commutative diagram

H(a)

H(θa)
��

ha // a
θa // H(a)

HH(a)
τ̃a // HH(a).

H(ha)

OO
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By definition of τ̃ , commutativity of this diagram is equivalent to the commtativity of

(6.15) H(a)
H(θa)

yyrrrrrrrrrr

ha // a
θa // H(a)

HH(a)

δH(a) &&LLLLLLLLLL
HH(a)

H(ha)
ffLLLLLLLLLL

HHH(a)
H(τa)

// HHH(a)

mH(a)

99rrrrrrrrrr
.

A morphism f : (a, ha, θa) → (a′, ha′ , θa′) is a morphism f : a → a′ such that f ∈ AH and
f ∈ AH .

We denote the category AH
H(τ̃) by AH

H .

6.6. Antipode of a τ-bimonad. Let H = (H,m, e, δ, ε) be a τ -bimonad with an antipode
S where τ : HH → HH is a double entwining. Then

(6.16) S ·m = m · SS · τ and δ · S = τ · SS · δ.

If τ ·HS = SH ·τ and τ ·SH = HS ·τ , then S : H → H is a monad as well as a comonad
morphism.

Proof. Since (HH,HτH · δ, εε) is a comonad and (H,m, e) is a monad, the collection
Nat(HH,H) of all natural transformations from HH to H forms a semigroup with unit
e · εε and with product

f ∗ g : HH δδ // HHHH
HτH // HHHH

fg // HH
m // H .

Consider now the diagram

HH

m

��

Hε

wwooooooooooooo
δδ // HHHH

(2)

HτH // HHHH

mHH
��

H
(1)

ε

��?????????????????? H

ε

��

δ ((RRRRRRRRRRRRRRRR HHH

SHH
��

Hm

uukkkkkkkkkkkkkkk

HH

(3)

(4)

SH ))SSSSSSSSSSSSSSSS HHH

Hm
��

I e
// H HHm
oo

in which the diagrams (1),(2) and (3) commute because H is a bimonad, while diagram (4)
commutes by naturality. It follows that

m ·Hm · SHH ·mHH ·HτH · δδ = e · ε ·Hε = εε · e.

Thus S ·m = m−1 in Nat(HH,H). Furthermore, by (a somewhat tedious) computation we
can show

m ·Hm ·HHS ·HSH ·Hτ ·mHH ·HτH · δδ = e · ε ·Hε = e · εε.

This shows that m · SS · τ = m−1 in Nat(HH,H). Thus m · SS · τ = S ·m.
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To prove the formula for the coproduct consider Nat(H,HH) as a monoid with unit ee ·ε
and the convolution product for f, g ∈ Nat(H,HH) given by

f ∗ g : H δ // HH
fH // HHH

HHg // HHHH
mm // HH .

By computation we get

(δ · S) ∗ δ = eH · e · ε = ee · ε,
δ ∗ (τ · SS · δ) = He · e · ε = ee · ε.

Thus (δ · S) ∗ δ = 1 and δ ∗ (τ · SS · δ) = 1, and hence δ · S = τ · SS · δ.
Now assume τ ·HS = SH · τ and τ · SH = HS · τ. Then we have

SS · τ = SH ·HS · τ = SH · τ · SH = τ ·HS · SH = τ · SS, thus

S ·m = m · SS · τ = m · τ · SS = m′ · SS.
Moreover, since m ·He = 1, we have

S · e = m ·He · S · e nat= m · SH ·He · e (6.10)
= m · SH · δ · e antip.

= e · ε · e (6.10)
= e .

Hence S is a monad morphism from (H,m, e) to (H,m · τ, e).
For the coproduct, SS · τ = τ · SS implies

δ · S = τ · SS · δ = SS · τ · δ = SS · δ′.

Furthermore,

ε · S = ε · S ·Hε · δ nat= ε ·Hε · SH · δ (6.10)
= ε ·m · SH · δ antip.

= ε · e · ε (6.10)
= ε.

This shows that S is a comonad morphism from (H, δ, ε) to (H, τ · δ, ε). tu

It is readily checked that for a bimonad H, the composite HH is again a comonad as well
as a monad. However, the compatibility between these two structures needs an additional
property of the double entwining τ . This will also help to construct a bimonad ”opposite”
to H.

6.7. Local prebraiding. Let τ : HH → HH be a natural transformation. τ is said to
satisfy the Yang-Baxter equation (YB) if it induces commutativity of the diagram

HHH
τH //

Hτ
��

HHH
Hτ // HHH

τH
��

HHH
τH
// HHH

Hτ
// HHH .

τ is called a local prebraiding provided it is a double entwining (see 6.1) and satisfies the
Yang-Baxter equation.

6.8. Doubling a bimonad. Let H = (H,m, e, δ, ε) be a τ -bimonad where τ : HH → HH
is a local prebraiding. Then HH = (HH, m̄, ē, δ̄, ε̄) is a τ̄ -bimonad with ē = ee, ε̄ = εε,

m̄ : HHHH
HτH // HHHH

mm // HH ,

δ̄ : HH
δδ // HHHH

HτH // HHHH

and double entwining

τ̄ : HHHH
HτH // HHHH

τHH // HHHH
HHτ // HHHH

HτH // HHHH .
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Proof. We already know that (HH, m̄, ē) is a monad and that (HH, δ̄, ε̄) is a comonad.
First we have to show that τ̄ is a mixed distributive law from the monad (HH, m̄, ē) to the
comonad(HH, δ̄, ε̄), that is

HHē = τ̄ · ēHH, HHε̄ = ε̄HH · τ̄ ,

HHm̄ · τ̄HH ·HHτ̄ = τ̄ · m̄HH,
HHτ̄ · τ̄HH ·HHδ̄ = δ̄HH · τ̄ .

The first two equalities can be verified by placing the composites in suitable commutative
diagrams. The second two identities are obtained by lengthy standard computations (as
known for classical Hopf algebras).

It remains to show that (HH, m̄, ē, δ̄, ε̄) satisfies the conditions of Definition 4.1 with
respect to τ̄ . Again

ε̄ · m̄ = ε ·Hε ·HHεε = ε̄ ·HHε̄, and
δ̄ · ē = HHee ·He · e = HHēē

are shown by standard computations and

ε̄ē = ε · εH · eH · e (4.2)
= ε · e = 1.

To show that (HH, m̄, ē, δ̄, ε̄, τ̄) satisfies (4.1), consider the diagram

H4

(1)

H2δH

��

HτH // H4

HδH2

''NNNNNNNNNNNNN
mH2

// H3

δHH
''NNNNNNNNNNNNN

Hm // H2

(3)

δH // H3

H2δ

��

H5

(4)

(2)

τH3

''NNNNNNNNNNNNN H4

H2m

77ooooooooooooo

H3δ

��
H5

(5)

H4δ

��

HτH2
// H5

(6)

H2τH

77ppppppppppppp

H4δ

��

τH3
// H5

(7)
H4δ

��

H2τH

// H5
(8)

HmH2

77ppppppppppppp

H4δ

��

H5
(9)

(10)

H2τH2

''OOOOOOOOOOOOO H4 HτH // H4

H5

(11)

(12)

HτH2
//

H3m

OO

H5

H3m

OO

H6

H3τH

��

HτH3
// H6

(14)
H3τH

��

(13)

τH4
// H6

(15)
H3τH

��

H2τH2
// H6

HmH3

@@������������������

H3τH

// H6

HmH3

77ooooooooooooo

H2τH2
// H6

(16)

HτH3
// H6

H2mH2

OO

H6

HτH3
// H6

τH4
// H6

H2τH2
// H6

H3τH

>>}}}}}}}}}}}}}}}}}

HτH3
// H6,

H3τH

>>}}}}}}}}}}}}}}}}}

in which diagram (1) commutes because τ is a mixed distributive law and thus

Hτ · τH ·Hδ = δH · τ,

the diagrams (2) and (9) commute by (4.1), the diagrams (3)-(8), (10), (11), (13), (14) and
(16) commute by naturality, diagram (12) commutes because τ is a mixed distributive law
(hence Hm · τH ·Hτ = τ ·mH), diagram (15) commutes by 6.7. By commutativity of the
whole diagram,

δ̄ · m̄ = HτH ·H2δ · δH ·Hm ·mH2 ·HτH
= H2m ·H2mH2 ·H3τH ·HτH3 ·H2τH2 · τH4 ·HτH3 ·H3τH ·H4δ ·H2δH

= HHδ̄ · τ̄HH ·HHm̄,
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and hence HH = (HH, m̄, ē, δ̄, ε̄) is a τ̄ -bimonad. tu

6.9. Opposite monad and comonad. Let τ : HH → HH be a natural transformation
satisfying the Yang-Baxter equation.

(1) If (H,m, e) is a monad and τ is monad distributive, then (H,m · τ, e) is also a monad
and τ is monad distributive for it.

(2) If (H, δ, ε) is a comonad and τ is comonad distributive, then (H, τ · δ, ε) is also a
comonad and τ is comonad distributive for it.

Proof. (1) To show that m · τ is associative construct the diagram

HHH
τH //

Hτ

��

(1)

HHH
mH //

Hτ
�� (2)

HH

τ

��

HHH

τH
��

HHH
τH //

Hm
��

(3)

HHH
Hτ // HHH

Hm //

mH
��

(4)

HH

m
��

HH
τ // HH

m // H,

where the rectangle (1) is commutative by the YB-condition, (2) and (3) are commutative
by the monad distributivity of τ , and the square (4) is commutative by associativity of m.
Now commutativity of the outer diagram shows associativity of m · τ .

From 2.5 we know that τ · eH = He and τ ·He = eH and this implies that e is also the
unit for (H,m · τ, e).

The two pentagons for monad distributivity of τ for (H,m ·m, e) can be read from the
above diagram by combining the two top rectangles as well as the two left hand rectangles.

(2) The proof is dual to the proof of (1). tu

6.10. Opposite bimonad. Let τ : HH → HH be a local prebraiding with τ2 = I and let
H = (H,m, e, δ, ε) be a τ -bimonad on A. Then:

(1) H′ = (H,m · τ, e, τ · δ, ε) is also a τ -bimonad.
(2) If H has an antipode S with τ · HS = SH · τ and τ · SH = HS · τ , then S is a

τ -bimonad morphism between the τ -bimonads H and H′.
In this case S is an antipode for H′.

Proof. (1) By (1), (2) in 6.9, τ is a (co)monad distributive law from the (co)monad H
to the (co)monad H ′, and ε′ · e′ = ε · e = 1 by (6.10). Moreover,

ε′ ·m′ = ε ·m · τ (6.10)
= ε ·Hε · τ 2.4= ε · εH = ε ·Hε = ε′ ·Hε′, and

δ′ · e′ = τ · δ · e (6.10)
= τ · eH · e 2.1= He · e = eH · e = e′H · e′.

To prove compatibility for H′ we have to show the commutativity of the diagram

(6.17) HH
m′ //

δ′δ′

��

H
δ′ // HH

HHHH
HτH

// HHHH.

m′m′

OO

For this standard computations (from Hopf algebras) apply.
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(2) By 6.6, S is a τ -bimonad morphism from the τ -bimonad H to the τ -bimonad H′. To
show that S is an antipode for H′ we need the equalities

m′ · SH · δ′ = e′ · ε′ = e · ε and m′ ·HS · δ′ = e′ · ε′ = e · ε.
Since τ · SH = HS · τ , we have

m′ · SH · δ′ = m · τ · SH · τ · δ = m ·HS · τ · τ · δ τ
2=1= m ·HS · δ = e · ε.

Since τ ·HS = SH · τ , we have

m′ ·HS · δ′ = m · τ ·HS · τ · δ = m · SH · τ · τ · δ τ
2=1= m · SH · δ = e · ε.

tu

As we have seen in Theorem 5.6, the existence of an antipode for an bimonad H on a
category A is equivalent to the comparison functor being an equivalence provided A admits
limits or colimits and H preserves them. It is shown in [3, Theorem 3.5.2] (see also [4,
Lemma 4.2]) that in a braided monoidal category the existence of an antipode implies that
the comparison functor is an equivalence provided idempotents split in this category. As
conjectured in [29, Remarks 5.18], we are able to generalize this to Hopf monads on arbitrary
Cauchy complete categories whose entwining map is derived from a local prebraiding.

6.11. Antipode and equivalence - 2. Let τ : HH → HH be a local prebraiding and let
H = (H,m, e, δ, ε) be a τ -bimonad on a Cauchy complete category A. Consider the category
of bimodules

AH
H = AH

H(τ̃),

where τ̃ = mH ·Hτ · δH (see 6.3, 6.5). Then the comparison functor KH : A → AH
H is an

equivalence of categories if and only if H has an antipode.

Proof. Since (H(a),ma, δa) ∈ AH
H(τ̃) for all a ∈ A, one direction is clear from 4.5.

For the converse, it suffices – since the comparison functor KH is full and faithful (see
4.3)– to show that the functor KH is surjective on objects. So consider an arbitrary object
(a, ha, θa) ∈ AH

H and write qa for the composition

a
θa // H(a)

Sa // H(a)
ha // a,

where S : H → H is an antipode of the bimonad H. We are going to prove that

(6.18) ea · qa = θa · qa.

Considering the diagram

H(a)

eH(a)

��

Sa // H(a)

eH(a)

��

ha // a

ea

��
HH(a)

H(Sa)
// HH(a)

H(ha)
// H(a)

in which both squares commute by naturality of e : 1→ H, one sees that

ea · ha · Sa · θa = H(ha) ·H(Sa) · eH(a) · θa.



BIMONADS AND HOPF MONADS ON CATEGORIES 23

Next, considering the diagram

a

θa

��

θa // H(a)

H(θa)
��

Sa // H(a)

H(θa)

��

ha // a

θa

$$IIIIIIIIII

H(a)

(1)

δa
// HH(a)

(2)

SH(a)

// HH(a)

(3)

τa

// HH(a)
H(ha)

// H(a)

in which
• diagram (1) commutes since (a, θa) ∈ AH ,
• diagram (2) commutes because of naturality of S : H → H,
• diagram (3) commutes since (a, ha, θa) ∈ AH

H ,
we get

θa · ha · Sa · θa = H(ha) · τa · SH(a) · δa · θa.
Now, the diagram

H(a)

δa

��

δa // HH(a)

δH(a)

��

SH(a) // HH(a)
δH(a) // HHH(a)

H(τa) // HHH(a)

mH(a)

��

HH(a)

H(εa)

��

(1)

H(δa)// HHH(a)

(2)

H(SH(a))// HHH(a)

H(ma)

��

SHH(a)// HHH(a)

(3)
τH(a)

OO

H(ma)

��
H(a)

Sa
**VVVVVVVVVVVVVVVVVVVVVVVV

(4)

H(ea) // HH(a)

(6)

(5)

SH(a) // HH(a)

(7)

τa

&&MMMMMMMMMM

H(a)
H(ea)

88qqqqqqqqqqq

eH(a)

// HH(a)

is commutative since
• diagram (1) commutes since the triple (H, δ, ε) is a comonad,
• diagram (2) commutes by 6.6,
• diagram (3) commutes since H is a τ -bimonad,
• diagram (4) commutes since S is an antipode,
• diagram (5) commutes by naturality of composition,
• diagram (6) commutes by naturality of S : H → H,
• diagram (7) commutes since τ is an entwining.

Since eH(a) ·Sa = H(Sa) ·eH(a) by naturality of e : 1→ H and since H(εa) ·δa = 1, it follows
from the commutativity of the diagram that

θa · ha · Sa · θa = H(ha) · τa · SH(a) · δa · θa
= H(ha) ·mH(a) ·H(τa) · δH(a) · SH(a) · δa · θa
= H(ha) ·H(Sa) · eH(a) · θa.

Thus ea · qa = θa · qa. Dually, one can prove that qa · εa = qa ·ha. Moreover, it follows – since
Sa · ea = ea (see the proof of theorem 6.6) and ha · ea = 1 – that

qa · qa = ha · Sa · θa · qa = ha · Sa · ea · qa = ha · ea · qa = qa.
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Thus qa · qa = qa, and since idempotents split in A, there exist an object a and morphisms
ia : a → a and qa : a → a with qa = ia · qa. Then (a, ia) is an equaliser of the pair (ea, θa)
and (a, qa) is a coequaliser of the pair (εa, ha).

For any (a, ha, θa) ∈ AH
H , write αa for the composite ha ·H(ia) : H(ā)→ a. We claim that

αa is a morphism in AH
H from KH(ā) = (H(ā),mā, δā) to (a, ha, θa). Indeed, we have

αa ·mā = ha ·H(ia) ·mā

naturality = ha ·ma ·H2(ia)
(a, ha) ∈ AH = ha ·H(ha) ·H2(ia) = ha ·H(H(ha) · ia) = ha ·H(αa),

and this just means that αa is a morphism in AH from (H(ā),mā) to (a, ha).
Next - using (6.15) and (6.18) - we compute

θa · αa = H(αa) · δā.

Thus, αa is a morphism in AH from (H(ā), δā) to (a, δa), and hence αa is a morphism in
AH
H from KH(ā) = (H(ā),mā, δā) to (a, ha, θa).
Similarly it is proved that the composite βa = H(q̄a) · θa : a → H(ā) is a morphism in

AH from (a, ha, δa) to (H(ā),mā, δā) and a further calculation yields
αa · βa = 1a and βa · αa = 1H(ā).

Hence we have proved that for any (a, ha, θa) ∈ AH
H , αa is an isomorphism in AH

H . Thus
the functor KH is surjective on objects. This completes the proof. tu

For an example, let V = (V,⊗, I, σ) be a braided monoidal category and H = (H,m, e, δ, ε)
a bialgebra in V. Then

(H ⊗−,m⊗−, e⊗−, δ ⊗−, ε⊗−, τ = σH,H ⊗−)

is a bimonad on V, and it is easy to see that the category VH
H of Hopf modules is just the

category VH⊗−
H⊗−(τ̄) = VH⊗−

H⊗−.

6.12. Theorem. Let V = (V,⊗, I, σ) be a braided monoidal category such that idempotents
split in V. Then for any bialgebra H = (H,m, e, δ, ε) in V, the following are equivalent:

(a) H has an antipode;
(b) the comparison functor

KH : V→ VH
H , V 7→ (H ⊗ V,m⊗ V, δ ⊗ V ), f 7→ H ⊗ f,

is an equivalence of categories.

7. Adjoints of bimonads

This section deals with the transfer of properties of monads and comonads to adjoint
(endo-)functors. The relevance of this interplay was already observed by Eilenberg and
Moore in [11]. An effective formalism to handle this was developed for adjunctions in 2-
categories and is nicely presented in Kelly and Street [13]. For our purpose we only need
this for the 2-category of categories. For convenience we recall basic facts of this situation
here.

7.1. Adjunctions. Let L : A → B, R : B → A be an adjoint pair of functors with unit
and counit η, ε, and L′ : A′ → B′, R′ : B′ → A′ be an adjoint pair of functors with unit and
counit η′, ε′. Given any functors F : A → A′ and G : B → B′, there is a bijection between
natural transformations

α : L′F → GL and α : FR→ R′G
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where α is obtained as the composite

FR
η′FR−→ R′L′FR

R′αR−→ R′GLR
R′Gε−→ R′G,

and α is given as the composite

L′F
L′Fη−→ L′FRL

L′αL−→ L′R′GL
ε′GF−→ GL.

In this situation, α and α are called mates under the given adjunction and this is denoted
by a a α. It is nicely displayed in the diagram

A L //

F
��

B R //

G
��

A
F
��αz� |||||||

|||||||

A′

α
:B}}}}}}}

}}}}}}}

L′
// B′

R′
// A′.

Given further
(i) adjunctions L̃ : C → A, R̃ : A → C and L̃′ : C′ → A′, R̃′ : A′ → C′ and a functor

H : C→ C′, or
(ii) an adjunction L′′ : A′′ → B′′, R′′ : B′′ → A′′ and functors F ′ : A′ → A′′ and

G′ : B′ → B′′, we get the diagram

C L̃ //

H
��

A L //

F
��

B R //

G
��

A
F
��αy� {{{{{{{{

{{{{{{{{
R̃ // C

γy� {{{{{{{

{{{{{{{

H
��

C′
R̃′
//

γ

:B|||||||

|||||||
A′

α

9A||||||||

||||||||

L′
//

F ′

��

B′
R′
//

G′

��

A′

F ′

��βy� ||||||||

|||||||| R̃′
// C′

A′′
L′′
//

β

:B}}}}}}}

}}}}}}}
B′′

R′′
// A′′,

yielding the mates

(M1) L′′F ′F
βF−→ G′L′F

G′α−→ G′GL a F ′FG
F ′α−→ F ′R′G

βG−→ R′′G′G,

(M2) L′L̃′H
L′β−→ L′FL̃

αL̃−→ LGL̃ a HR̃R
βG−→ R̃′R′G

R̃′β−→ R̃′R′G.

7.2. Properties of mates. Let L,L′ : A → B be functors with right adjoints R, R′,
respectively, and α : L′ → L a natural transformation.

(i) If L′′ : A → B is a functor with right adjoint R′′ and β : L′′ → L′ a natural transfor-
mation, then

α · β a β · α.

(ii) If L̃ : C→ A is a functor with right adjoint R̃, then

(αL′ : L′L̃→ LL̃) a (R̃α : R̃R→ R̃R′).

(iii) If Lo : B→ C is a functor with right adjoint Ro, then

(Loα : LoL′ → LoL) a (αRo : RRo → R′Ro).

Proof. (i) is a special case of 7.1(M1).
(ii) follows from 7.1(M2) by putting A′ = A, B′ = B, C′ = C and H ′ = H.
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(iii) is derived by applying 7.1 to the diagram

A L // B Lo
// C Ro

// B

I{� �������

�������
R // A

αz� ~~~~~~~

~~~~~~~

A
L̃′
//

α

;C�������

�������
B

I

;C�������

�������

Lo
// C

Ro
// B

R′
// A.

tu
As observed by Eilenberg and Moore in [11, Section 3], for a left adjoint endofunctor which

is a monad, the right adjoint (if it exists) is a comonad (and vice versa). The techniques
outlined above provide a convenient and effective way to describe this transition and to
prove related properties. Recall that for any endofunctor L : A → A with right adjoint R,
for a positive integer n, the powers Ln have the right adjoints Rn.

7.3. Adjoints of monads and comonads. Let L : A → A be an endofunctor with right
adjoint R.

(1) If L = (L,mL, eL) is a monad, then R = (R, δR, εR) is a comonad, where mL a δR
and eL a εR.

(2) If L = (L, δL, εL) is a comonad, then R = (R,mR, eR) is a monad where δL a mR,
εL a eR.

Proof. (1) Since eL a εR and mL a δR, it follows from 7.2 (ii) and (iii) that

LeL a εRR, eLL a RεR, mLL a RδR, LmL a δRR.
Applying 7.2 (i) now yields

mL · LeL a εRR · δR, mL · eLL a RεR · δR,
mL ·mLL a RδR · δR, mL · LmL a δRR · δR.

Since L is a monad we have mL · eLL = mL ·LeL = I and mL ·mLL = mL ·LmL, implying

εRR · δR = RεR · δR = I and RδR · δR = δRR · δR.
This shows that R = (R, δR, εR) is a comonad.

The proof of (2) is similar. tu
The methods under consideration also apply to the natural transformations LL → LL

which were basic for the definition and investigation of bimonads in previous sections. The
following results were obtained in cooperation with Gabriella Böhm and Tomasz Brzeziński.

7.4. Adjointness and distributive laws. Let L : A → A be an endofunctor with right
adjoint R and a natural transformation λL : LL→ LL. Then the mate λR : RR→ RR has
the following properties:

(1) LλL a λRR and λLL a RλR.
(2) λL satisfies the Yang-Baxter equation if and only if λR does.
(3) λ2

L = I if and only if λ2
R = I.

(4) If L = (L,mL, eL) is a monad and λL is monad distributive, then λR is comonad
distributive for the comonad R = (R, δR, εR).

(5) If L = (L, δL, εL) is a comonad and λL is comonad distributive, then λR is monad
distributive for the comonad R = (R,mR, eR).

Proof. (1) follows from 7.2, (ii) and (iii). The remaining assertions follow by (1) and
the identities in the proof of 7.3. tu

Recall from Definition 4.1 that a bimonad H is a monad and a comonad with compatibility
conditions involving an entwining λH : HH → HH.
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7.5. Adjoints of bimonads. Let H be a monad H = (H,mH , eH) and a comonad
H = (H, δH , εH) on the category A. Then a right adjoint R of H induces a monad
R = (R,mR, eR) and a comonad R = (R, δR, εR) (see 7.3) and

(1) H = (H,H) is a bimonad with entwining λH : HH → HH if and only if R = (R,R)
is a bimonad with entwining λR : RR→ RR.

(2) H = (H,H) is a bimonad with entwining λ′H : HH → HH if and only if R = (R,R)
is a bimonad with entwining λ′R : RR→ RR.

(3) If H = (H,H, λH) is a bimonad with antipode, then R = (R,R, λR) is a bimonad
with antipode (Hopf monad).

Proof. (1) With arguments similar to those in the proof of 7.4 we get that λR is an
entwining from R to R. It remains to show the properties required in Definition 4.1. From
7.2(i) we know that

εH ·HεH a eRR · eR, εH ·mH a δR · eR,
δH · eH a εR ·mR, eHH · eH a εR ·RεR, εH · eH a εR · eR.

Thus the equalities

εH ·HεH = εH ·mH , δH · eH = εHH · eH , εH · eH = I

hold if and only if

eRR · eR = δR · eR, εR ·mR = εR ·RεR, εR · eR = I.

The transfer of the compatibility between product and coproduct 4.1 is seen from the
corresponding diagrams

HH
mH //

HδH
��

H
δH // HH

HHH
λHH

// HHH,

HmH

OO RR R
δRoo RR

mRoo

δRR
��

RRR

mRR

OO

RRR.
RλR

oo

The proof of (2) is similar.
(3) By 5.5, the existence of an antipode is equivalent to the bijectivity of the morphism

γH = HmH · δHH : HH → HH.

Since δHH a RmR and HmH a δRR, γH is an isomorphism if and only if γR = RmR · δRR
is an isomorphism. tu

Functors with right (resp. left) adjoints preserve colimits (resp. limits) and thus 5.6 and
7.5 imply:

7.6. Hopf monads with adjoints. Assume the category A to admit limits or colimits.
Let H = (H,mH , eH , δH , εH , λH) be a bimonad on A with a right adjoint bimonad R =
(R,mR, eR, δR, εR, λR). Then the following are equivalent:

(a) the comparison functor KH : A→ AH
H(λH) is an equivalence;

(b) the comparison functor KR : A→ AR
R(λR) is an equivalence;

(c) H has an antipode;

(d) R has an antipode.

Finally we observe that local prebraidings are also tranferred to the adjoint functor.
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7.7. Adjointness of τ-bimonads. Let H be a monad H = (H,mH , eH) and a comonad
H = (H, δH , εH) on the category A with a right adjoint R.

If H = (H,H) is a bimonad with double entwining τH : HH → HH, then R = (R,R) is
a bimonad with double entwining τR : RR→ RR.

Moreover, τH satisfies the Yang-Baxter equation if and only if so does τR.

Proof. Most of the assertions follow immediately from 7.4 and 7.5.
It remains to verify the compatibility condition 6.9. For this observe that from 7.2(i) we

get
δHδH a mHmH , HτHH a RτRR, mHmH a δRδR,

and hence

mHmH · τHH · δHδH a mRmR ·RτRR · δRδR and δH ·mM a δR ·mR.

It follows that H satisfies 6.9 if and only if so does R. tu

7.8. Dual Hopf algebras. Let B be a module over a commutative ring R. B is a Hopf
algebra if and only if the endofunctor B ⊗R − on the category of R-modules is a Hopf
monad. By 7.5, B⊗R− is a bimonad (with antipode) if and only if its right adjoint functor
HomR(B,−) is a bimonad (with antipode). This situation is considered in more detail in
[5].

If B is finitely generated and projective as an R-module and B∗ = HomR(B,R), then
HomR(B,−) ' B∗ ⊗R − and we obtain the familiar result that B is a Hopf algebra if and
only if B∗ is.

7.9. Characterisations of groups. For any set G, the endofunctor G × − : Set → Set
is a Hopf bimonad on the category of sets if and only if G has a group structure (e.g. [29,
5.20]). Since the functor Map(G,−) is right adjoint to G×−, it follows from 7.6 that a set
G is a group if and only if the functor Map(G,−) : Set→ Set is a Hopf monad.
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[5] Böhm, G., Brzeziński, T. and Wisbauer, R., Monads and comonads in module categories, J. Algebra
322, 1719-1747 (2009)

[6] Borceux, F. and Dejean, D., Cauchy completion in category theory, Cah. Topol. Géom. Différ.
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